
Optimization of SQS Configurations for Efficient

Batch Data Processing

OLEKSANDR O. KYRYCHENKО1, SERGEY E. OSTAPOV2, OKSANA L. KYRYCHENKO1

1Department of Mathematical Problems of Control and Cybernetics,
Yuriy Fedkovych Chernivtsi National University,

2 Kotsiubynskoho Street, Chernivtsi,
UKRAINE

2Department of Computer Systems Software,

Yuriy Fedkovych Chernivtsi National University,
2 Kotsiubynskoho Street, Chernivtsi,

UKRAINE

Abstract: - The evolution of distributed computing in cloud environments raises the question of finding new
approaches to processing large amounts of data. The speed of data arrival and the need to make decisions in
real-time adds to the higher complexity. AWS Simple Queue Service (SQS) is one of the popular tools for
organizing asynchronous message processing in distributed systems in many scenarios. Relying on SQS with
its default settings does not always work well, especially when we are dealing with heavy data processing. That
is why figuring out the best setup for each specific task is a key challenge. Objective. This study aims to
determine the queue setup so that a distributed system can efficiently handle processing 500,000 records while
generating many PDF documents. We want to find the sweet spot in queue configuration that keeps the system
running smoothly and effectively under heavy workloads. Method. The research evaluates the performance of
the developed system for the mass generation of PDF documents under various load conditions using classical
queuing theory models and their extensions. To assess the impact of different combinations of SQS parameters,
key performance indicators such as response time, average queue length, and utilization rate are calculated
using mathematical concepts. A PDF document generation software that directly interacts with SQS is
developed using Python and AWS SDK Boto3. Results. The key factors affecting system performance are the
batch size and time of message visibility in the queue. The results showed that proper configurations
significantly increase throughput without loss of reliability. Empirical results confirm theoretical expectations
and contribute to the selection of optimal parameters. Conclusions. The obtained research results enable us to
provide practical recommendations for the selection of important parameters for SQS, such as throughput,
delay, cost, and reliability, for performing high-load operations in serverless computing.

Key-Words: - serverless, cloud computing, queueing theory, batch processing, high-load systems, performance

optimization.

Received: March 22, 2024. Revised: August 25, 2024. Accepted: December 9, 2024. Published: March 12, 2025.

1 Introduction
Amazon Simple Queue Service (Amazon SQS)
is a serverless web service used to manage queues of
messages that require further processing. This
service provides data exchange between different
distributed components of the system without
message loss and the need for constant availability
of each component. In high-load systems, queues
allow efficient distribution of data processing
between multiple servers or services, [1].

Asynchronous data processing enables
theprocessing of the next task without waiting for

the completion of the previous one and, in the case
of SQS, prevents the inefficient use of system
resources during periods of intensive data flow.

Data from different sources will be stored in a
queue waiting to be processed. The queue
guarantees no message loss on their way, [2].

The research subject is the performance
prediction of the distributed serverless application in
a cloud environment. Modeling queue behavior
allows us to estimate important system metrics, such
as how often requests arrive (λ), how quickly they

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.4

Oleksandr O. Kyrychenkо,
Sergey E. Ostapov, Oksana L. Kyrychenko

E-ISSN: 2224-2678 36 Volume 24, 2025

are processed (μ), and how long it takes to respond,
[3].

This research aims to identify the optimal queue
configuration to improve system performance.

2 Problem Formulation

2.1 Problem Statement
Organizing distributed computing in serverless
applications requires proper interaction between
cloud platform services. Most cloud services are
used by developers, i.e., with default configuration
parameters. This strategy allows us to deploy a
serverless application quickly, but it leads to
problems in case of increased load.

In many cases, a message queue is the core of a
distributed system; for AWS, it is a Simple Queue
Service (SQS). The task of the queue is to store
received messages and send them for further
processing. This method assumes an uneven load
over a certain period and requires special attention
to the settings. Sudden spikes in service time (μ) and
message arrival intensity (λ) can lead to service
failures, premature retries of message processing,
and errors. Such processes require high-quality
modeling to predict system behavior.

Current classical models, despite their strong
math, often fail to accurately evaluate application
behavior in various operating modes, [4].

It is worth noting the advantages of serverless
platforms, such as the automatic scaling of user
applications according to load changes.

