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Abstract: - Lattice Quantum Chromodynamics (LQCD) may be studied in low-energy regimes where non-
perturbative approaches are useful because of their computational methods. Determining the lattice parameter, 
sometimes referred to as the lattice scale or lattice parameter, is a crucial objective in LQCD computations. The 
best way to get this parameter is to examine the quark-antiquark potential's behavior, which in LQCD 
simulations may be obtained by first computing the Wilson loops. We used an improved version of QCDLAB 
2.0, a program specifically designed for lattice QCD simulations, in this paper. We concentrated on computing 
planar Wilson loops to extract the interquark potential. SU (3) gauge field configurations were used as the 
background field in the simulations. In contrast to the earlier work, we present it for larger lattice volumes of 
16^4, 32^4, 48^4, and 64^4 in this publication. These simulations are configured with four distinct values of 
the coupling constant, which correspond to different background field configurations. One-hundred-gauge field 
configurations that were statistically independent were created and examined for every example. To derive the 
lattice scale for different lattice volumes, we used Python. It is feasible to translate physical values measured in 
lattice units into ordinary physical units once the lattice scale is defined. In our previous study, we used the 
FermiQCD program. With Artan Borici's help, we then switched to the more effective and user-friendly 
QCDLAB version 2.0, which greatly increased the efficacy of our simulations. In this study, we introduce an 
upgraded version of QCDLAB2 that uses Python to compute, even for dense lattices. 
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1   Introduction 
Quantum Chromodynamics (QCD) is the theoretical 
framework that describes the strong interactions 
between particles such as quarks and gluons. QCD, 
a quantum field theory, governs these interactions 
and exhibits two distinct behaviors: asymptotic 
freedom at high energy or short distances, and 
confinement at low energy or long distances, where 
quarks and gluons are bound into composite 
particles called hadrons. The quark model, first 
proposed in 1964 introduced the concept that 
hadrons are composed of more fundamental 

particles known as quarks, [1]. Experimentally, 
quarks were first observed in particle accelerators 
during the 1970s. Notably, quarks are never isolated 
but are always confined within hadrons or in 
neutral-colored groupings. 

Lattice QCD (LQCD), which is the formulation 
of QCD on a lattice, is one of its main uses, [2]. 
Other important phenomena covered by QCD 
include the study of asymptotic freedom, 
perturbative techniques in gauge theories, and other 
applications described in [3]. One method for 
resolving the theory in low-energy or non-
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perturbative regimes is the lattice formulation of 
QCD. Lattice QCD discretizes the theory on a four-
dimensional grid with N points in each direction, 
consisting of three spatial dimensions and one 
temporal dimension. The sites on this lattice are 
quark fields, while the linkages between the sites are 
gluon fields. A cutoff momentum proportional to a-1 
is introduced by this discretization, where a stands 
for the lattice spacing. The theory approaches the 
continuum formulation of QCD as the lattice 
spacing gets closer to zero. Lattice QCD makes it 
possible to precisely define QCD mathematically 
and quantify physical quantities accurately through 
numerical simulations by using non-perturbative 
techniques. To maintain the theory's clarity and 
computational manageability, the lattice spacing 
acts as an ultraviolet regulator. The energy 
transported by the gauge fields over a distance R is 
represented by the potential between two static 
quarks, [4]. Physical quantities cannot be calculated 
using perturbative methods since the energy grows 
as R does. The theory of quark confinement holds 
that quarks cannot exist independently and are 
constantly confined by hadrons. It is especially 
crucial to study the quark-antiquark potential at tiny 
distances because non-perturbative techniques may 
be used since lattice QCD simulations yield accurate 
findings in this range. Quarks are trapped in hadrons 
and cannot be seen in isolation, as proved by [5], [6] 
on the potential between static quarks in the 1970s. 
The quark-antiquark potential grows linearly at 
great distances, according to his studies, [4]. This 
linear behavior of the potential at intermediate 
distances has been confirmed by further research 
and more recent investigations, proving that quarks 
are uniformly contained within hadrons in all SU(3) 
representations, [5], [6], [7]. It is crucial to use a 
quantity that can be accurately measured 
experimentally and calculated in simulations to 
derive physical quantities from lattice QCD.  

