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Abstract: - The COVID-19 pandemic has damaged and taken human lives and still affects their daily routine and 
way of living. There is a connection between COVID-19 incidence and fine particulate matter which is a type of 
air pollution that causes issues to human health, especially in Chiang Mai, Thailand.  Daily estimation of the 
incidence of COVID-19 can assist Thailand in planning to cope with the increasing number of COVID-19 
incidents. Unfortunately, some COVID-19 data are missing, and as a result, it may yield inaccurate results for 
planning policies using missing data.  A novel class of estimators engaging transformation to transform an 
auxiliary variable is suggested under simple random sampling without replacement, whilst assuming the 
population mean of an auxiliary variable is not available under uniform nonresponse. The new estimators are used 
to estimate the official cases of COVID-19 per day and the total patients diagnosed with pneumonia and are on 
high-flow oxygen therapy in Chiang Mai, Thailand using fine particulate matter with a diameter of 2.5 microns 
concentration as the auxiliary variable.  The estimators that were brought forward performed well compared to the 
existing ones with a reduced bias and mean square error. The best-proposed estimator gave the estimated daily 
confirmed cases of around 101 cases and the total number of patients diagnosed with pneumonia and are on high-
flow oxygen therapy around 16 cases.  The highest efficiency is above 500 more percentage relative efficiency in 
contrast to the mean imputation method. The suggested estimators are more practical to use with real-world data as 
they do not require the population means associated with the auxiliary variable. 
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1   Introduction 
The quality of life of people in Thailand and global 
people has been afflicted by the ongoing distress 
caused by the immense impact of the COVID-19 
pandemic or SARS-CoV-2  which emerged in 2019 in 
Wuhan, China. Thailand is not only affected by the 
pandemic but also the air pollution issue mostly in 
Bangkok, the capital city of Thailand, and Chiang 

Mai province one of the northern provinces which is a 
place for tourists.  COVID-19 has killed numerous 
human lives around the world and also damages the 
human body and lungs, [1], [2], [3]. Air pollution 
worsens the ongoing crisis already caused by COVID-
19. Nonetheless, current industries’ efforts in aiding 
sustainability have not sufficed and they still 
inevitably emit an abundance of toxins, aggravating 
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pollution brought on by fine particulate matter with a 
diameter of 2.5 microns (PM2.5). Its concentrations 
have exceeded guidelines persistently for many years, 
the issue expanding its severity and consequences to 
the health of the future population, the environment, 
and so on. It has become an urgent manner for 
policies to be implemented especially in Chiang Mai, 
Thailand.  

The connection between COVID-19 patients and 
PM2.5 and air pollution data is elaborated on in an 
abundance of literature. As an example, the total 
patients is dependent on on a 7-day lagged effect of 
PM2.5 levels in Seoul, South Korea [4].  Moreover, 
the positive correlation between the COVID incidence 
each day and PM2.5 and humidity in all cities in 
China can be found using the multivariate Poisson 
regression model [5], [6], [7], [8], [9], [10], [11], [12], 
[13], [14],  15]. 

Missing data usually occurs in COVID-19 
incidences. In order to do so, COVID-19 incidences 
such as daily confirmed cases must be recorded, 
nevertheless, missing data contained within reports 
hinders the initiation of a plan to tackle the problem 
due to unsuitable estimates being derived. In this 
prevailing situation, it has come to the point where 
the nation will require action to put an end to this 
dilemma. Therefore, dealing with missing data is 
imperative.  The imputation methods are suggested 
to replace the missing values based on plausible 
observation. For instance, the missing values can be 
derived from mean imputation by using the sample 
mean of the study variable, [16], [17], [18], [19], [20], 
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], 
[31]. 

Let the auxiliary and study variables be denoted 
as X  and Y , respectively and r  be the number of 
responding units out of the sampled n  units chosen 
through  simple random sampling without 
replacement (SRSWOR) from a population of size 

.N  The point estimator for deriving population mean 
via the mean imputation technique is:  
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The ratio method of imputation is a common 
means to choose when there is information based on 
an auxiliary variable X  , that is correlated to the 
study variable .Y  The point estimator for this 
technique is:   
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Another transformation process to transform an 

auxiliary variable for determining the population 
mean estimator by the dual to ratio estimator under 
SRSWOR was invented for higher efficiency, [32].  A 
transformed auxiliary variable is: 

