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1 Introduction
In the field of science and engineering there are many
real-life situations that can be modelized mathemat-
ically, [1], into the linear and higher order differen-
tial equations, [2]. In past, researchers analyzed many
numerical problems involving linear or ordinary dif-
ferential equations up to fourth order with different
initial conditions using Runge Kutta method, Laplace
transformations or many others. In applied sciences
and engineering, we observe large number of physical
problems involving initial value problems concerned
with higher order ordinary differential equations till
fourth order. For instance, free vibration analysis of
ring structures has been studied by [3]. Moreover
some researchers have developed methods likewise
schemes of Coupled compact for accuracy of sixth or-
der in space was developed to obtain numerical solu-
tions, [4], Langrages Polynomial with fictional points,
[5]. The study, [6], has used neural network for solv-
ing differential equations, while [7], contributed by
provided solution with B-series and coloring method-
ology in evolution of differential equations and fluid

dynamics which are non-linear in nature and fails to
discuss about the most important point, i.e., stabil-
ity of the solution for enhancing the efficiency of any
numerical method. Reducing higher order equations
to lower one for solving them is also an approach
used by many researchers, [8], [9], [10], [11]. Sit-
uations concerned to oscillatory problem. The au-
thors in [12], have solved such problems using ap-
proach of finite differences. Also, efficiency of the
methods designed by them, like, [13], solved many
applied physics problems using multi step methods.
Subsequently, two derivative RKmethod was derived
by [14], [15], for solving special first order DE, [15].
In 2021, [16], [17], contributed in analysis of er-
ror for differential equations of non-linear and lin-
ear type.The authors in [18], solved oscillating sys-
tems by optimizing sixth-order RKN method which
is explicit in nature.The authors in [19], solved fifth
order ODE using generalized Runge- Kutta integra-
tors. The authors in [20], had applied RKN methods
which are implicit in nature. Therefore, there are lots
of studies and analysis been done for providing the so-
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lutions to ordinary differential equation up to higher
order. There are several symbolic algorithms for reg-
ular initial and boundary value problems for differen-
tial equations as well as differential-algebraic equa-
tions, see for example, [21], [22], [23], [24]. But, in
case of ordinary differential equation of sixth order
the initiative had been done but not been proved ben-
eficial or in other word the solution had not been ini-
tiated towards minimizing error in shorter time, num-
ber of operation and using less memory space. Thus,
the current paper focus on evaluating the solutions
for sixth order ODE using a single-step method by
Runge-Kutta method denoted by RKSD. Moreover, it
proves accuracy and stability of the discussed method
in minimizing the error with its derivations.

2 Runge-Kutta Type Sixth-order
ODE

The initial value problem of sixth order ODE exam-
ined in the present paper are:

vvi(u) = f(u, v, v′) (1)

with initial conditions as

v(u0) = α0, v
′(u0) = α

′

0, v
′′(u0) = α

′′

0 ,

v′′′(u0) = α
′′′

0 , v
iv(u0) = αiv

0 , (2)
vv(u0) = αv

0

v(n+1) =vn + hv
′

n +
h2

2
v

′′

n +
h3

3!
v

′′′

n +
h4

4!
vivn

+
h5

5!
vvn + h6

s∑
i=1

biki (3)

v
′

(n+1) =v
′

n + hv
′′

n +
h2

2
v

′′′

n +
h3

3!
vivn

+
h4

4!
vvn + h5

s∑
i=1

b
′

iki (4)

v
′′

(n+1) = v
′′

n+hv
′′′

n +
h2

2
vivn +

h3

3!
vvn+h

4
s∑

i=1

b
′′

i ki (5)

v
′′′

(n+1) = v
′′′

n + hvivn +
h2

2
vvn + h3

s∑
i=1

b
′′′

i ki (6)

viv(n+1) = vivn + hvvn + h2
s∑

i=1

bivi ki (7)

vv(n+1) = vvn + h

s∑
i=1

bvi ki (8)

where
k1 = f(un, vn, v

′

n), (9)

ki = f(un + cih, vn + hciv
′

n +
(h2c2i )

