
coherence and emergence also capable of detecting
initial constitutive phases.
Memory note:
This paper is dedicated to the memory of Professor
Hermann Haken.
References:
[1] Minati, G. Interactions and Interaction
Mechanisms as Generators of Complex
Systems. Proof, 2022, 2(3), 96-107.
https://doi.org/10.37394/232020.2022.2.12.
[2] Minati, G., Licata, I. Meta-Structural
properties in Collective Behaviours. The
International Journal of General Systems,
2012, 41(3), 289–311.
https://doi.org/10.1080/03081079.2011.65113
6
[3] Ito, J., Kaneko, K. Spontaneous Structure
formation in a Network of Chaotic Units with
Variable Connection Strengths. Physical
Review Letters, 2001, 88(2), 028701-028704.
https://doi.org/10.1103/PhysRevLett.88.02870
1
[4] Kenett, D.Y., Perc, M., Boccaletti, S.
Networks of networks—An introduction.
Chaos, Solitons & Fractals, 2015, 80(11), 1–
6.
https://doi.org/10.1016/j.chaos.2015.03.016.
[5] Minati, G., Penna, M. P. (Eds.), Multiple
Systems: Complexity and Coherence in
Ecosystems, Collective Behavior, and Social
Systems, Springer: New York, NY, USA,
2024. https://doi.org/10.1007/978-3-031-
44685-6.
[6] Haken, H. Mesoscopic levels in science -
some comments. In Micro - Meso - macro:
Addressing complex systems couplings,
Liljenström, H., Svedin, U., Eds., World
Scientific: London, 2005, pp. 19–24.
https://doi.org/10.1142/9789812701404_0002.
[7] Minati, G., Pessa, E. From Collective Beings
to Quasi-Systems, Springer: New York. NY,
USA, 2018. https://doi.org/10.1007/978-1-
4939-7581-5.
[8] Minati, G. On Modelling the Structural
Quasiness of Complex Systems. WSEAS
Transactions on Systems and Control, 2021,
16(12), 715-734.
https://doi.org/10.37394/23203.2021.16.65.
[9] Mikhailov, A.S., Calenbuhr, V. From cells to
societies. Models of complex coherent actions,
Springer: Berlin, Germany, 2002.
https://doi.org/10.1007/978-3-662-05062-0
[10] Manrubia, S. C., Mikhailov, A.S. Mutual
synchronization and clustering in randomly
coupled chaotic dynamical networks. Physical
Review E 1999, 60 (2), 1579–1589.
https://doi.org/10.1103/PhysRevE.60.1579.
[11] Ballarini, M., Cabibbo, N., Candelier R.,
Cavagna, A., Cisbani, E., Giardina, I.,
Lecomte V., Orlandi, A., Parisi, G.,
Procaccini, A., Viale, M., and Zdravkovic, V.
Interaction ruling animal collective behavior
depends on topological rather than metric
distance: Evidence from a field study. PNAS.
2008, 105(4), 1232–1237.
https://doi.org/10.1073/pnas.0711437105.
[12] Gambuzza, L.V., Cardillo, A., Fiasconaro, A.,
Fortuna, L., Gómez-Gardenes, J., Frasca, M.
Analysis of remote synchronization in
complex networks. Chaos, 2013, 23(4),
043103. https://doi.org/10.1063/1.4824312.
[13] Nicosia, V., