WSEAS Transactions on Systems
Print ISSN: 1109-2777, E-ISSN: 2224-2678
Volume 11, 2012
Experiments Taken on Energy Management in Active Suspension of Vehicles
Author:
Abstract: Nowadays the theoretical research concerning the active suspension of mechanical vibrations and improving ride comfort and handling properties of vehicles is focused on various suspension innovations. The main goal of the paper is to describe H? controlled active suspension design with respect to the management of the energy flow distribution. In the time of growing interest in the overall minimization of energy consumption, the presented paper could be taken as a contribution to these efforts. Especially in the application field of automotive vehicles, the energy consumption optimization plays an important role in the design process. Suspension system influences both the comfort and safety of the passengers. In the paper, energy recuperation and management in automotive suspension systems with linear electric motors that are controlled by a designed H? controller to generate a variable mechanical force for a car damper is presented. Vehicle shock absorbers in which forces are generated in response to feedback signals by active elements obviously offer increased design flexibility compared to the conventional suspensions with passive elements (springs and dampers). The main advantage of the proposed solution that uses a linear AC motor is the possibility to generate desired forces acting between the unsprung (wheel) and sprung (one-quarter of the car body mass) masses of the car, providing good insulation of the car sprung mass from the road surface roughness and load disturbances. As shown in the paper, under certain circumstances linear motors as actuators enable to transform mechanical energy of the vertical car vibrations to electrical energy, accumulate it, and use it when needed. Energy flow control enables to reduce or even eliminate the demands on the external power source. In particular, the paper is focused on experiments with active shock absorber that has been taken on the designed test bed and the way we developed an appropriate input signal for the test bed that as real road disturbance acts upon the vibration absorber and the obtained results are evaluated at the end. Another important point the active suspension design should satisfy is energy supply control that is made via standard controller modification, and which allows changing amount of energy required by the system. Functionality of the designed controller modification was verified taking various experiments on the experiment stand as mentioned in the paper.