2
v

′′

n

+
(h3c3i )

3!
v

′′′

n +
(h4c4i )

4!
vivn +

(h5c5i )

5!
vvn

+h6
s∑

j=1

aijki, v
′

n + hciv
′′

n +
(h2c2i )

2
v

′′′

n

+
(h3c3i )

3!
vivn +

(h4c4i )

4!
vvn + h5

s∑
j=1

āijkj);

for i = 1, 2, 3, ...s. (10)

For numerical and algebraic calculations requiring
computation efforts, Mathematica software is used to
evaluate values of weights, nodes and coefficients and
arranged them in Butcher tableau (Table 1) form:

Table 1: The Butcher tableau RKSD Method
c A Ā

bT b
′T b

′′T b
′′′T bivT bvT

The principal motive in the construction of RKSD
explicit method is for finding the least value of trun-
cation local errors, [25], [26], [27], [28]. The method
computes the value to the vpn+1 where p is the deriva-
tive i.e. p = 0, 1, 2, . . . , vn+1, parameters for ob-
taining the approximate value to v(un+1), v

′
(un+1),

v
′′
(un+1), v

′′′
(un+1), viv(un+1), vv(un+1) where

vn+1 is the calculated solution and v(un+1) is taken
as the analytic solution. Equation (3)-(8) be presented
as

vn+1 = vn + hψ, v
′

n+1 = v
′

n + hψ
′
,

v
′′

n+1 = v
′′

n + hψ
′′
, v

′′′

n+1 = v
′′′

n + hψ
′′′
,

vivn+1 = vivn + hψiv, vvn+1 = vvn + hψv.

where

ψ(un, vn, v
′

n) =v
′

n +
h

2
v

′′

n +
h2

3!
v

′′′

n +
h3

4!
vivn

+
h4

5!
vvn + h5

s∑
i=1

biki (11)

ψ
′
(un, vn, v

′

n) = v
′′

n +
h

2
v

′′′

n +
h2

3!
vivn

+
h3

4!
vvn + h4

s∑
i=1

b
′

iki (12)

(13)
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ψ
′′
(un, vn, v

′

n) = v
′′′

n +
h

2
vivn +

h2

3!
vvn + h3

s∑
i=1

b
′′

i ki

(14)

ψ
′′′
(un, vn, v

′

n) = vivn +
h

2
vvn + h2

s∑
i=1

b
′′′

i ki (15)

ψiv(un, vn, v
′

n) = vvn + h

s∑
i=1

bivi ki (16)

ψv(un, vn, v
′

n) =

s∑
i=1

bvi ki (17)

Elementary differentials of the scalar equations are
as follows:

F
(6)
1 = v(vi) = f(u, v, v

′

n), (18)

F
(7)
1 == fu + fvv

′
+ fv′vuu, (19)

F
(8)
1 = fuu + vufuv + fuv′vuu + v2ufvv

+ fvv′vuvuu + fvvuu

+ fv′v′v2uu + fv′vuuu. (20)

The local truncation error is obtained by having

τpn+1 =hψ
p(un, vn, v

′

n)−∆p(un, vn, v
′

n),

where p = (0), ..., (v). (21)

Using (18)-(20), Taylor series functions of vp(u)
can be represented as:

∆ =v
′

n +
1

2
hv

′′

n +
1

3!
h2v

′′′

n +
1

4!
h3vivn +

1

5!
h4vvn

+
1

6!
h5F

(6)
1 +O(h6) (22)

∆
′
=v

′′

n +
1

2
hv

′′′

n +
1

3!
h2vivn +

1

4!
h3vvn +

1

5!
h4F

(6)
1

+
1

6!
h5F

(7)
1 +O(h6) (23)

∆
′′
=v

′′′

n +
1

2
hvivn +

1

3!
h2vvn +

1

4!
h3F

(6)
1 +

1

5!
h4F

(7)
1

+
1

6!
h5F

(8)
1 +O(h6) (24)

