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Abstract: - The increasing use of synchronous reluctance motors (SynRM) in various types of electric drives is 
explained by its advantages. Different models of SynRM are used to study and control electric drives. In the 
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using this model. Jammed rotor fault mode is simulated. The obtained simulation results are diagnosed by 
machine learning, and the diagnosis accuracy is more than 98%. 
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1  Introduction 
Synchronous reluctance (SynRM) motors combine 
the performance of a permanent magnet motor with 
the simplicity and service-friendliness of an 
asynchronous motor. The rotor consists only of a 
specially shaped magnetically conductive element. 
There are no windings and permanent magnets, 
therefore there is no power loss and there is easy 
maintenance. They have high power density and low 
cost. Furthermore, their use in adjustable electric 
drives ensures high efficiency, especially at partial 
load and high speed, [1], [2].  

The SynRM motor is used in pumps, fans, 
compressors, propulsion, extruders, winders, 
conveyors, etc. 

SynRM creates torque as a result of a change in 
magnetic resistance, with the magnetic flux taking 
the path of the lowest magnetic resistance. When the 
rotor and flux are out of phase, the magnetic torque 
rotates the rotor. The difference in magnetic 
resistance (saliency ratio) created by apparent 
polarity creates a magnetomotive force (MMF) that 
turns the rotor. 

The disadvantage is torque ripple at low speed 
and quite a low power factor. As the saliency ratio 
increases, the power factor increases. Design 
modifications to the rotor have been proposed that 
change the Ld/Lq ratio, which increases the power 
factor. 

Although the SynRM is a synchronous machine, 
unlike a conventional synchronous machine it can 
self-start on direct start.  

Diagnostic methods for electrical machines are 
used for prevention, prediction, and repair. 
Vibration, temperature, and signature signals are 
used for diagnostics. Diagnostics are performed in 
the time and frequency domains. Finite element 
methods are also used. Numerous studies are known 
in the field of diagnostics of technical objects [3], 
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], 
[15], [16], [17], [18], [19], [20], [21], [22], [23], 
[24], [25], [26], [27], [28].  

Different models of SynRM are used to study 
and control electric drives. In the article, a non-
iterative model for electric drive research is 
proposed. Different types of faults can be simulated 
using this model. Jammed rotor fault mode is 
simulated. The obtained simulation results are 
diagnosed by machine learning (ML). 

 

 

2 Diagram of the Studied Electric 

 Drive 
The studied electric drive is a bow thruster used in 
ships. The heart of the drive is the synchronous 
reluctance motor which is fed by a diesel generator 
through frequency drive. The block scheme of the 
marine system is shown in Figure 1. 

 
Fig. 1: Block scheme of the investigated system 
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Figure 2 shows the control strategy used in the 
bow thruster drive control system. The main blocks 
are: Outer Loop Control, where the speed deviation 
is estimated and formed by the reference currents in 
d-q axes; Current control, where the reference 
voltages in d-q axes are formed, which through the 
PWM Generator form the control pulses to the 
Inverter. A rotor disturbance is simulated to the 
shaft of the SynRM. 

 
Fig. 2: SynRM control  

 

 

3  SynRM Model 
The use of SynRM mathematical models is 
mandatory when designing electric drives with this 
type of motor. Mathematical models allow their 
controllers to be designed and incorporated into 
drive control loops. 

Different mathematical models differ in 
purpose, accuracy, state variables used, and form of 
representation, [29], [30], [31]. Almost all are 
represented in the d,q coordinate frame. A major 
difficulty in modeling is the nonlinear 
characteristics of the motor, and the dependence of 
Ld and Lq on the rotor position. 

The article uses a model obtained by a method 
presented in [32]. 

Figure 3 shows the vector diagram of SynRM 
[1] in steady-state, which shows the main variables 
– voltage U, current I, and flux linkage  and their 
spatial position. 