Choosing the optimal parameters for SQS can
effectively balance message processing and waiting
time with minimal resource usage. It becomes
especially critical in batch processing mode.

The study aims to provide recommendations for
selecting SQS configuration parameters to minimize
processing time, particularly for large data and high
message volume.

2.2 Review of the Literature
Queuing theory is a statistical approach that helps us
understand and predict how distributed applications
behave. This theory is essential in serverless
architecture, ensuring smooth data processing under
heavy loads. Classical models fail to ensure
scalability and performance due to task arrival (λ)
and processing rates (μ) unpredictability. Let us
assume that events in the system arrive randomly at
an average rate of λ, queueing sequentially. The
time it takes to process each event grows much
faster as the workload increases. This idea allows us
to concentrate on the system's current performance

without concerns about the past. It is worth
mentioning that the time needed to process an event
in real-world situations does not always fit this
pattern.

In addition, the event generation time may not
correspond to an exponential distribution, [4]. Thus,
there is a need to modify classical models, such as
M/M/1 and M/M/k. For instance, in hybrid cloud
systems, adaptive routing methods have been
proposed that adapt at runtime to maximize task
processing efficiency and minimize queue delays
[5], emphasizing the necessary flexibility to handle
adaptive workloads.

Research has shown that implementing adaptive
routing policies based on queuing theory increases
throughput and reduces latency. Such advances
indicate the need for adaptive models that can deal
with two key aspects of serverless platforms: to
account for the unpredictability of workloads and
provide elastic scaling.

Scheduling and prioritization are important
aspects of systems designed to handle high loads.
Researchers [6], [7], [8] were considering priority-
based queues that accelerate the processing of high-
priority tasks and minimize delays for critical
processes. These methods are becoming increasingly
relevant in workflows that combine batch and real-
time processing.

The main concept of the research [9] is to
optimize queues with batch service mechanisms,
where tasks are processed in fixed-size groups rather
than individually. These systems differ significantly
from classical queue models such as M/M/1, as they
involve batch processing, which affects both system
performance and dynamics. Increasing the batch size
can contribute to increasing throughput, but at the
same time can cause longer waiting times due to
delays associated with batch formation.

Serverless services such as AWS Lambda and
Amazon SQS provide high scalability and cost-
effectiveness for modern applications. To
dynamically configure parameters, improve
performance, and optimize resource utilization such
frameworks as FAASTloop have been developed,
which select appropriate optimization parameters
using statistical models, [10]. The use of cloud
environments in such studies has demonstrated the
ability of serverless architectures to handle
workloads at large scales efficiently, [11].

Elastic scaling of serverless services gives rise
to issues related to latency control and resource
utilization. Optimizing AWS Lambda performance
is a long-term and non-trivial task that requires
finding the best configuration, especially under high
load conditions [12]. Research shows that a possible

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.4

Oleksandr O. Kyrychenkо,
Sergey E. Ostapov, Oksana L. Kyrychenko

E-ISSN: 2224-2678 37 Volume 24, 2025

solution is to use AWS Lambda together with SQS.
Such a combination can be relatively easily adapted
to different workloads, [13].

At present, the influence of SQS configuration
on the performance of the developed system can be
assessed through empirical tests based on real data;
relying solely on theoretical models is insufficient,
[14].

2.3 Materials and Methods
Queueing models are the basis for the analysis and
optimization of distributed serverless software
solutions in cases where there is interaction between
several components. One approach to implementing
such interaction is message exchange, which can
occur both directly and using queues. In the case of
serverless architectures, SQS is one of the simplest
solutions for organizing message exchange between
distributed components. Applying queueing theory
to SQS allows assessing the impact of its
configuration on system performance, [15].

In queuing theory, the arrival of tasks is
modeled using a Poisson process, where the
randomness of the task flow is indicated by the
average arrival rate (λ). An exponential distribution
with an average service rate (μ) is used to model the
service time. Together, these characteristics offer a
simplified but insightful representation of real
systems, [16].

The M/M/1 model describes a single-server
scenario, in which a single computing resource
processes all incoming tasks.

The use of such a server is determined by the
following formula (1):

 ,

 (1)

where 0 ≤ ρ < 1 provides stability.