∆
′′′
=vivn +

1

2
hvvn +

1

3!
h2F

(6)
1 +

1

4!
h3F

(7)
1

+
1

5!
h4F

(8)
1 +

1

6!
h5F

(9)
1 +O(h6) (25)

∆iv =vvn +
1

2!
hF

(6)
1 +

1

3!
h2F

(7)
1 +

1

4!
h3F

(8)
1

+
1

5!
h4F

(9)
1 +

1

6!
h5F

(10)
1 +O(h6) (26)

∆v =F
(6)
1 +

1

2!
hF

(7)
1 +

1

3!
h2F

(8)
1 +

1

4!
h3F

(9)
1

+
1

5!
h4F

(10)
1 +

1

6!
h5F

(10)
1 +O(h6) (27)

Further on, substituting the equations (18)-(20)
into equations (11)-(17), we get

s∑
i=1

biki =

s∑
i=1

biF
(6)
1 +

s∑
i=1

bicihF
(7)
1 +

1

2

s∑
i=1

bic
2
ih

2F
(8)
1

+
1

3!

s∑
i=1

bic
3
ih

3F
(9)
1 ++O(h6).

Similarly,

s∑
i=1

bpi ki =

s∑
i=1

bpiF
(6)
1 +

s∑
i=1

bpi cihF
(7)
1 +

1

2

s∑
i=1

bpi c
2
ih

2F
(8)
1

+
1

3!

s∑
i=1

bpi c
3
ih

3F
(9)
1 ++O(h6) (28)

where p is the derivative i.e. p = 0, 1, 2, .....v.
Using equations (11)-(17) and equations (22)-(27),

the local truncation errors equation (21) will be rep-
resented as

τn+1 = h6[
∑

biki−(
1

6!
F

(6)
1 +

1

7!
hF

(7)
1 +

1

8!
h2F

(8)
1 +

1

9!
h3F

(9)
1 +...)]

(29)
τ

′
n+1 = h5[

∑
b
′
iki−(

1

5!
F

(6)
1 +

1

6!
hF

(7)
1 +

1

7!
h2F

(8)
1 +

1

8!
h3F

(9)
1 +...)]

(30)
τ

′′
n+1 = h4[

∑
b
′′
i ki−(

1

4!
F

(6)
1 +

1

5!
hF

(7)
1 +

1

6!
h2F

(8)
1 +

1

7!
h3F

(9)
1 +...)]

(31)
τ

′′′
n+1 = h3[

∑
b
′′′
i ki−(

1

3!
F

(6)
1 +

1

4!
hF

(7)
1 +

1

5!
h2F

(8)
1 +

1

6!
h3F

(9)
1 +...)]

(32)
τ iv
n+1 = h2[

∑
bivi ki−(

1

2!
F

(6)
1 +

1

3!
hF

(7)
1 +

1

4!
h2F

(8)
1 +

1

5!
h3F

(9)
1 +...)]

(33)
τv
n+1 = h[

∑
bvi ki−(F

(6)
1 +

1

2!
hF

(7)
1 +

1

3!
h2F

(8)
1 +

1

4!
h3F

(9)
1 +...)]

(34)

3 RKSD7 Method Order Conditions

The order conditions of RKSD7 are:
The order terms of v:

Sixth order :
∑

bi =
1

720
, (35)
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Seventh order :
∑

bici =
1

5040
. (36)

The order terms of v′ :

Fifth order :
∑

b
′

i =
1

120
, (37)

Sixth order :
∑

b
′

ici =
1

720
, (38)

7th order :
∑

b
′

ic
2
i =

1

2520
,
∑

b
′

iāij =
1

5040
.

(39)
The order terms of v′′ :

Fourth order :
∑

b
′′

i =
1

24
, (40)

Fifth order :
∑

b
′′

i ci =
1

120
, (41)

Sixth order :
∑

b
′′

i c
2
i =

1

360
,
∑

b
′′

i āij =
1

720
.

