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Abstract: - Recently, reducing power loss in distribution systems has become a key focus of various studies due 
to its influence on gross costs and voltage gradients. One solution is the optimal reconfiguration of the Radial 
Distribution System (RDS). This study presents an inventive tactic to reconfigure RDS by selecting the best 
switch combinations while considering system operating constraints, using the Harris Hawks Approach (HHA) 
which is a nature-inspired optimization paradigm. The primary inspiration for HHA comes from the 
cooperative behavior and hunting technique of Harris’ hawks in the wild, regarded as the “surprise pounce”. In 
this clever strategy, distinct hawks work together in order to pounce on their prey from multiple pathways, 
aiming to catch them by surprise. Harris' hawks are capable of identifying various chasing patterns, influenced 
by the dynamic nature of the situation and the escape tactics of the prey. The mentioned approach is examined 
on IEEE 33 node RDS. The effectiveness of this approach, in comparison to other established methods, is 
demonstrated via simulation results that assess total losses, costs, and savings. Additionally, the statistical 
analysis is conducted to validate the potency of the advised HHA. 
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1   Introduction 
Mitigating ohmic power losses in RDS remains a 
focus of numerous studies. The deployment of 
Distributed Generations (DGs), capacitors, and the 
restructuring of RDS are identified as the three 
primary approaches to reduce these losses. Among 
these, restructuring the RDS is considered the most 
favorable option, as it excludes the operational and 
installation costs associated with DG and capacitors. 
The restructuring process involves altering the 
configuration of system switches and adjusting the 
network's operational structure by opening or 
closing sectional and tie switches under specific 
constraints, [1], [2], [3], [4]. These switches control 
the feeder cases and have a significant influence on 
segment power transfers and overall power 
dissipation. 

As ohmic power dissipation was a significant 
factor in operating charge in RDS, many studies 
focus on minimizing active power loss as their 
objective function. Neural networks were executed 
in [5] to select the appropriate grid topology for 
reducing losses in minor RDS. In [6], fuzzy was 
used as a solution method for restructuring RDS to 
attain the best voltage profiles and minimize kW 
dissipation. An approach for optimizing 

asymmetrical networks to maintain voltage profile, 
using the firefly approach in a fuzzy domain to 
address the multi-objective restructuring issue, was 
presented in [7]. A new cycle break approach using 
elementary cycles or a network adjacency matrix 
with a genetic approach for RDS restructuring as 
described in [8]. Adaptive genetics was applied in 
[9] to reduce real losses without incurring 
supplementary costs for capacitor installations, tap-
changing transformers, or other switching 
equipment. An enhanced genetic approach was 
employed in [10] to address the restructuring issue, 
reduce power dissipation, and increase the reliability 
of the grid. In [11], an improved genetic was 
developed to manage the restructuring issue, 
focusing on overall voltage variation and real power 
dissipation. Modified particle swarm optimization 
was discussed in [12] and [13] for grid restructuring 
to strengthen voltage characteristics and reduce 
dissipation. The runner root approach was 
developed in [14] to tackle the network restructuring 
problem, aiming to minimize real loss and balance 
the load. Harmony search was introduced in [15] to 
find the optimal switching arrangement for loss 
reduction. A group search approach was utilized in 
[16] for RDS restructuring to minimize losses and 
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improve voltage profiles. The Quantum firefly 
approach was employed in [17] for RDS 
restructuring, considering distinct cost functions to 
enhance the quality and reliability of the grid. The 
imperialist competitive approach, within a fuzzy 
framework, was applied in [18] to solve the grid 
restructuring issue, including the reliability pointer 
and power dissipation in the cost function. The 
cuckoo search was presented in [19] for 
restructuring to diminish real losses and evolve the 
voltage characteristic. In [20], the issue was drafted 
as an optimization process and clarified by adopting 
grey wolf optimization approach. However, these 
approaches may fail to guarantee an optimal 
solution and can become trapped in a local low 
point. In this work, HHA is introduced to address 
the restructuring issue in RDS. The target is to 
reduce the gross losses by optimally selecting 
switch combinations for RDS restructuring. HHA 
was constructed in [21], and [22] influenced by the 
hunting plans of Harris hawks. Its primary 
advantages include simplicity and the incorporation 
of a few exploratory and exploitative tools. HHA 
has been applied to various optimization tasks, such 
as variable estimation for fuel cell modules [23] and 
photovoltaic cell modules [24], economic dispatch 
[25], and others as discussed in [26], [27], and [28]. 
Additionally, it demonstrated significant findings 
compared to the existing literature. The success of 
HHA in addressing various tasks, along with the 
potential to enhance its mechanisms, serves as the 
primary motivation for this work. 
 