The basic performance indicators are:

 average number of messages in the queue

 qL :

2

;
1qL

 (2)

 is the average waiting time for a message in
the queue qW :

 ;
(1)qW

 (3)

 is the average total time for a message ()W :

 1 .qW W

 (4)

These equations demonstrate that qL and

 qW grow exponentially, which leads to a decrease

in performance as 𝜌 tends to 1 (high-load server).
This model is particularly relevant for processes

of low-level de-parallelization of processing tasks in
serverless environments, such as processing
messages from an SQS queue in small batches by a
single AWS Lambda function. The model allows
you to calculate server load, queue length, and
waiting time, which are critical for understanding
system stability.

The 𝑘 model is a generalization of a one-
server approach for systems with several parallel
servers, where data processing is distributed
between 𝑘 servers, according to the formula:

 ,
k

 (5)

where 0 ≤ ρ < 1 provides stability.

The basic indicators of the 𝑘 model are:
 Probability that all servers are busy ()busyP :

0

! .

!

k

busy nk

n

kP

n

 (6)

Formula (6) is an Erlang-B formula that calculates
the probability of queuing tasks.

 Average number of messages in the queue

 qL :

2

.
1q busyL P

 (7)

 Is the average waiting time for a message in
the queue qW :

 .q
q

L
W

 (8)

The M/M/k model describes the behavior of

massive- parallel systems where multiple AWS
Lambda functions simultaneously process message
batches from an SQS queue. It is particularly useful
for modeling serverless workflows where AWS
Lambda is automatically scaled to perform parallel
tasks.

This model allows a better understanding of
how the increase in the level of parallelism can
increase system throughput and reduce queue time,

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.4

Oleksandr O. Kyrychenkо,
Sergey E. Ostapov, Oksana L. Kyrychenko

E-ISSN: 2224-2678 38 Volume 24, 2025

which is critically important during high-load
periods, [17].

To meet the unique requirements of serverless
systems, more complex concepts of queuing theory
are needed in addition to the basic models. For
example, priority queues are often used to ensure
that critical tasks are completed faster than less
important ones. This is especially important for
workflows that combine real-time and batch
processing. Similarly, batch processing itself (𝑏)
directly affects server load and queue length, scaling
the rate of task arrival depending on the batch size:
 .effective batchb (9)

For example, the task arrival rate is directly

dependent on the batch size. Batch processing
increases throughput, but individual tasks within a
batch may experience delays, [18].

The retry mechanism, which is controlled by the
visibility timeout parameter in SQS, is another
important component of serverless systems.

A message will return to the queue if its
processing is not completed within the message
visibility time. Misconfigured visibility time settings
may result in unnecessary delays and increase the
number of messages in the queue, causing unstable
system operation.

3 Problem Solution

3.1 Experiments
For practical experiments, we developed and
deployed a batch data processing system for
generating PDF documents in a serverless
environment on the Amazon Web Services (AWS)
platform. The architecture of the developed system
is shown in Figure 1.

Fig. 1: Architecture of a simple batch data
processing system for generating PDF documents

To start working with the system, we need to

upload the files to the Amazon S3 Input Bucket. The
files contain the data needed to create PDF

documents. The data needs to be divided into
batches and added to the queue for further
processing. For this purpose, we launch a scheduler
function that will already interact with the queue.
The queue stores the batches and distributes them
evenly among the data processors. In sudden load
changes, the queue guarantees the successful
completion of processing.

Batches from the SQS queue were processed
with AWS Lambda. Based on the number of
messages in the queue, the cloud platform runs a
variable number of function instances, constrained
by a predefined limit. The result of each function is
a generated PDF file.

We tested the solution using Locust, an effective
tool for evaluating serverless application
performance under heavy load. During the testing,
we evaluated the system's throughput, latency, and
automatic scalability under different queue
parameters.

The dataset we used to generate single-page
PDF files consisted of 500,000 records.

To find the best interrelation between
throughput and latency, the batch sizes varied from
10 to 100 messages per batch.

Taking into account that studying SQS behavior
requires additional factors, not covered by classical
models, we also simulated the message visibility
time change from 30 to 900 seconds to assess its
influence on system throughput and delay time
between messages, which ranged from 0 to 15
minutes in the scenarios where processing
incremental data is beneficial.