(42)

7th order :
∑
b
′′

i c
3
i =

1
840 ,

∑
b
′′

i āijcj =
1

5040 ,∑
b
′′

i aij =
1

5040 ,
∑
b
′′

i ciāij =
1

1680 .(43)

The order terms of v′′′ :

Third order :
∑

b
′′′

i =
1

6
, (44)

Fourth order :
∑

b
′′′

i ci =
1

24
, (45)

Fifth order :
∑

b
′′′

i c
2
i =

1

60
, (46)

Sixth order :
∑

b
′′′

i c
3
i =

1

120
,
∑

b
′′′

i āij =
1

720
.

(47)

7th order :
∑
b
′′′

i c
4
i =

1
210 ,

∑
b
′′′

i āijcj =
1

5040 ,∑
b
′′′

i aij =
1

5040 ,
∑
b
′′′

i ciāij =
1

1260 .(48)

The order terms of viv :

Second order :
∑

bivi =
1

2
, (49)

Third order :
∑

bivi ci =
1

6
, (50)

Fourth order :
∑

bivi c
2
i =

1

12
, (51)

Fifth order :
∑

bivi c
3
i =

1

20
, (52)

Sixth order :
∑

bivi c
4
i =

1

30
,
∑

bivi āij =
1

720
.

(53)

7th order :
∑
bivi c

5
i =

1
42 ,

∑
bivi āijcj =

1
5040 ,∑

bivi aij =
1

5040 ,
∑
bivi ciāij =

1
1008 .(54)

The order terms of vv :

First order :
∑

bvi = 1, (55)

Second order :
∑

bvi ci =
1

2
, (56)

Third order :
∑

bvi c
2
i =

1

3
, (57)

Fourth order :
∑

bvi c
3
i =

1

4
, (58)

Fifth order :
∑

bvi c
4
i =

1

5
,
∑

bvi āij =
1

120
.

(59)

6th order :
∑
bvi c

5
i =

1
6 ,∑

bivi āij =
1

720 ,∑
bvi āijcicj =

1
144 . (60)

7th order :
∑
bvi c

6
i =

1
7 ,
∑
bvi āijcj =

1
5040 ,∑

bvi aij =
1

5040 ,
∑
bvi ciāij =

1
840 ,∑

bvi aijcicj =
1

840 . (61)

4 Zero-Stability of RKSD7 Method
The most important precondition for obtaining the
convergence of numerical problem is evaluating zero-
stability of the system, as explained by [1]. The
methodology used in current research paper be writ-
ten in an array representation as:


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




vn+1

hv
′

n+1

h2v
′′

n+1

h3v
′′′

n+1

h4vivn+1
h5vvn+1



=


1 1 1

2
1
6

1
24

1
120

0 1 1 1
2

1
6

1
24

0 0 1 1 1
2

1
6

0 0 0 1 1 1
2

0 0 0 0 1 1
0 0 0 0 0 1




vn
hv

′

n

h2v
′′

n

h3v
′′′

n

h4vivn
h5vvn


The characteristic equation represented by ρ(ξ)

can be presented as:

ρ(ξ) = |I.ξ −A|

Hence, ρ(ξ) = (ξ − 1)6 we we get the roots to be
ξ = 1, 1, 1, 1, 1, 1, which is the zero-stability of the
given proposed method.
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5 Construction of RKSD Methods
5.1 A Third Stage Seventh Order RKSD
The motive of current section is the derivation of
a third stage with 7th order RKSD method, where
we use the conditions of Equations (35)-(61) respec-
tively, as simultaneous equations for calculating the
values of ci, bpi for i = 1, 2, 3 as follows:

c2 =
1

5
(
1− 5c3
1− 4c3

), b1 =
28c2c3 − 4(c2 + c3) + 1

20160c2c3
,

b2 =
4c3 − 1

20160c2(c3 − c2)
, b3 =

1− 4c2
20160c3(c3 − c2)