 

2   Problem Description 
The cost function for restructuring the RDS aims to 
mitigate line losses during operation, and it can be 
stated like: 

 
bN

1m mR2
mILossP 



                     (1) 

 
where 
m  : The count of branches, 

b
N  : The overall count of portions, 

m
I  : The current of the portion m , 

m
R  : The resistance of the portion m , 

Loss
P  : The overall real dissipation in kW, 

 
The yearly cost resulting from power dissipation 

can be obtained using formula: 

  LossPT**PKcost Yearly   

 
              (2) 

 
where 

     
P

K  : The price per kWh is 0.06 $/kWh, 

 T  : The duration is 8760 hours, 
 

Several operational constraints must be 
maintained, and they are listed as follows: 

 
 Power flow restrictions 

The Power flow restrictions are determined using 
relations (3), and (4) as shown below [29]:   
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:The required real power at point q , 
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:The required non-real power at point 
,q  

 
Slack

P

 
: The slack real power, 

 
Slack

Q

 
: The slack non-real power, 

m
X  : The reactance of the segment m , 

 
• Radially restriction 

This indicates that the grid does not have any 
closed loops; therefore the branch count may be 
expressed by relation (5): 

  N
b

N 1                                                          (5) 
 
where 
N  : The number of net buses, 

• Feasibility restriction 
This ensures all loads remain connected throughout 
the restructure process. 
 
• Voltage restriction 
The voltage level at every bus should be regulated 
according to relation (6), and is set between 0.90, 
and 1.0 per unit, in sequence, [30]. 

  V
i

VV maxmin                                             (6) 
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where 
  VV max,min

 

:The lower and higher voltage 
limits at bus i , 

• Current restriction 

Relation (7) puts the level at every segment 
current, [29]. 

 maxI<I
jj

                                                       (7) 

 
where 

maxj
I  : The upper limit of current in every 

segment, 
 
 
3   The Harris Hawks Approach 
In this work, the Harris Hawks Approach (HHA) is 
used to achieve optimal reconfiguration in RDS. 
The primary inspiration for HHA comes from the 
collaborative manner and hunting technique of 
Harris' hawks in the wild, known as shock strike. In 
this smart tactic, multiple hawks coordinate to strike 
on a target from various pathways, attempting to 
startle it, [21], [22]. Harris hawks showcase a range 
of hunting patterns depending on the ever-changing 
nature of the situation and the target's escape tactics. 
This study using mathematical principles simulates 
these ever-changing behaviors and styles to create 
an optimization method. Statistical analysis and 
comparisons demonstrate that HHA delivers 
promising and often competitive outcomes 
compared to widely recognized metaheuristic 
methods. The natural activities of these hawks in 
nature are illustrated in Figure 1. 
 

 
Fig. 1: The actions of Harris’s hawks 
 

HHA is a search technique based on a 
population approach, consisting of three main steps, 
which are outlined as seen in Figure 2. 

 
Fig. 2: Various stages of Harris hawks optimization 
 
3.1  Exploration Stage 
At this stage, the algorithm is designed to 
mathematically wait, search, and locate the target. 
The site of the Harris hawks at iteration iter+1 is 
represented as listed in mathematical terms: 
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(8)                                                                            
where 

rabitX  represents the site of the rabbit and signifies 
the current iteration, 

randX  is the hawk randomly picked hawk from the 

accessible population ir , 
q  i ,...,3,2,1  represent random numbers that lie 

between [0, 1], 
Xm displays the mean position of the hawks, and 
calculated as depicted below:  
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which 

iX  illustrates the site of the hawks and N  
symbolizes the scale of the hawk, [25].  
 

