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Abstract: - The evolution of distributed computing in cloud environments raises the question of finding new 
approaches to processing large amounts of data. The speed of data arrival and the need to make decisions in 
real-time adds to the higher complexity. AWS Simple Queue Service (SQS) is one of the popular tools for 
organizing asynchronous message processing in distributed systems in many scenarios. Relying on SQS with 
its default settings does not always work well, especially when we are dealing with heavy data processing. That 
is why figuring out the best setup for each specific task is a key challenge. Objective. This study aims to 
determine the queue setup so that a distributed system can efficiently handle processing 500,000 records while 
generating many PDF documents. We want to find the sweet spot in queue configuration that keeps the system 
running smoothly and effectively under heavy workloads. Method. The research evaluates the performance of 
the developed system for the mass generation of PDF documents under various load conditions using classical 
queuing theory models and their extensions. To assess the impact of different combinations of SQS parameters, 
key performance indicators such as response time, average queue length, and utilization rate are calculated 
using mathematical concepts. A PDF document generation software that directly interacts with SQS is 
developed using Python and AWS SDK Boto3. Results. The key factors affecting system performance are the 
batch size and time of message visibility in the queue. The results showed that proper configurations 
significantly increase throughput without loss of reliability. Empirical results confirm theoretical expectations 
and contribute to the selection of optimal parameters. Conclusions. The obtained research results enable us to 
provide practical recommendations for the selection of important parameters for SQS, such as throughput, 
delay, cost, and reliability, for performing high-load operations in serverless computing. 
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1  Introduction 
Amazon Simple Queue Service (Amazon SQS) 
is a serverless web service used to manage queues of 
messages that require further processing. This 
service provides data exchange between different 
distributed components of the system without 
message loss and the need for constant availability 
of each component. In high-load systems, queues 
allow efficient distribution of data processing 
between multiple servers or services, [1]. 

Asynchronous data processing enables 
theprocessing of the next task without waiting for 

the completion of the previous one and, in the case 
of SQS, prevents the inefficient use of system 
resources during periods of intensive data flow.  

Data from different sources will be stored in a 
queue waiting to be processed. The queue 
guarantees no message loss on their way, [2].  

The research subject is the performance 
prediction of the distributed serverless application in 
a cloud environment. Modeling queue behavior 
allows us to estimate important system metrics, such 
as how often requests arrive (λ), how quickly they 
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are processed (μ), and how long it takes to respond, 
[3]. 

This research aims to identify the optimal queue 
configuration to improve system performance. 
 

 

2  Problem Formulation 
 
2.1 Problem Statement 
Organizing distributed computing in serverless 
applications requires proper interaction between 
cloud platform services. Most cloud services are 
used by developers, i.e., with default configuration 
parameters. This strategy allows us to deploy a 
serverless application quickly, but it leads to 
problems in case of increased load. 

In many cases, a message queue is the core of a 
distributed system; for AWS, it is a Simple Queue 
Service (SQS). The task of the queue is to store 
received messages and send them for further 
processing. This method assumes an uneven load 
over a certain period and requires special attention 
to the settings. Sudden spikes in service time (μ) and 
message arrival intensity (λ) can lead to service 
failures, premature retries of message processing, 
and errors. Such processes require high-quality 
modeling to predict system behavior.  

Current classical models, despite their strong 
math, often fail to accurately evaluate application 
behavior in various operating modes, [4]. 

It is worth noting the advantages of serverless 
platforms, such as the automatic scaling of user 
applications according to load changes.  

Choosing the optimal parameters for SQS can 
effectively balance message processing and waiting 
time with minimal resource usage. It becomes 
especially critical in batch processing mode. 

The study aims to provide recommendations for 
selecting SQS configuration parameters to minimize 
processing time, particularly for large data and high 
message volume. 

 
2.2  Review of the Literature 
Queuing theory is a statistical approach that helps us 
understand and predict how distributed applications 
behave. This theory is essential in serverless 
architecture, ensuring smooth data processing under 
heavy loads. Classical models fail to ensure 
scalability and performance due to task arrival (λ) 
and processing rates (μ) unpredictability. Let us 
assume that events in the system arrive randomly at 
an average rate of λ, queueing sequentially. The 
time it takes to process each event grows much 
faster as the workload increases. This idea allows us 
to concentrate on the system's current performance 

without concerns about the past. It is worth 
mentioning that the time needed to process an event 
in real-world situations does not always fit this 
pattern. 