,

b
′

1 =
378c2c3 − 63(c2 + c3) + 18

45360c2c3
,

b
′

2 =
63c3 − 18

45360c2(c3 − c2)
,

b
′

3 =
18− 63c2

45360c3(c3 − c2)
,

b
′′

1 =
15c2c3 − 3(c2 + c3) + 1

360c2c3
,

b
′′

3 =
1− 3c2

360c3(c3 − c2)
,

b
′′′

1 =
20c2c3 − 5(c2 + c3) + 2

120c2c3
,

b
′′′

2 =
5c3 − 2

120c2(c3 − c2)
,

b
′′′

3 =
2− 5c2

120c3(c3 − c2)
,

biv1 =
6c2c3 − 2(c2 + c3) + 1

12c2c3
,

biv2 =
2c3 − 1

12c2(c3 − c2)
,

biv3 =
1− 2c2

12c3(c3 − c2)
,

bv1 =
6c2c3 − 3(c2 + c3) + 2

6c2c3
,

biv2 =
3c3 − 2

6c2(c3 − c2)
,

bv3 =
2− 3c2

6c3(c3 − c2)
,

The errors norms of v(u), v′
(u), v′′

(u), v′′′
(u),

viv(u), vv(u) are as

For evaluating the minimal value to the error
norms of 7th order Equations (5.1)-(5.6) we find the
value of parameters ci, bi, b

′

i, b
′′

i , b
′′′

i , bivi , bvi for
i = 1, 2, 3 and arranged in mnemonic device known
as Butcher tableau. Hence, the result values of er-
ror norms are

∣∣∣∣τ (7)∣∣∣∣
2
= 0,

∣∣∣∣τ ′(7)
∣∣∣∣
2
= −3.70074 ∗

10−19,
∣∣∣∣τ ′′(7)

∣∣∣∣
2
= −1.5873 ∗ 10−4,

∣∣∣∣τ ′′′(7)
∣∣∣∣
2
=

−4.42177 ∗ 10−4,
∣∣∣∣τ iv(7)∣∣∣∣

2
= −4.198251 ∗ 10−3

and
∣∣∣∣τv(7)∣∣∣∣

2
= −4.2635 ∗ 10−2.

The global error of three stage seventh order is cal-
culate as follows:

∣∣∣∣ τ (7) ∣∣∣∣
2
=

1

5040

√
(2− 15c3 − 5040(b1 + b3 − 5b1c3 − 10b3c3 + 20b3c23))

2

(5− 20c3)2
,
(62)

∣∣∣∣ τ ′(7)
∣∣∣∣
2
=

1

5040

√
(−3 + 5c3 − 5040b

′

3c3(1− 10c3 + 20c23))
2

(5− 20c3)2
, (63)

∣∣∣∣ τ ′′(7)
∣∣∣∣
2
=

1

2520

√
(−8 + 25c3 − 2520b

′′

3c
2
3(1− 10c3 + 20c23))

2

(5− 20c3)2
, (64)

∣∣∣∣ τ ′′′(7)
∣∣∣∣
2
=

1

840

√
(−13 + 45c3 − 840b

′′′

3 c
3
3(1− 10c3 + 20c23))

2

(5− 20c3)2
, (65)

∣∣∣∣ τ iv(7) ∣∣∣∣
2
=

1

210

√
(−18 + 65c3 − 210biv3 c

4
3(1− 10c3 + 20c23))

2

(5− 20c3)2
, (66)

∣∣∣∣ τ v(7) ∣∣∣∣
2
=

1

42

√
(−23 + 85c3 − 42bv3c

5
3(1− 10c3 + 20c23))

2

(5− 20c3)2
,

(67)
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∣∣∣∣∣∣ τ (7)g

∣∣∣∣∣∣
2
= 4.284379 ∗ 10−2 (68)

Figure 1: Butcher Table of 3 Stage 7th Order RKSD
Method

5.2 Construction of 4-stage Seventh Order
RKSD Methods

Similar to section 5.1, the current section is designed
for the derivation of 4-stage 7th order RKSD method,
where we have used conditions of Equations (35)-(61)
respectively as simultaneous equations for calculating
the values of ci, bi, b