3.2 Transition from Exploration to 

 Exploitation  
Given T as the upper number of the turns, 

(-1,1)E0  as the starting energy at every step, 
HHA computes the rabbit's escaping energy of 
rabbit ( E ) by Eq. (10). With respect to this amount, 
exploration and exploitation may be changed.  

)1(2EE 0
T

iter
                                                  (10) 
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In this context, 1E   the exploration phase 
begins; else, the focus shifts to exploiting the 
neighborhood of the solutions.  
 

3.3  Exploitation Level  
Based on the prey's remaining energy, the hawks 
can adopt either a soft or hard siege, approaching 
from distinct routes. A factor, denoted as “ r ” is 
realized to quantify the prey’s probability of escape, 
with representing a successful escape. Moreover, 
when HHA employs a soft encirclement, and when 
a hard encirclement is utilized. It is important to 
note that, though the hunt can escape 5.0r  , its 
winning still relies on it. The strike strategy is 
shaped by both the escape tactics of the prey and the 
pursuit tactics of the hunt and hawks sequentially. In 
this context, four key levels are outlined, as detailed 
in [21] and [22]. 
 
a) Soft siege 

The rabbit retains some vigor and attempts to escape 

when 5.0r   and 5.0E  , with a series of arbitrary, 
deceptive jumps, but ultimately it fails. Harris 
hawks swiftly resist these efforts, further exhausting 
the rabbit before launching a decisive surprise 
strike. This behavior may be modeled using the 
following relations.        

)()()()1( tXtJXEtXtX rabbit                (11) 
 

)()()( tXtXtX rabbit                                       (12) 
 

Here )(tX shows the dissimilarity among the 
current position in iteration t , and the position 
vector of the rabbit, 5r  is an unspecified value in 

the range )1,0( , while )51(2 rJ   denotes the 
unpredictable diving power of the rabbit during the 
escape process.  J  modifies in each resumption to 
grow the activity character of the rabbit.   
  

b) Hard siege  

The sacrifice becomes exhausted and loses its 
capability to escape as time passes, when 

5.0r  and 5.0E  , allowing the Harris hawks to 
trap it and eventually implement the amazement 
dive. Furthermore, the updated usage of relation 
(13) modernized this situation.              

)()()1( tXEtXtX rabbit                             (13) 
 

c) Soft siege  

With progressive rapid dives, the rabbit retains 

enough strength to escape powerfully when 5.0E  | 
but 5.0r   before the unexpected dive, a gentle 
siege is formed. This technique is more intelligent 
than mere mimicry. In the HHA, the concept of levy 
flight is performed to strictly grow the victim's 
escape patterns and the leapfrog movement. 
According to the rule in relation (14) it is assumed 
that the hawks may administer their subsequent 
actions to carry out a soft siege. 

)()()( tXtJXEtXY rabbitrabbit                      (14) 
 

They estimate the likely result of the previous 
jump to comprehend whether it is favorable. If it is 
not deemed effective, they start to perform abrupt, 
erratic, and rapid dives as they approach the rabbit. 
It is believed that LF-based styles are employed 
according to the following relation: 

)(DLFSYZ                                               (15) 
 
The Levy flight function is LF and S  is an 

spontaneous size D1 and D  is the size of the 
issue.   Relation (14) can identify the positions of 
hawks in the soft besiege level. 








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))(()(
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tXFZF if     Z

tXFYF if     Y
tX                     (16) 

 

d) Hard siege 
Through progressively rapid dives, the rabbit no 
longer has enough strength to escape, and a hard 
siege is carried out before the surprise dive to 

capture the prey. When 5.0E   and 5.0r  , the 
victim's situation resembles that of a soft siege. 
However, at the point, the exhausted victim has 
decreased the average distance from the hawks. As a 
result, the hard siege condition is modeled by 
relation (16). 
 
Here relations (14) and (15) retrieve Y  and Z . 
 

