WSEAS Transactions on Mathematics
Print ISSN: 1109-2769, E-ISSN: 2224-2880
Volume 23, 2024
Explicit Runge-Kutta Method for Evaluating Ordinary Differential Equations of type $$v^{vi} = f(u, v, v^{′})$$
Authors: , , ,
Abstract: The initiative of this paper is to present the Runge Kutta Type technique for the development of mathematical solutions to the problems concerning to ordinary differential equation of order six of structure $$v^{vi} = f(u, v, v^{′})$$ denoted as RKSD with initial conditions. The three and four stage Runge-Kutta methods with order conditions up to order seven (RKSD7) have been designed to evaluate global and local truncated errors for the ordinary differential equation of order six. The framework and evaluation of equations with their results are well established to obtain the effectiveness of RK method towards implicit function satisfying the required initial conditions and for obtaining zero-stability of RKSD7 in terms of their accuracy with maximum precision under minimal processing.
Search Articles
Keywords: Ordinary Differential Equations (ODE), Explicit Runge-Kutta Type methods, Local and Global Truncation Error, Zero Stability
Pages: 167-175
DOI: 10.37394/23206.2024.23.20