′

i, b
′′

i , b
′′′

i , bivi , bvi for i = 1, 2, 3, 4
as follows

c2 =
5− 24c3
24− 90c3

, b2 = − 12c3c4 − 3(c3 + c4) + 1

60480c2(c2 − c3)(c4 − c2)
,

b3 = − 12c2c4 − 3(c2 + c4) + 1

60480c3(c2 − c3)(c3 − c4)
,

b4 = − 12c2c3 − 3(c2 + c3) + 1

60480c4(c3 − c4)(c4 − c2)
,

b
′

2 = − 28c3c4 − 8(c3 + c4) + 3

20160c2(c2 − c3)(c4 − c2)
,

b
′

3 = − 28c2c4 − 8(c2 + c4) + 3

20160c3(c2 − c3)(c3 − c4)
,

b
′

4 = − 28c2c3 − 8(c2 + c3) + 3

20160c4(c3 − c4)(c4 − c2)
,

b
′′

2 = − 21c3c4 − 7(c3 + c4) + 3

2520c2(c2 − c3)(c4 − c2)
,

b
′′

3 = − 21c2c4 − 7(c2 + c4) + 3

2520c3(c2 − c3)(c3 − c4)
,

b
′′

4 = − 21c2c3 − 7(c2 + c3) + 3

2520c4(c3 − c4)(c4 − c2)
,

b
′′′

2 = − 5c3c4 − 2(c3 + c4) + 1

120c2(c2 − c3)(c4 − c2)
,

b
′′′

3 = − 5c2c4 − 2(c2 + c4) + 1

120c3(c2 − c3)(c3 − c4)

b
′′′

4 = − 5c2c3 − 2(c2 + c3) + 1

120c4(c3 − c4)(c4 − c2)
,

biv2 = −10c3c4 − 5(c3 + c4) + 3

60c2(c2 − c3)(c4 − c2)
,

biv3 = −10c2c4 − 5(c2 + c4) + 3

60c3(c2 − c3)(c3 − c4)
,

biv4 = −10c2c3 − 5(c2 + c3) + 3

60c4(c3 − c4)(c4 − c2)
,

bv2 = −6c3c4 − 4(c3 + c4) + 3

12c2(c2 − c3)(c4 − c2)
,

bv3 = −6c2c4 − 4(c2 + c4) + 3

12c3(c2 − c3)(c3 − c4)
,

bv4 = −6c2c3 − 4(c2 + c3) + 3

12c4(c3 − c4)(c4 − c2)
,

c2 =
1

6
(
1− 6(c2 + 6c3) + 30c2c3
−5(c2 + 6c3) + 20c2c3

).

The errors norms of vp(u) with p = 0, i, ...., v as an
derivative.

∣∣∣∣ τ (7) ∣∣∣∣
2
=

1

5040

√
(11− 73c3 − 5040(55b1 + 55b3 + 31b4 − 24b1c3 − 48b3c3 + 66b4c3 + 90b3c23))

2

(24− 90c3)2
, (69)

∣∣∣∣ τ ′(7)
∣∣∣∣
2
=

1

5040

√
(−13 + 12c3 − 5040[b

′

3c3(5− 48c3 + 90c23)− b
′

4(19− 66c3)])2

(24− 90c3)2
, (70)

∣∣∣∣ τ ′′(7)
∣∣∣∣
2
=

1

2520

√
(−37 + 102c3 − 2520[b

′′

3c
2
3(5− 48c3 + 90c23)− b

′′

4(19− 66c3)])2

(24− 90c3)2
, (71)

∣∣∣∣ τ ′′′(7)
∣∣∣∣
2
=

1

840

√
(−61 + 192c3 − 840[b

′′′

3 c
3
3(5− 48c3 + 90c23)− b

′′′

4 (19− 66c3)])2

(24− 90c3)2
, (72)
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∣∣∣∣ τ iv(7) ∣∣∣∣
2
=

1

210

√
(−85 + 282c3 − 210[biv3 c

4
3(5− 48c3 + 90c23)− biv4 (19− 66c3)])2

(24− 90c3)2
, (73)