This need is met by the string tension σ, which 
is the energy per unit length along the line joining 
two static color quarks. The lattice spacing a may be 
computed using σ as a reference. Dimensionless 
values derived from lattice simulations may be 
transformed into physical units thanks to this 
parameter. Wilson loops in lattice QCD may also be 
used to determine the string tension σ, a technique 
that has been investigated in previous research, [8], 
[9], [10], [11]. Using the QCDLAB software 
program, version 2.0, [12], [13], this study presents 
a novel technique for measuring the quark-antiquark 
potential, building on these fundamental references, 
[14], [15], [16], [17]. For small to medium-scale 
lattice QCD issues, QCDLAB provides moderate 

scalability, making it ideal for academics looking 
for quick prototyping and ease of use. However, 
specialized frameworks such as Chroma or QUDA 
are more effective for large-scale production-level 
calculations. 

By utilizing the advancements in this research, 
we want to maximize the accuracy and efficiency of 
lattice QCD simulations by improving the quark-
antiquark potential computation. We bring here an 
updated version of QCDLAB2, and we are testing it 
for larger lattice volumes using Python, [17], [18], 
[19], [20], [21], [22]. 
 
 
2   Problem Formulation 
In lattice QCD calculations, obtaining dimensional 
results is crucial. To achieve this, we calculated the 
lattice spacing a. This was achieved by utilizing the 
QCDLAB2 software program and Python to 
calculate the effective quark potential produced 
from Wilson loops with planar geometry, assessed 
for various lattice volumes: 16^4, 32^4, 48^4, and 
64^4. Here, we suggest a brand-new technique for 
figuring out the potential between two quarks. By 
examining the Wilson loops' long-time behavior, 
this possibility can be discovered.  

With a rectangular geometry, we first create a 
closed route C (R, T), where T is the time 
dimension. A mathematical definition of the Wilson 
loops W (R, T) is the trace of the route-ordered 
products of the link variables U_μ (n) directed along 
the path C (R, T). We build these loops from this 
path. The links between a quark-antiquark pair at 
rest, separated by a distance R, and changing over 
time T are represented by the resultant loop. 

In the context of Euclidean space-time 
geometry, the observable derived from these loops 
provides the ground state energy for large T values. 
By calculating the energy, we evaluated the 
correlation function of two static quark operators 
over various time intervals. This approach allows us 
to compute the quark-antiquark potential with 
improved precision and efficiency.  

𝑊(𝑅, 𝑇) = 〈0|𝑂𝑅(0)𝑂𝑅(𝑇)∗|0〉 
                    〈𝑂𝑅(0)𝑂𝑅(𝑇)∗〉                      (1)     

 
The gauge-invariant operator, 𝑂𝑅(𝑡), may be found 
as follows:              

𝑂𝑅(𝑡) = �̅�(𝑡, 0)𝑈((𝑡, 0) → (𝑡, 𝑅))𝑞(𝑡, 𝑅)      (2) 
 

The gauge field between two static quarks from 
site (t, 0) to site (t, R) is represented by the link 
𝑈((𝑡, 0) → (𝑡, 𝑅)). Consequently, the Wilson loops 
have been established from the expression:  
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𝑊(𝑅, 𝑇) = 〈𝑡𝑟 𝑈((0,0) → (0, 𝑅))𝑈((0, 𝑅)

→ (𝑇, 𝑅))𝑈((𝑇, 0)

→ (𝑇, 𝑅))
∗
𝑈((0,0) → (𝑇, 0))

∗
〉 

                      (3) 
 
Additionally, these loops can be expressed as: 

     𝑊(𝑅, 𝑇) = ∑ 𝑐𝑛𝑒−𝑉𝑛(𝑅)𝑇
𝑛≥1                       (4) 

 
In this case, the state with the lowest energy is 

indicated by the formula V1(R) ≡ V(R), whereas the 
remaining states for n > 1 represent the potentials in 
the excited states. 
 
 
3 Jackknife Method to Calculate 

Statistical Errors 
Discrete gauge fields and quark fields must be 
simulated using Monte Carlo methods across a wide 
range of statistically independent configurations to 
measure observables in lattice QCD. Analyzing 
statistical errors is essential for accurately 
interpreting these findings. One of the most 
straightforward and popular methods for estimating 
uncertainty and correlations in lattice QCD 
computations is the jackknife method. 