 *
SRS SRS1  ; 1,2,3, ,i ix X x i N     , (7) 

 
and the sample mean corresponding to *

ix  is: 
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SRS SRS SRS1 ,x X x     (8) 
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 is a sample mean belonging to ,X  
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SRS
n

N n
 


 and  a sample of size n is chosen from a 

population of size .N  
 

More works have been investigated based on 
 [32]. For instance, a class of ratio estimators 
emerged for the population mean when some 
parameters of the auxiliary variable known under 
SRSWOR was proposed using the transformed 
auxiliary variable, [33]. It was shown that the novel 
transformed ones worked better than the estimators 
lacking transformation. The [33] estimator is: 

*
SRS

TL.SRS
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where  0,A D  are real numbers or functions in 
association with the auxiliary variable. The bias and 
MSE that are derivatives of the TL.SRSŶ  estimator are:  
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   The transformed estimators work better 

than the untransformed ones, [34], [35], [36].   
The process of transformation can be 

implemented to conditions when missing data present 
themselves in the study variable.  A general class of 
transformed regression type estimators when the 
study variable subjects itself to missing data and the 
population mean of the auxiliary variable could not be 
acquired, was put forward [37]. The [37] estimator is: 
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to the auxiliary variable. The bias and MSE that are 

derivates of the TLŶ  estimator are:  
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The [37] estimator performed better than the 
existing ones suggested when implemented on prior 
COVID-19 patients total and air pollution data in 
Chiang Mai, Thailand. The members of the [37] 
estimator are represented in Table 1. 

 
Table 1. Some components from the [37] estimator 

 
 
where 1 3 and Q Q are the first and third quartiles 
extracted from the auxiliary variable, respectively,  

3 1rQ Q Q   is the inter-quartile range taken from the 

auxiliary variable, 3 1

2d

Q Q
Q


  is the semi-quartile 

range based on the auxiliary variable, 3 1

2a

Q Q
Q


  is 

the quartile mean based on the auxiliary variable, 1  
and 2  are the coefficient of skewness and kurtosis of 
the auxiliary variable, respectively.  

An updated classification of estimators focusing 
on the auxiliary variable that was transformed is 
enforced using SRSWOR and the uniform 
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nonresponse mechanism inspired by [9]. The 
population mean based on the auxiliary variable is 
assumed to be inaccessible which is highly prevalent 
in practice.  The bias and MSE of the latest 
classification of estimators are approximated using 
the Taylor Series. The suggested estimators are 
applied to COVID-19 patient incidence and PM2.5 in 
Chiang Mai, Thailand.   

  
 
2   Proposed Estimator 
Assuming that a population mean coming from an 
auxiliary variable ( )X  is inaccessible, an updated 
class of estimators utilizing the auxiliary variable’s 
transformation is proposed inspired by [11]. The 
proposed estimator is defined as:    
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Rewriting  NŶ  in terms of ' , 0,1,2ie s i  , we have: 
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Using the Taylor series approximation, we get:  
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Under the assumption terms of   involving 

powers greater than two are small enough to be 

negligible, the approximate MSE of NŶ is:  
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The members of the proposed estimators are 
represented in Table 2.  
 

Table 2. Members of the proposed estimator 
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3   Efficiency Comparison 

The proposed estimator ( NŶ ) efficiency is measured 
against the mean imputation estimator (

SŶ ), ratio 

imputation estimator ( RatŶ ), and [37]’s estimator 
(

TLŶ )  using the MSE as criteria.   
1) 

NŶ  outperforms
SŶ if 
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2) NŶ  performs better than RatŶ if 
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4  Application to Covid-19 Data 
The presented estimators are implemented on the 
COVID-19 dataset from Chiang Mai province, 
Thailand [38], and daily PM2.5 concentration levels 
[39] to approximate the COVID-19 case frequency 
each day and the amount of patients diagnosed with 
pneumonia on high-flow oxygen support. The data 
was gathered from 1 April 2022 to 31 July 2022 (with 
a population size of 122N  ).  
 