∣∣∣∣ τ v(7) ∣∣∣∣
2
=

1

42

√
(−109 + 372c3 − 42[bv3c

5
3(5− 48c3 + 90c23)− bv4(19− 66c3)])2

(24− 90c3)2
, (74)

For the least value of error norms of 7th or-
der Equations above we find value of the parame-
ters ci, bi, b

′

i, b
′′

i , b
′′′

i , bivi , bvi for i = 1, 2, 3, 4 as
shown in the Butcher Figure 1. Hence the result
values of error norms are

∣∣∣∣τ (7)∣∣∣∣
2

= 3.250539 ∗
10−2,

∣∣∣∣τ ′(7)
∣∣∣∣
2
= −2.97306 ∗ 10−19,

∣∣∣∣τ ′′(7)
∣∣∣∣
2
=

−1.33788 ∗ 10−18,
∣∣∣∣τ ′′′(7)

∣∣∣∣
2

= 2.65617 ∗ 10−4,∣∣∣∣τ iv(7)∣∣∣∣
2

= −2.23367 ∗ 10−3 and
∣∣∣∣τ v(7)∣∣∣∣

2
=

−1.166532 ∗ 10−2.
The global error of four stage seventh order is cal-

culated in Figure 2 as:∣∣∣∣∣∣ τ (7)g

∣∣∣∣∣∣
2
= 3.460838 ∗ 10−2 (75)

Figure 2: Butcher Table of Four Stage Seventh Order
RKSD Method

6 Numerical Example
The results of the given methods discussed in the Sec-
tion 5.1 and Section 5.2 are tested with the help of
example of sixth order. The result were also tested
shown in Figure 3 to compare it with existing implicit
RK methods of the same order and with the direct
method of solving the sixth order differential equa-
tion with constant coefficient.

Example 1. Consider the homogeneous linear
equation given as:

vvi(u) + v
′
(u) = 0

with initial conditions as

v(u0) =0, v′(u0) = 1, v′′(u0) = 1, v′′′(u0) = 0,

viv(u0) =1, vv(u0) = 2.

The exact solution is

v(u) =c1 + c2e
−u + e(

1+
√

5

4
)u[c3cos(

√
10− 2

√
5

4
)u

+ c4sin(

√
10− 2

√
5

4
)u] + e(

1−
√

5

4
)u

[c5cos(

√
10 + 2

√
5

4
)u+ c6sin(

√
10 + 2

√
5

4
)u]

where

c1 =
5242880 + 5242880

√
5

16(163840 + 163840
√
5)
,

c2 =
1048576

√
5

(40− 8
√
5)(163840 + 163840

√
5)

c3 =
256(−256− 512

√
5)

163840 + 163840
√
5
,

c4 =
4
√
10(204800 + 40960

√
5)

5(163840 + 163840
√
5)(

√
5−

√
5)

c5 =
32
√
5(−11796480− 1310720

√
5)

5(163840 + 163840
√
5)(640− 128

√
5)

c6 =
(83886080

√
10)

(163840 + 163840
√
5)(640− 128

√
5)(

√
5−

√
5)

7 Conclusion
This paper gives Runge-Kutta technique for solving
and assessing the local truncated error for sixth or-
der ODE of form vvi = f(u, v, v

′
) possessing ini-

tial conditions. The initiative of introducing the three
and four stage seventh order RKSD7 to the sixth or-
der ODE is proved to be beneficial for evaluation of
values of norms of zero stability and error of RKSD7
with efficient values of the weights bi and the nodes
ci and arranged them in the form of Butcher tableau.
The objective of providing accurate solution by min-
imizing error in shorter time, number of operations,
use less memory space for ODE of sixth order has
been attained in numerical form. Hence, the cur-
rent paper findings proved be beneficial for analyzing
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Figure 3: Efficiency curves for RK, three
and four stage RKTF7 with step size h =
0.1, 0.2, 0.25, 0.4, 0.5

many problems related to engineering, science, med-
ical areas with more accuracy by minimizing the er-
rors. From numerical results, the best outcome been
received is that the number of function evaluations of
both RKSD7 methods are less than number of func-
tion evaluations for other existing RK methods.
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