To calculate the errors of the derived sizes as in 
our concrete case with the potential, lattice distance, 
etc., the most used methods are the non-parametric 
ones such as Bootstrapping and Jackknife. In 
determining the errors, we used the Jackknife 
method, which follows these steps: 

 
Step 1: Create new case choices for i = 1, 2 … n by 
choosing the initial case xi for i = 1, 2…n according 
to the equation: 
                       𝑋𝑖 = �̄� −

𝑥𝑖−�̄�

𝑛−1
                              (5) 

 
Step 2: Computes the magnitudes derived as a 
function of the new choices according to: 
               𝑦𝑖 = 𝑓𝑖(𝑋1, . . . , 𝑋𝑛)                          (6) 
 
Step 3: Estimate standard deviation of the mean y 

according to the expression, [3], [4], [5]: 
               𝜎�̄� =

𝑛−1

𝑛
∑ (𝑦𝑖 − �̄�)𝑖

2                    (7) 
 

Since lattice QCD has limited temporal and 
spatial extents, correlations between data points are 
prevalent and readily considered by the Jackknife 
approach. Because it eliminates the need to create 
fresh data as the bootstrap approach does, it is 
especially helpful when there are a small number of 
independent setups, [3], [4]. 

4   Problem Solution 
Based on the equation (4) we derived the potential 
under the assumption that: 
                   𝑊(𝑅, 𝑇) ≅ 𝑐1𝑒−𝑉(𝑅)𝑇                 (8) 

 
The effective potentials have been established by us 
using: 

           𝑉(𝑅)𝑒𝑓𝑓 = − log
𝑊(𝑅,𝑇+1)

𝑊(𝑅,𝑇)
                (9) 

 
Furthermore, we used the theoretical physical 

model to fit the effective potential for a range of R 
values. 

            𝑉(𝑅)𝑒𝑓𝑓 = 𝐶 + σ𝑅 +
𝛼

𝑅
                   (10) 

 
The string tension is indicated by σ in equation 

(10), while the coefficient of the Coulomb term is 
represented by the constant parameter α. A modified 
variant of equation (10) stated in lattice units can be 
obtained by multiplying it by the lattice spacing. 
              �̂�(𝑅)𝑒𝑓𝑓 = �̂� + σ̂

𝑅

a
+

a

𝑅
�̂�                (11) 

 
As stated earlier, the QCDLAB2 software was 

used for all simulations. The first program created 
especially for four-dimensional lattice QCD 
simulations is QCDLAB version 2.0. Because it is 
organized as a tiny package with many little 
programs and algorithms, it makes it possible to 
examine QCD features without the requirement for 
specialized algorithm creation or high-performance 
computer hardware. The software was developed by 
Professor Artan Borici, who sadly passed away 
during the COVID-19 pandemic. The integration of 
QCDLAB2's linear operators with the GNU Octave 
language's linear operators is a significant benefit 
over comparable applications. This unique feature 
facilitates the development and testing of efficient 
coding programs while significantly reducing the 
time required to execute these simulations.  

In our study, we calculated the string tension σ 
by performing simulations for 100 independent 
configurations across lattice sizes 16^4, 32^4, 48^4, 
and 64^4. The results were fitted to the equation 
(11), with the fitting range for R chosen with these 
interval values R = 0.5 to R = 6. The lattice physical 
volume L^4 with side length L in each direction 
corresponds to the lattice volume N^4 with N points 
per direction, following the relationship L = aN, 
where a is the lattice spacing.  

Figure 1, Figure 2, Figure 3 and Figure 4 
illustrate the graphical representation of the 
potential between two static quarks for different 
lattice volumes. The potential exhibits a Coulomb-
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like behavior at short distances as described by the 
expression, and increases linearly at large distances, 
following the expression. Markers with error bars 
represent the simulated data points and the dashed 
line shows the fitted potential curve. 

 

 
Fig. 1: The potential between two static quarks on a 
16^4 lattice, shown in dimensionless units (lattice 
units) 
 

 
Fig. 2: The potential between two static quarks on a 
32^4 lattice, shown in dimensionless units (lattice 
units) 

 
All simulations were performed using the 

Wilson action on 16^4, 32^4, 48^4, and 64^4 
lattices with various background gauge fields. 
Specifically, we utilized 100-gauge field 
configurations and tested three different coupling 
constants, using the QCDLAB2 software. The 
Jackknife method, which is especially useful for 
estimating the statistical uncertainties of derived 
quantities, [13], [23], [24], was used to evaluate the 
statistical errors for the parameters in equation (10). 
 

