WSEAS Transactions on Mathematics
Print ISSN: 1109-2769, E-ISSN: 2224-2880
Volume 21, 2022
Discrete and Continuous Wavelet Expansions
Authors: ,
Abstract: This paper proposes a new approach to the construction of wavelet decomposition, which is suitable for processing a wide range of information flows. The proposed approach is based on abstract functions with values in linear topological spaces. It is defined by embedded spaces and their projections. The proposed approach allows for adaptive ways of decomposition for the initial flow depending on the speed changes of the last one. The initial information flows can be real number flows, flows of complex and p-adic numbers, as well as flows of (finite or infinite) vectors, matrices, etc. The result is illustrated with examples of spline-wavelet decompositions of discrete flows, and also with the example of the decomposition of a continuous flow.