Population I 

Auxiliary variable (X): the daily PM2.5 concentration 
(micrograms per cubic meter). Study variable (Y): the 
daily confirmed cases. The description of the 
parameters is summarized as mentioned here:  
 

122,  18.16,  117.88,  C 0.85,  1.19,  

0.79
x yN X Y C



    



 
Population II 

Auxiliary variable (X): the PM2.5 level in the air 
(micrograms per cubic meter) each day.  Study 
variable (Y): the total patients suffering from 
pneumonia and requiring high-flow oxygen therapy. 
The description of the parameters is summarized as 
follows:  
 

122,  18.16,  17.11,  C 0.85,  0.60,  

0.62
x yN X Y C



    



 
A sample 36n   is chosen from inside a 

population 122N   through the means of SRSWOR 
containing 30% missing in the study variable. 
Estimated values, biases, and MSEs are computed 
using R program, [40]. The results are illustrated in 
Table 3. Figure 1 depicts the scatter plot between the 
daily reported cases of COVID-19 in relation to the 
quantity of PM2.5 that day and Figure 2 displays the 
total patients suffering from pneumonia and requiring 
high-flow oxygen therapy in relation to the daily 
quantity of PM2.5 in Chiang Mai, Thailand, 
respectively. Figure 3 shows the percentage relative 
efficiency of the estimators contrasted to the mean 
imputation method. 
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Fig. 1: The scatter plot between the reported cases of 
COVID-19 per day and the PM2.5 concentration by 
day in Chiang Mai, Thailand 
 
 

 
Fig. 2: The scatter plot between the amount of those 
diagnosed with COVID-19  who also have pneumonia 
and are on high-flow oxygen and the PM2.5 per day 
concentration in Chiang Mai, Thailand 
  
 

 
Fig. 3: The percentage relative efficiency of the 
estimators contrasted to the mean imputation method 
 
 
 
 

Table 3. Estimated values, biases, and MSEs of the 
estimators when implemented on COVID-19 reports 

in Chiang Mai province 

 
 
 
5  Conclusions 
We can see from Figure 1 and Figure 2 that there is a 
high correlation between both reported cases of 
COVID-19 per day and those who also have 
pneumonia and are on high-flow oxygen support and 
the PM2.5 levels in the air each day in Chiang Mai, 
Thailand which are equal to 0.79 and 0.62, 
respectively. From Table 3, it was found that the 
suggested estimators outperformed the estimators 
from the mean imputation and ratio imputation 
processes. In both populations, the proposed estimator 

N1Ŷ  gave the least bias and MSE in this scenario and 

the second best is N7Ŷ which takes advantage of the 
accessible third quartile of the auxiliary variable. The 
mean imputation procedure did not deliver in this 
scenario. The best estimator N1Ŷ  estimated the daily 
confirmed cases to be around 101 cases and the 
estimated total patients diagnosed with pneumonia 
receiving high-flow oxygen support is around 16 
cases.  The results in Figure 1 and Figure 2 also 
support the results found in Table 3. Figure 3 showed 
that the best estimator 

N1Ŷ , gave a more satisfactory 
percentage relative efficiency in contrast to the mean 
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imputation method which is close to the second best 

N7Ŷ  which is almost 300 and 500 percent in this 
application for the daily incidence of COVID-19 and 
the number of patients who have pneumonia and 
require high-flow oxygen in Chiang Mai, respectively. 

The positive relationship between the COVID-19 
incidence and daily PM2.5 in Chiang Mai, Thailand 
can be useful in investigating the estimated average 
daily number of confirmed cases of COVID-19 
incidence and the total patients diagnosed with 
pneumonia receiving high-flow oxygen support using 
a novel class of estimators focusing on the 
transformation of an auxiliary variable when missing 
data present themselves in the study. The bias and 
MSE of the updated transformed estimator have been 
studied and showed that the proposed estimators 
exceeded the mean and ratio procedures of 
imputation. The results gained from implementing the 
COVID-19 data illustrated that the novel estimators 
excelled by giving a reduced bias and MSE compared 
to existing ones and can give a more accurate value of 
the estimated daily confirmed cases and the amount of 
patients with pneumonia and receiving a high-flow 
oxygen supply based on PM2.5 concentration on each 
day. The inaccessible population mean of the 
auxiliary variable makes the suggested estimators 
more practical to use with real-world data. The 
proposed estimators can help in estimating other 
study variables that contain missing values that must 
be eliminated before future analysis. The proposed 
estimators can also be developed in other survey 
designs such as double sampling, stratified random 
sampling, and cluster sampling. Nevertheless, 
reducing PM2.5 may help reduce the daily incidence 
of COVID-19 and the total amount of cases of 
pneumonia requiring high-flow oxygen support and 
therefore can benefit in preventing high COVID-19 
incidence. 
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