In addition, the event generation time may not 
correspond to an exponential distribution, [4]. Thus, 
there is a need to modify classical models, such as 
M/M/1 and M/M/k. For instance, in hybrid cloud 
systems, adaptive routing methods have been 
proposed that adapt at runtime to maximize task 
processing efficiency and minimize queue delays 
[5], emphasizing the necessary flexibility to handle 
adaptive workloads.  

Research has shown that implementing adaptive 
routing policies based on queuing theory increases 
throughput and reduces latency. Such advances 
indicate the need for adaptive models that can deal 
with two key aspects of serverless platforms: to 
account for the unpredictability of workloads and 
provide elastic scaling. 

Scheduling and prioritization are important 
aspects of systems designed to handle high loads. 
Researchers [6], [7], [8] were considering priority-
based queues that accelerate the processing of high-
priority tasks and minimize delays for critical 
processes. These methods are becoming increasingly 
relevant in workflows that combine batch and real-
time processing. 

The main concept of the research [9] is to 
optimize queues with batch service mechanisms, 
where tasks are processed in fixed-size groups rather 
than individually. These systems differ significantly 
from classical queue models such as M/M/1, as they 
involve batch processing, which affects both system 
performance and dynamics. Increasing the batch size 
can contribute to increasing throughput, but at the 
same time can cause longer waiting times due to 
delays associated with batch formation. 

Serverless services such as AWS Lambda and 
Amazon SQS provide high scalability and cost-
effectiveness for modern applications. To 
dynamically configure parameters, improve 
performance, and optimize resource utilization such 
frameworks as FAASTloop have been developed, 
which select appropriate optimization parameters 
using statistical models, [10]. The use of cloud 
environments in such studies has demonstrated the 
ability of serverless architectures to handle 
workloads at large scales efficiently, [11]. 

Elastic scaling of serverless services gives rise 
to issues related to latency control and resource 
utilization. Optimizing AWS Lambda performance 
is a long-term and non-trivial task that requires 
finding the best configuration, especially under high 
load conditions [12]. Research shows that a possible 
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solution is to use AWS Lambda together with SQS. 
Such a combination can be relatively easily adapted 
to different workloads, [13]. 

At present, the influence of SQS configuration 
on the performance of the developed system can be 
assessed through empirical tests based on real data; 
relying solely on theoretical models is insufficient, 
[14]. 

 
2.3  Materials and Methods 
Queueing models are the basis for the analysis and 
optimization of distributed serverless software 
solutions in cases where there is interaction between 
several components. One approach to implementing 
such interaction is message exchange, which can 
occur both directly and using queues. In the case of 
serverless architectures, SQS is one of the simplest 
solutions for organizing message exchange between 
distributed components. Applying queueing theory 
to SQS allows assessing the impact of its 
configuration on system performance, [15]. 

In queuing theory, the arrival of tasks is 
modeled using a Poisson process, where the 
randomness of the task flow is indicated by the 
average arrival rate (λ). An exponential distribution 
with an average service rate (μ) is used to model the 
service time. Together, these characteristics offer a 
simplified but insightful representation of real 
systems, [16]. 

The M/M/1 model describes a single-server 
scenario, in which a single computing resource 
processes all incoming tasks. 

 
The use of such a server is determined by the 
following formula (1): 

 ,



  (1) 

where 0 ≤ ρ < 1 provides stability.  
 
The basic performance indicators are: 

 average number of messages in the queue 

 qL : 

 
2

;
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 is the average waiting time for a message in 
the queue  qW : 
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(1 )qW
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 is the average total time for a message ( )W : 

 1 .qW W


   (4) 

These equations demonstrate that  qL  and 

 qW  grow exponentially, which leads to a decrease 

in performance as 𝜌 tends to 1 (high-load server). 
This model is particularly relevant for processes 

of low-level de-parallelization of processing tasks in 
serverless environments, such as processing 
messages from an SQS queue in small batches by a 
single AWS Lambda function. The model allows 
you to calculate server load, queue length, and 
waiting time, which are critical for understanding 
system stability. 