 
Fig. 3: Vector diagram of SynRM at steady-state,  
including the total iron losses truster torque 

The mathematical model of the stator windings 
is written in the system of per units MF, in d,q 

frame, taking the standard assumptions [6]:  
 𝑢𝑠𝑑 = 𝑅𝑠. 𝑖𝑠𝑑 +

𝑑

𝑑𝑡


𝑠𝑑
− 𝑟 .𝑞

    (1) 

 𝑢𝑠𝑞 = 𝑅𝑠. 𝑖𝑠𝑞 +
𝑑

𝑑𝑡


𝑠𝑞
+ 𝑟 .𝑑

    (2) 
sd=Ld.isd; sq=Lq.isq;        (3) 

 

where: 
Rs – stator resistance; Ld, Lq – stator inductance; r – 
rotor angular speed; Ld = Ls + Ms + 3/2Lm; Lq = Ls + 
Ms – 3/2Lm; Ms – stator mutual inductance. 

 
Equations (1) and (2) in matrix form:  

[
𝑢𝑑

𝑢𝑞
] =  𝑅𝑠. [

𝑖𝑑
𝑖𝑞

] + [
𝐿𝑑 0
0 𝐿𝑞

] .
𝑑

𝑑𝑡
[
𝑖𝑑
𝑖𝑞

] +                  
  

𝑟 . [
0 −𝐿𝑞

𝐿𝑑 0
] . [

𝑖𝑑
𝑖𝑞

]   (4) 

 
The motor rotation equation: 

𝑑

𝑑𝑡
𝑟 = 

1

𝑚
(𝑇𝑒 − 𝑇𝑙 − 𝐵𝑚.𝑟)   (5) 

 
where: m – motor and load mechanical time 

constant; Te – electromagnetic torque; Tl – load 
torque; Bm – rotor damping. 

 
The electromagnetic torque of the motor:  

Te = (iq.id,Ld – id.iq.Lq)      (6) 
𝑟 = ∫𝑟 𝑑𝑡   (7) 

 
After conversion into the form of the Cauchy 

system of equations (1) and (2) relative to the 
currents: 
𝑑

𝑑𝑡
[
𝑖𝑑
𝑖𝑞

] =  [
𝑎11 𝑎12

𝑎21 𝑎22
] . [

𝑖𝑑
𝑖𝑞

] + [
𝑏11 0
0 𝑏22

] . [
𝑢𝑑

𝑢𝑞
] = 

= 𝑑

𝑑𝑡
𝑰𝒎𝒐𝒕 = 𝑨𝒎𝒐𝒕. 𝑰𝒎𝒐𝒕 + 𝑩𝒎𝒐𝒕. 𝑼  (8) 

 
where: a11=–Rs/Ld; a12=r.Ld/Lq; a21=–r.Ld/Lq; 

a22=–Rs/Lq; b11=1/Ld; b22=1/Lq.  
 
The SynRM equations are written in d,q frame 

to avoid variable motor parameters. However, the 
real values of the currents and voltages in the a,b,c 
frame are needed to determine the switching 
moments of the switches. Following is the inverter 
model and the corresponding a,b,cd,qa,b,c 
frame transformations. The inverter is modeled 
using switching functions, [33]:  
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𝑑

𝑑𝑡
[

𝑖𝑎
𝑖𝑏
𝑖𝑐

] =
1

𝐿
. [

𝑢𝑎

𝑢𝑏

𝑢𝑐

] −
𝑅

𝐿
. [

𝑖𝑎
𝑖𝑏
𝑖𝑐

] −
𝑈𝑑𝑐

𝐿
.

[
 
 
 
 
 
(2𝑆𝑎 − 𝑆𝑏 − 𝑆𝑐)

3
(2𝑆𝑏 − 𝑆𝑐 − 𝑆𝑎)

3
(2𝑆𝑐 − 𝑆𝑎 − 𝑆𝑏)

3 ]
 
 
 
 
 

 

𝑑

𝑑𝑡
𝑰𝒂𝒃𝒄 =

1

𝐿
. 𝑼abc −

𝑅

𝐿
. 𝑰abc −

𝑈𝑑𝑐

𝐿
. 𝑺      (9) 

 
where: Sa, Sb, Sc – which take two values: 1 for a 
conducting switch and 0 – for a non-conducting 
switch; R, L – resistance and inductance of inverter 
circuit, Udc – input inverter voltage. 

