WSEAS Transactions on Communications
Print ISSN: 1109-2742, E-ISSN: 2224-2864
Volume 20, 2021
Performance Comparison with Hierarchical and Partitional Clustering Methods
Authors: ,
Abstract: In data mining, one of the commonly-used techniques is the clustering. Clustering can be done by the different algorithms such as hierarchical, partitioning, grid, density and graph based algorithms. In this study first of all the concept of data mining explained, then giving information the aims of using data mining and the areas of using and then clustering and clustering algorithms that used in data mining are explained theoretically. Ultimately within the scope of this study, "Mall Customers" data set that taken from Kaggle database, based partitioned clustering and hierarchical clustering algorithms aimed at the separation of clusters according to their costumers features. In the clusters obtained by the partitional clustering algorithms, the similarity within the cluster is maximum and the similarity between the clusters is minimum. The hierarchical clustering algorithms is based on the gathering of similar features or vice versa. The partitional clustering algorithms used; k-means and PAM, hierarchical clustering algorithms used; AGNES and DIANA are algorithms. In this study, R statistical programming language was used in the application of algorithms. At the end of the study, the data set was run with clustering algorithms and the obtained analysis results were interpreted.
Search Articles
Pages: 177-184
DOI: 10.37394/23204.2021.20.23