3.2 Results
Experimental study of the batch processing system
allows us to assess the impact of different
configurations of the AWS SQS queue on the
performance, scalability, and cost of using the
developed application. As part of the study, batches
of different sizes (10, 25, 50, 75, and 100 records in
a batch) were tested, and 500000 records were
processed with a fixed period of message storage in
the queue (14 days) and with variable values for the
visibility timeout (from 10 to 900 seconds) and
delivery delay of messages (from 0 to 900 seconds).
To determine the optimal configuration that
provides the best balance between performance,
stability, and cost-effectiveness of the system, the
application was tested using different configuration
options.

The experimental results are presented in
Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6.

Figure 2 shows the distribution of service time
in batch processing systems, which provides a more

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.4

Oleksandr O. Kyrychenkо,
Sergey E. Ostapov, Oksana L. Kyrychenko

E-ISSN: 2224-2678 39 Volume 24, 2025

detailed idea of the system efficiency for different
batch sizes.

Fig. 2: Distribution of service time for batch data
processing systems

The service rate (μ) is the inverse of the average
service time ()sT , [19]:

 1 .sT

 (10)

According to observations, the average

execution time of one Lambda function for data
processing is approximately 2.9 seconds, then the
service speed will equal to:

 1 0.34 .
2.9

tasks

seconds
 (11)

Throughput depends on the batch size and average
execution time, [20]:

.

()

records
Throughput

seconds

b

Average ExecutionTimes seconds

 (12)

Figure 3 shows the dependence of system

throughput on visibility time for different batch sizes
(10, 25, 50, 75, and 100 records in a batch).

Fig. 3: Impact of visibility time on system
throughput for different batch sizes

If the message visibility time is too short,
reprocessing occurs. The reprocessing rate is
calculated by the formula:

() .
()

Reprocessing Probability

ExecutionTime seconds

VisibilityTimeout seconds

 (13)

For our system, the dependence of data

reprocessing on message visibility time is shown in
Figure 4.

Fig. 4: Impact of message visibility time on
reprocessing probability

In cloud batch processing systems, where the

frequency of failures (due to serverless function
timeouts, retries, or system errors) affects the overall
throughput and processing duration, the total time
required to process all records should be adjusted
taking into account the reprocessing probability:

(1).

Total ProcessingTime

Total Records
Reprocessing Probability

Throughput

(14)

Thus, Figure 5 plots the dependence graphs of

the total processing time on the time the message is
visible in the queue.

Fig. 5: Impact of message visibility time on total
processing time

The heat map in Figure 6 demonstrates the

variation of total data processing time depending on
different batch sizes and message delivery delays
and illustrates the impact of message delivery delay

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.4

Oleksandr O. Kyrychenkо,
Sergey E. Ostapov, Oksana L. Kyrychenko

E-ISSN: 2224-2678 40 Volume 24, 2025

and batch size on the performance of a data
processing system using SQS.

Fig. 6: Impact of message visibility time on total
processing time for different batch sizes

During experiments, the queueing period did not

demonstrate a direct effect on system behavior.

4 Conclusion
The paper presents a study of the behavior of
serverless systems during distributed processing of
significant amounts of data. A prototype of a
serverless application for the mass generation of
PDF documents using Python and the AWS Boto3
library was created. The throughput, latency, and
data processing time were analyzed under different
configurations. Theoretical hypotheses were tested
through empirical experiments.

The scientific novelty of the work lies in the
application of queueing theory models to serverless
computing. Workflows for processing 500,000
records were simulated, using classical queueing
theory models to predict and optimize system
behavior. The study extends the theoretical
understanding of queue dynamics by introducing a
parameterized framework that combines batch size,
message visibility timeout, and message delivery
delay to analyze their impact on system
performance.

The results obtained during the study have
practical significance, namely, providing
recommendations for better SQS configuring in
order to improve software performance.
Determining the optimal values of parameters such
as batch size (50 records), visibility time (600
seconds), and delivery delay (300 seconds) enables
significantly reducing response latency and
increasing system throughput. The obtained data
emphasize the importance of careful selection of
SQS settings according to the load characteristics,

which influences the reliability and efficiency of
message processing.

Further research involves developing
approaches and algorithms to determine the optimal
combinations of SQS configuration parameters
depending on the predicted loads in batch data
processing systems. Furthermore, attention should
be paid to finding the optimal rate of message arrival
into the system, which, in combination with the
appropriate SQS configuration parameters, will
minimize the average response time and ensure the
optimal performance of serverless solutions.