The 𝑘 model is a generalization of a one-
server approach for systems with several parallel 
servers, where data processing is distributed 
between 𝑘 servers, according to the formula: 
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where 0 ≤ ρ < 1 provides stability. 
 

The basic indicators of the 𝑘 model are: 
 Probability that all servers are busy ( )busyP : 
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Formula (6) is an Erlang-B formula that calculates 
the probability of queuing tasks. 

 Average number of messages in the queue 

 qL : 

 
2

.
1q busyL P






 (7) 

 Is the average waiting time for a message in 
the queue  qW : 

 .q
q

L
W


  (8) 

 
The M/M/k model describes the behavior of 

massive- parallel systems where multiple AWS 
Lambda functions simultaneously process message 
batches from an SQS queue. It is particularly useful 
for modeling serverless workflows where AWS 
Lambda is automatically scaled to perform parallel 
tasks. 

This model allows a better understanding of 
how the increase in the level of parallelism can 
increase system throughput and reduce queue time, 
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which is critically important during high-load 
periods, [17]. 

To meet the unique requirements of serverless 
systems, more complex concepts of queuing theory 
are needed in addition to the basic models. For 
example, priority queues are often used to ensure 
that critical tasks are completed faster than less 
important ones. This is especially important for 
workflows that combine real-time and batch 
processing. Similarly, batch processing itself (𝑏) 
directly affects server load and queue length, scaling 
the rate of task arrival depending on the batch size: 
 .effective batchb   (9) 

 
For example, the task arrival rate is directly 

dependent on the batch size. Batch processing 
increases throughput, but individual tasks within a 
batch may experience delays, [18]. 

The retry mechanism, which is controlled by the 
visibility timeout parameter in SQS, is another 
important component of serverless systems.  

A message will return to the queue if its 
processing is not completed within the message 
visibility time. Misconfigured visibility time settings 
may result in unnecessary delays and increase the 
number of messages in the queue, causing unstable 
system operation. 

 
 

3  Problem Solution 
 
3.1   Experiments 
For practical experiments, we developed and 
deployed a batch data processing system for 
generating PDF documents in a serverless 
environment on the Amazon Web Services (AWS) 
platform. The architecture of the developed system 
is shown in Figure 1. 
 

 
Fig. 1: Architecture of a simple batch data 
processing system for generating PDF documents 

 
To start working with the system, we need to 

upload the files to the Amazon S3 Input Bucket. The 
files contain the data needed to create PDF 

documents. The data needs to be divided into 
batches and added to the queue for further 
processing. For this purpose, we launch a scheduler 
function that will already interact with the queue. 
The queue stores the batches and distributes them 
evenly among the data processors. In sudden load 
changes, the queue guarantees the successful 
completion of processing.  

Batches from the SQS queue were processed 
with AWS Lambda. Based on the number of 
messages in the queue, the cloud platform runs a 
variable number of function instances, constrained 
by a predefined limit. The result of each function is 
a generated PDF file.  

We tested the solution using Locust, an effective 
tool for evaluating serverless application 
performance under heavy load. During the testing, 
we evaluated the system's throughput, latency, and 
automatic scalability under different queue 
parameters.  

The dataset we used to generate single-page 
PDF files consisted of 500,000 records. 

To find the best interrelation between 
throughput and latency, the batch sizes varied from 
10 to 100 messages per batch. 

Taking into account that studying SQS behavior 
requires additional factors, not covered by classical 
models, we also simulated the message visibility 
time change from 30 to 900 seconds to assess its 
influence on system throughput and delay time 
between messages, which ranged from 0 to 15 
minutes in the scenarios where processing 
incremental data is beneficial.  
 
3.2  Results 
Experimental study of the batch processing system 
allows us to assess the impact of different 
configurations of the AWS SQS queue on the 
performance, scalability, and cost of using the 
developed application. As part of the study, batches 
of different sizes (10, 25, 50, 75, and 100 records in 
a batch) were tested, and 500000 records were 
processed with a fixed period of message storage in 
the queue (14 days) and with variable values for the 
visibility timeout (from 10 to 900 seconds) and 
delivery delay of messages (from 0 to 900 seconds). 
To determine the optimal configuration that 
provides the best balance between performance, 
stability, and cost-effectiveness of the system, the 
application was tested using different configuration 
options. 