 
Upon transforming the system (9) of equations into 
the d,q frame:    

𝑑

𝑑𝑡
𝑰dq =

1

𝐿
.Udq −

𝑅

𝐿
. 𝑰dq −

𝑈𝑅

𝐿
.P.S−W.Idq =  

= 
𝑑

𝑑𝑡
𝑰𝒊𝒏𝒗 = 𝑨𝒊𝒏𝒗. 𝑰𝒊𝒏𝒗 + 𝑩𝒊𝒏𝒗. 𝑼          (10) 

 
where: 𝑃 – matrix of the abc-dq0 frame 
transformation. 

𝑾 = [
0 −𝜔𝑘

𝜔𝑘 0
]    (11) 

 
To connect the SynRM and inverter model, we 

need to calculate the voltage at the connection point. 
The voltage at the connection point of the motor and 
the inverter is calculated using Kirchhoff’s first law 
in differential form, [6]: 

𝑑

𝑑𝑡
𝑰𝒎𝒐𝒕 + 

𝑑

𝑑𝑡
𝑰𝒊𝒏𝒗 = 𝑨𝒎𝒐𝒕. 𝑰𝒎𝒐𝒕 + 𝑩𝒎𝒐𝒕. 𝑼 + 

 𝑨𝒊𝒏𝒗. 𝑰𝒊𝒏𝒗 + 𝑩𝒊𝒏𝒗. 𝑼 = 𝟎  (12) 
 
We can use Kirchhoff's first law in differential 

form because these currents are continuous 
functions of time thanks to the fact that they are 
currents through inductances.  

Substitution of the derivatives of the currents by 
the right-hand parts of the system of differential 
equations (8) turns the equations of the connections 
into an algebraic system of equations, which allows 
non-iterative calculation of the processes in the 
studied system. From where voltage at the 
connection point: 

𝑼 = −
𝑨𝒎𝒐𝒕.𝑰𝒎𝒐𝒕+ 𝑨𝒊𝒏𝒗.𝑰𝒊𝒏𝒗

𝑩𝒎𝒐𝒕 +𝑩𝒊𝒏𝒗
    (13) 

 
 

4   Fault Simulation 
The jammed rotor defect was implemented in 
Matlab environment. This is achieved by adding an 
unusually large load to it as it can be seen in Figure 
4. The simulation starts with starting the bow 
thruster. It reaches its set reference speed of 

1000RPM at around t=1s and when it is in steady 
state, the load disturbance is applied to the rotor 
shaft at t=2s. This simulation gives a direct 
reflection of the operational characteristics of the 
SynRM. The motor parameters are: Ld=0.05H, 
Lq=0.0051H, Rs=0.33Ohm, number of pole pairs - 
2. Some of the obtained results are shown below. 
 

 
Fig. 4: SynRM rotor speed 

 
The stator currents are shown in Figure 5. 

During the motor starting they reach around 250A 
and 700A when the disturbance is applied to the 
rotor. 

 

 
Fig. 5: SynRM stator currents 

 
A time window with a period of 0.5s around the 

moment of rotor disturbance is shown on Figure 6. 
 

 
Fig. 6: Time window of SynRM stator currents  

 
In Figure 7 can be seen the pulse width 

modulation waveform. A time window for the same 
period of time as for the stator currents waveform is 
shown in Figure 8. 
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Fig. 7: PWM waveform 
 

 
Fig. 8: Time window of PWM waveform 

 
The currents of the motor in d-q frame are 

shown below. Figure 9 shows the current in d-axis 
and Figure 10 in q-axis respectively. 

 

 
Fig. 9: D axis current 

 

 
Fig. 10: Q axis current 

 
Stator voltage curves in d-q frame are shown in 

Figure 11. With blue color is marked the voltage in 
d axis and with orange the voltage in q axis. 

 
Fig. 11: Stator voltage in d,q frame 

 
The measured and estimated torque of the bow 

thruster is shown in Figure 12. They are marked 
with blue and orange color respectively. It can be 
seen the large deviation after the moment when the 
disturbance is applied to the rotor. 

 

 
Fig. 12: SynRM torque 

 
 

5 Machine Learning integration for 

 Fault Diagnostics 
We live in the time of the 5th Industrial Revolution. 
This is the time when artificial intelligence and 
technologies such as chatGPT will have an 
increasing influence on the modern world. Machine 
learning is a part of the science of artificial 
intelligence, which deals with the creation, 
examination, and research of mathematical models 
to discover similarities between different 
phenomena and events. Using implemented and 
validated mathematical models in the Matlab 
environment of electric drives, in particular SynRM, 
enough qualitative data can be collected about the 
state of the current, voltage, moment, etc. in 
defective conditions. 