 

4   Results and Discussion 
To demonstrate the significance of the proposed 
HHA, the outcomes for the IEEE 33-point network 
are discussed below. The 33-bus system, as 
described in [31], consists of thirty-seven segments, 
normally thirty-two closed breakers, and five open 
breakers, as shown in Figure 3. The primary tie 
switches are numbered from thirty-three to thirty-
seven, and closing these five ties creates five loops.  
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The HHA’s Efficiency in identifying the 
optimal open switches, compared to those in [6], 
[15], [16], [19], [32], [33], [34], [35], [36] and [37], 
is demonstrated. The HHA selects breakers S4, S14, 
S15, S22, and S33 as the best resolution. Figure 4 
shows the restructured grid. The overall active 
power losses are reduced from 202.66 to 102.55 
kW, resulting in a savings of 100.11 kW and a 
49.4% reduction in ohmic losses. Additionally, the 
total cost is minimized to $53,900.2, as shown in 
Table 1, yielding a net savings of $52,617.9, the 
highest among the compared cases. Furthermore, the 
minimum voltage increases to 0.9191 p.u., as 
indicated by the improved voltage gradient in Figure 
5 due to the proposed reconfiguration. Finally, the 
statistical analysis of the proposed HHA, detailed in 
Table 2, confirms its superiority over the methods in 
[12], [38], [39] and [40] based on the minimum, 
mean, standard deviations values, as well as the 
count of iterations and computation time. 

 

 

 
 
  

 
Table 1. Outcomes of the tested system 

Paper Opened 
Switches 

active 
losses 
(kW) 

% 
Reduction 

Cost  ($) Saving  
($) 

Base  33,34,35,36,37 202.66 - 106518.1 ------ 
[33] 7,10,14, 32, 37 141.54 30.16 74393.424 32124.67 
[34]  

 
7, 9, 14, 32, 37 

 
 

139.55 

 
 

31.15 

 
 

73347.48 

 
 

33170.62 
[35] 
[36] 
[19] 
[37] 7, 9, 14, 32, 37 138.92 31.45 73016.35 33501.75 
[16] 7, 9, 14, 28, 32 139.26 31.28 73195.056 33323.04 
[6] 7, 9, 14, 28, 32 139.83 31 73494.65 33023.45 

[15] 7, 9, 14, 36, 37 145.11 28.4 76269.82 30248.28 
[15] 7, 10, 14, 36, 37 146.39 27.77 76942.58 29575.52 
[32] 7, 9, 14, 28, 32 134.26 33.75 70567 35951.1 

HHA 4, 14, 15, 22, 33 102.55 49.4 53900.2 52617.9 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Statistical analysis for 33 bus 
networks 

Paper   Min loss 
kW 

Iteration 
count  

Mean 
kW 

SD  
kW 

CPU 
 time in sec 

[12]  139.50 - - - - 
[38] 139.55 16 157.5 68.87 100.225 
[39] 139.981 17 170.9 71.94 106.489 
[40] 102.55 5 112.1 63.13 29.97 

HHA   102.55 5 112 63.11 28.48 
 
 
5   Conclusions 
In this study, HHA has been efficiently applied to 
address the reconfiguration issue of RDS. The 
optimal reconfiguration of RDS is framed as an 
objective optimization process aimed at minimizing 
active power dissipation. The primary findings of 
this work are mentioned below: 
1. HHA is created to determine the optimal 

combination of switches while adhering to 
system working restrictions. 

2. The effectiveness of HHA is highlighted by its 
successful application to the IEEE system. 

      

Fig. 3: 33 bus base system 

      

 

Fig. 4:  33 bus system post reconfiguration 
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Fig. 5: Reconfiguration's effect on voltage 
profiles 
 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2025.24.17 Ehab S. Ali

E-ISSN: 2224-2678 160 Volume 24, 2025



3. A 49.4% reduction in ohmic losses in the IEEE 
33-bus grid, compared to the original 
configuration, showcasing significant output 
improvements in terms of power dissipation and 
gross savings. 

4. The validation of HHA through statistical 
analysis and computational time comparisons, 
indicates that HHA requires fewer iterations and 
less computation time than other reported 
methods. 

 
Future work will explore the application of 

network reconfiguration to larger systems using the 
latest approaches and incorporating renewable DG. 
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