WSEAS Transactions on Fluid Mechanics
Print ISSN: 1790-5087, E-ISSN: 2224-347X
Volume 7, 2012
MathCAD Solutions for Problem of Laminar Boundary-Layer Flow
Author:
Abstract: The problem of laminar boundary-layer flow past a flat plate is presented from the viewpoint of an engineer where the numerical results are of great interest. We compute the velocity profile in the boundary layer and other relevant physical parameters. We also compute the temperature distribution in the thermal boundary layer associated with the forced flow. We consider some algorithmic skeletons both for uncoupled fields and coupled fields. The natural coupling between the velocity field and thermal field can lead to sophisticated algorithms and these aspects are considered in our target example. The non-linear partial differential equations of the laminar boundary-layer flow past a flat plate are transformed into a system of ordinary differential equations by using usual similarity transformations. This system is solved numerically using a software product as MathCAD. Blasius problem is presented from the computational viewpoint and direct transformation and inverse transformations are presented. In the study of the simplified model one encounters what is called a two-point boundary-value problem. Shooting method is effective for this case using functions in MathCAD software.