The experimental results are presented in 
Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6. 

Figure 2 shows the distribution of service time 
in batch processing systems, which provides a more 
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detailed idea of the system efficiency for different 
batch sizes. 

 

 
Fig. 2: Distribution of service time for batch data 
processing systems 

 
The service rate (μ) is the inverse of the average 
service time ( )sT , [19]: 

 1 .sT


  (10) 

 
According to observations, the average 

execution time of one Lambda function for data 
processing is approximately 2.9 seconds, then the 
service speed will equal to: 

 1 0.34 .
2.9

tasks

seconds
    (11) 

 
Throughput depends on the batch size and average 
execution time, [20]: 

 
.

( )

records
Throughput

seconds

b

Average ExecutionTimes seconds

 
 

 



 (12) 

 
Figure 3 shows the dependence of system 

throughput on visibility time for different batch sizes 
(10, 25, 50, 75, and 100 records in a batch). 

 

 
Fig. 3: Impact of visibility time on system 
throughput for different batch sizes 

If the message visibility time is too short, 
reprocessing occurs. The reprocessing rate is 
calculated by the formula: 

 
( ) .
( )

Reprocessing Probability

ExecutionTime seconds

VisibilityTimeout seconds





 (13) 

 
For our system, the dependence of data 

reprocessing on message visibility time is shown in 
Figure 4. 

 

 
Fig. 4: Impact of message visibility time on 
reprocessing probability 

 
In cloud batch processing systems, where the 

frequency of failures (due to serverless function 
timeouts, retries, or system errors) affects the overall 
throughput and processing duration, the total time 
required to process all records should be adjusted 
taking into account the reprocessing probability: 

(1 ).

Total ProcessingTime

Total Records
Reprocessing Probability

Throughput



 

(14) 

 
Thus, Figure 5 plots the dependence graphs of 

the total processing time on the time the message is 
visible in the queue. 

 
Fig. 5: Impact of message visibility time on total 
processing time 

 
The heat map in Figure 6 demonstrates the 

variation of total data processing time depending on 
different batch sizes and message delivery delays 
and illustrates the impact of message delivery delay 
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and batch size on the performance of a data 
processing system using SQS. 

 

 
Fig. 6: Impact of message visibility time on total 
processing time for different batch sizes 

 
During experiments, the queueing period did not 

demonstrate a direct effect on system behavior. 
 
 

4  Conclusion 
The paper presents a study of the behavior of 
serverless systems during distributed processing of 
significant amounts of data. A prototype of a 
serverless application for the mass generation of 
PDF documents using Python and the AWS Boto3 
library was created. The throughput, latency, and 
data processing time were analyzed under different 
configurations. Theoretical hypotheses were tested 
through empirical experiments. 

The scientific novelty of the work lies in the 
application of queueing theory models to serverless 
computing. Workflows for processing 500,000 
records were simulated, using classical queueing 
theory models to predict and optimize system 
behavior. The study extends the theoretical 
understanding of queue dynamics by introducing a 
parameterized framework that combines batch size, 
message visibility timeout, and message delivery 
delay to analyze their impact on system 
performance. 

The results obtained during the study have 
practical significance, namely, providing 
recommendations for better SQS configuring in 
order to improve software performance. 
Determining the optimal values of parameters such 
as batch size (50 records), visibility time (600 
seconds), and delivery delay (300 seconds) enables 
significantly reducing response latency and 
increasing system throughput. The obtained data 
emphasize the importance of careful selection of 
SQS settings according to the load characteristics, 

which influences the reliability and efficiency of 
message processing. 

Further research involves developing 
approaches and algorithms to determine the optimal 
combinations of SQS configuration parameters 
depending on the predicted loads in batch data 
processing systems. Furthermore, attention should 
be paid to finding the optimal rate of message arrival 
into the system, which, in combination with the 
appropriate SQS configuration parameters, will 
minimize the average response time and ensure the 
optimal performance of serverless solutions.  
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