 
Fig. 3: The potential between two static quarks on a 
48^4 lattice, shown in dimensionless units (lattice 
units) 
 

 
Fig. 4: The potential between two static quarks on a 
48^4 lattice, shown in dimensionless units (lattice 
units) 
 

Table 1.  String tension σ̂  the computed lattice 
space a, and the corresponding statistical errors for 

16^4, 32^4, 48^4, and 64^4 lattice volumes 
Lattice  Lattice  

space 

(fm) 

The string 

tension 

parameter 

(lattice 

unit) 

The error 

of lattice 

space 

The 

error of 

string 

tension 

164 0.1286(4) 0.1951(2) 1.091e-05 2.77e-04 
324 0.1029(1) 0.1974(5) 1.034e-05 3.89e-05 
484 0.0972(3) 0.2009(6) 1.006e-05 1.54e-05 
644 0.0900(8) 0.2081(9) 1.001e-05 1.01e-05 

 
Table 1 summarizes the numerical results and 

the statistical errors that go along with them. The 
numerical results presented in Table 1 include the 
values of the lattice spacing parameter and the string 
tension parameter for 16^4, 32^4, 48^4, and 64^4 
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lattices. Additionally, the table provides the 
statistical errors associated with these parameters, 
calculated using the Jackknife method. 

As evident from the data, the values of the 
lattice spacing and string tension fall within the 
range of their respective statistical error margins, 
ensuring the reliability of the calculated results. 
Specifically, for lattice 164 the lattice space 
parameter is: 

           a = [0.1286(4) ± 1.091x10-5] (fm)         (12) 
 
And the string tension is:  

             σ̂ = [0.1951(2) ± 2.77x10-4].                (13) 
 

After these calculations, we can make a 
continuum extrapolation to take the real value of 
string tension as it is shown in Figure 5. 
  

 
Fig. 5: The continuum limit (a→0) extrapolation of 
string tension parameter 
  

On the other hand, we can provide it even by 
infinite volume extrapolation [23], [24], as it is 
shown in Figure 6. 

 

 
Fig. 6: The infinite volume extrapolation (L→∞) of 
string tension parameter 

5  Conclusion 
In lattice QCD simulations, Wilson loops may be 
used to calculate the lattice spacing for various 
lattice volumes and coupling constants. For a lattice 
volume of 16^4, the lattice spacing is = 0.128; for 
32^4, it is a = 0.103; for 48^4, it is a = 0.097 and for 
64^4, it is a = 0.09. Using simple yet highly 
effective software, we successfully determined the 
lattice spacing for various lattice volumes. Once the 
lattice spacing is established, all physical quantities 
can be derived from dimensionless values, 
expressed with their corresponding physical units.  

The graphical results, shown in Figure 1, Figure 
2, Figure 3 and Figure 4, demonstrate that the 
potential between two static quarks exhibits a key 
feature of QCD at low energy regimes: quark 
confinement. This expected outcome underscores 
the efficiency and utility of QCDLAB2 software, 
even for dense lattices. One of our group’s future 
goals is to develop simulation and inversion 
algorithms that further optimize computation times. 
QCDLAB version 2.0, an advancement over version 
1.0, is designed for four-dimensional simulations, 
making it suitable for lattice QCD simulations in SU 
(3) gauge fields. To achieve even greater accuracy 
in our results, future work will involve incorporating 
a larger number of Wilson loops into simulations 
and conducting analyses at larger R values. This will 
necessitate larger lattice volumes and extensive 
statistical computations. 

In conclusion, the updated version of 
QCDLAB2 proves to be highly promising software 
for lattice QCD simulations and holds significant 
potential for further advancements in this field. For 
specifying lattice parameters in lattice QCD 
simulations, QCDLAB2 offers a robust framework. 
It works very well for different lattice volumes 
starting from small sizes to larger volumes. 
Researchers can benefit from its extensive feature 
set and user-friendly design. Subsequent 
advancements could concentrate on expanding its 
functionalities to include sophisticated mistake 
analysis and assistance with frameworks outside 
QCD. 
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