Declaration of Generative AI and AI-assisted

Technologies in the Writing Process

During the preparation of this work the authors used
ChatGPT, Grammarly in order to improve the
readability, language of the manuscript and enhance
academic quality. After using this tool/service, the
authors reviewed and edited the content as needed
and take full responsibility for the content of the
publication.

References:

[1] Kaplan, Andreas, Haenlein, Michael, Users of
the World, Unite! The Challenges and
Opportunities of Social Media. Business

Horizons, 2010, Vol.53, No.1, pp. 59-68.
http://dx.doi.org/10.1016/j.bushor.2009.09.00
3.

[2] Li, Jing, Cui, Yidong, Ma, Yan, Modeling
Message Queueing Services with Reliability
Guarantee in Cloud Computing Environment
Using Colored Petri Nets, Mathematical

Problems in Engineering, 2015, Vol. 2015,
No. 383846, pp. 1-20.
https://doi.org/10.1155/2015/383846.

[3] Kostis Kaffes, Neeraja J. Yadwadkar, and
Christos Kozyrakis. Hermod: principled and
practical scheduling for serverless functions.
In Proceedings of the 13th Symposium on

Cloud Computing (SoCC '22). Association for
Computing Machinery, New York, NY, USA,
2022, pp. 289–305.
http://doi.org/10.1145/3542929.3563468.

[4] Mario Lefebvre. Reducing the Size of a
Waiting Line Optimally. WSEAS Transactions

on Systems and Control, 2023, Vol. 18, pp.
342-345.
http://dx.doi.org/10.37394/23203.2023.18.35.

[5] Fatouros, G., Kousiouris, G., Makridis, G.
(2023). Enhanced Runtime-Adaptable Routing
for Serverless Functions Based on

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.4

Oleksandr O. Kyrychenkо,
Sergey E. Ostapov, Oksana L. Kyrychenko

E-ISSN: 2224-2678 41 Volume 24, 2025

http://dx.doi.org/10.1016/j.bushor.2009.09.003
http://dx.doi.org/10.1016/j.bushor.2009.09.003
https://doi.org/10.1155/2015/383846
http://doi.org/10.1145/3542929.3563468
http://dx.doi.org/10.37394/23203.2023.18.35

Performance and Cost Tradeoffs in Hybrid
Cloud Settings. 2023 IEEE International

Conference on Cloud Computing Technology

and Science (CloudCom), Naples, Italy, 2023,
pp. 177-184.
http://dx.doi.org/10.1109/CloudCom59040.20
23.00038.

[6] Yuqi Fu, Li Liu, Haoliang Wang, Yue Cheng,
and Songqing Chen, SFS: smart OS
scheduling for serverless functions. In
Proceedings of the International Conference

on High Performance Computing,

Networking, Storage and Analysis (SC '22).

Dallas, Texas, USA, IEEE Press, 2022, No.
42, pp. 1–16.

[7] Tantalaki, Nicoleta & Souravlas, Stavros &
Roumeliotis, Manos. A review on Big Data
real-time stream processing and its scheduling
techniques, International Journal of Parallel,

Emergent and Distributed Systems, 2019,
Vol.35, No. 5, pp. 571-601.
https://doi.org/10.1080/17445760.2019.15858
48.

[8] Xu, Le & Venkataraman, Shivaram & Gupta,
Indranil & Mai, Luo & Potharaju, Rahul.
Move Fast and Meet Deadlines: Fine-grained
Real-time Stream Processing with Cameo,
Proceedings of the 18th USENIX Symposium

on Networked Systems Design and

Implementation, NSDI 2021, Santa Clara, CA,
USA, 2021, pp. 389-405.

[9] Santhi, K.s & Ramakrishnan, Saravanan.
Performance analysis of cloud computing bulk
service using queueing models. International

Journal of Applied Engineering Research,
2017, Vol.12, No. 17, pp. 6487-6492.

[10] Shruti Mohanty, Vivek M. Bhasi, Myungjun
Son, Mahmut Taylan Kandemir, and Chita
Das. FAAStloop: Optimizing Loop-Based
Applications for Serverless Computing. In
Proceedings of the 2024 ACM Symposium on

Cloud Computing (SoCC '24). Association for
Computing Machinery, New York, NY, USA,
2024, pp. 943-960.
https://doi.org/10.1145/3698038.3698560.

[11] Risco Gallardo, S. Serverless Strategies and

Tools in the Cloud Computing

Continuum (Doctoral dissertation, Universitat
Politècnica de València), 2024.

[12] Bechir, M.L., Bouh, C.S., Shuwail, A.,
Comprehensive Review of Performance
Optimization Strategies for Serverless
Applications on AWS Lambda. ArXiv,

abs/2407.10397, 2024.
https://doi.org/10.48550/arXiv.2407.10397.

[13] Kaplunovich, A., Joshi, K. P., Yesha, Y.,
Scalability Analysis of Blockchain on a
Serverless Cloud, 2019 IEEE International

Conference on Big Data (Big Data), Los
Angeles, CA, USA, 2019, pp. 4214-4222.
https://doi.org/10.1109/BigData47090.2019.9
005529.

[14] Alemu, M., Serverless Automated Assessment

of Programming Assignments. Aalto
University Repository, 2023, 70 p.

[15] Amazon Simple Queue Service
Documentation, [Online].
https://docs.aws.amazon.com/sqs/ (Accessed
Date: December 13, 2024).

[16] Gautam, N., Operations research and

management science handbook, edited by A.
Ravi Ravindran, (1st ed.), CRC Press, 2007.

[17] Makhdoom, I., A new optimum statistical
estimation of the traffic intensity parameter
for the M/M/1/K queuing model based on
fuzzy and non-fuzzy criteria. Journal of Data

Science and Modeling, 2023, Vol.2, No. 1, pp.
163-184.
https://doi.org/10.22054/jdsm.2024.79643.104
8

[18] Addya, S. K., Turuk, A. K., Sahoo, B., Sarkar,
M., A hybrid queuing model for Virtual
Machine placement in cloud data center, 2015

IEEE International Conference on Advanced

Networks and Telecommuncations Systems

(ANTS), Kolkata, India, 2015, pp. 1-3.
https://doi.org/10.1109/ANTS.2015.7413642.

[19] Mireslami, S., Rakai, L., Wang, M., Far, B.
H., Dynamic Cloud Resource Allocation
Considering Demand Uncertainty, IEEE

Transactions on Cloud Computing, 2021,
Vol.9, No. 3, pp. 981-994.
https://doi.org/10.1109/TCC.2019.2897304.

[20] Alsurdeh, R., Calheiros, R. N., Matawie, K.
M., Javadi, B., Hybrid Workflow Scheduling
on Edge Cloud Computing Systems, IEEE

Access, 2021, Vol. 9, pp. 134783-134799.
https://doi.org/10.1109/ACCESS.2021.311671
6

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.4

Oleksandr O. Kyrychenkо,
Sergey E. Ostapov, Oksana L. Kyrychenko

E-ISSN: 2224-2678 42 Volume 24, 2025

http://dx.doi.org/10.1109/CloudCom59040.2023.00038.
http://dx.doi.org/10.1109/CloudCom59040.2023.00038.
https://doi.org/10.1080/17445760.2019.1585848
https://doi.org/10.1080/17445760.2019.1585848
https://doi.org/10.1145/3698038.3698560
https://doi.org/10.48550/arXiv.2407.10397
https://doi.org/10.1109/BigData47090.2019.9005529
https://doi.org/10.1109/BigData47090.2019.9005529
https://docs.aws.amazon.com/sqs/
https://doi.org/10.22054/jdsm.2024.79643.1048
https://doi.org/10.22054/jdsm.2024.79643.1048
https://doi.org/10.1109/ANTS.2015.7413642
https://doi.org/10.1109/TCC.2019.2897304
https://doi.org/10.1109/ACCESS.2021.3116716
https://doi.org/10.1109/ACCESS.2021.3116716

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

- Sergey Ostapov was responsible for the research
activity planning execution, and formulation of
research goals and aims.

- Oleksandr Kyrychenkо carried out the research
and investigation process; implemented a
prototype of a Cloud solution; and prepared a
literature review.

- Oksana Kyrychenko created models; analysed
sources, validated research outputs, and wrote
original drafts.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflicts of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.4

Oleksandr O. Kyrychenkо,
Sergey E. Ostapov, Oksana L. Kyrychenko

E-ISSN: 2224-2678 43 Volume 24, 2025

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