For this purpose, data from various simulations 
were collected and combined in one database. In 
this case, a csv file is used containing 4 different 
states - normal and three defectives. They are phase 
to housing, lack of phase, and jammed rotor. Each 
of these simulations is for a period of 3 seconds, 
with a frequency of 20,000hz, or in other words, 
100,000 measurements of the three-phase currents 
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for 1 simulation. Taken together they are a total of 
220,000 measurements. They are labeled so that ML 
training can be aided, [34], [35], [36]. 

In Figure 13, one can see these points after 
some steps like clustering or de-numeration and 
extracting min-max bounds. In this case, a 
coefficient of 189 was used. To avoid overtraining 
and reducing the recognition success rate of the used 
classifiers. 

The algorithm consisting of a total of 19 steps is 
implemented in the Python environment and uses 
the scikit-learn library for machine learning. In it, 
dozens of estimator models can be found that can be 
used. We have used only 21 of them here. 

 

 
Fig. 13: Colored points of learning 

 
Figure 14 shows a Nearest Centroid Classifier 

fusion matrix. It is a tool for evaluating the 
performance of estimators. For perfect results, there 
should be "hits" only on the diagonal of this 4x4 
matrix. Here it is evident that there is a lot of scatter 
and therefore the success rate of this classifier for 
recognizing a defect such as a locked rotor is below 
20%. 

The report of the Random Forest classifier's 
work can be seen in Figure 15. This screenshot from 
Python shows again in text form a confusion matrix 
with a near-perfect result. There are several ways of 
assessment, such as precision, recall, and f1-score, 
depending on the approach adopted for calculation. 
The overall rating of this classifier is over 98% 
which is impressive. 

The performance results of the 21 classifiers can 
be found in Figure 16. Such as Random Forest, 
Decision Tree, KNN and Bagging classifiers show 
excellent, close to perfect results. Other like 
Categorical NB and Bernoulli NB which are based 
on Bayes theorem show not-so-good results. 

 
Fig. 14: Confusion matrix of  Nearest Centoroid 
Classfier 

 

 
Fig. 15: Text  output from Python for Random 
Forest Classifier 

 
There are different methods for calculating the 

training accuracy of machine learning classifiers, 
such as precision, recall, and f1-score. They 
interpret the data differently by taking into account 
the total, correct, and incorrect recognition attempts, 
[37], [38] 

 
For Example 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =

𝑻𝑷

𝑻𝑷+𝑭𝑷
                   (14) 

 
where TP is the number of cases correctly 

predicted as positive by the classifier model and FP 
is the number of cases which were incorrectly 
predicted as positive by the classifier model. 
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Fig. 16: Success rate of different classifiers 

 
 

6   Conclusion 
In this report, a common problem with electric 
drives and in particular the jamming of the rotor of 
synchronous reluctance motor was presented. For 
this purpose, a flexible mathematical model of this 
type of electric motor was compiled, in which 
defects of different types and characteristics can be 
easily simulated. 

During these simulations, data was collected on 
various operating parameters such as stator current, 
torque, rotational speed, etc. as the simulation is for 
a period of 3 seconds and a data frequency of 20khz. 

The data collected during these simulations 
were used for diagnostics by using artificial 
intelligence and in particular the method of machine 
learning. For this purpose, an algorithm consisting 
of 18 basic steps has been implemented, which uses 
the current values at different times for its training. 
More than 20 different types of classifiers and 
regressions are used in this algorithm. As a result, 
clear information is obtained about the possibilities 

of using ML for the diagnosis of SynRM. As can be 
seen from the demonstrated results, some classifiers 
achieve a success rate of over 98%, which is 
remarkable, considering that no optimization has yet 
been performed, after which the success rate would 
increase to over 99.5%. 

Optimizations that could be performed and are 
currently the subject of our current research are 
optimization of the number of input data, 
optimization of training boundaries, and 
optimization of the parameters of ML classifiers. 
The results of these will be published in subsequent 
publications. The main goal of these optimizations 
is to achieve maximum accuracy with optimal 
training time. 
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