WSEAS Transactions on Systems
Print ISSN: 1109-2777, E-ISSN: 2224-2678
Volume 12, 2013
Feedforward Model Based Active Force Control of Mobile Manipulator using MATLAB and MD Adams
Authors: , ,
Abstract: The paper highlights the potentials of using a feedforward model based Active Force Control (AFC) as a disturbance rejection scheme in the motion control of a mobile manipulator (MM). The AFC part creates a force or torque feedback within the dynamic system to allow for the compensation of the sudden disturbance introduced into the system prior to relaying the signal to the conventional outerloop position controller employing a resolved acceleration control (RAC) configuration, thereby increasing the robustness of the MM system. The proposed AFC-based model also shows a faster computational performance by manipulating the estimated inertia matrix (IN) of the system instead of considering the entire system dynamic model. A feedforward element in the form of a simplified model of the dynamic system is implemented to complement the IN for a better trajectory tracking performance of the system. The simulation was performed and the results were compared with the computed torque control (CTC) with RAC scheme to benchmark the performance and robustness of the AFC-based counterpart. The MM consists of a skid steering four wheel nonholonomic mobile platform with a three degree-of-freedom (DOF) articulated manipulator attached on top. With the proposed controller incorporated into the system, the tracking performance of the MM is considerably enhanced with increased workspace capacity and better operation dexterity.
Search Articles
Keywords: Active force control, Feedforward model based control, Mobile manipulator, Robust control, Tracking Performance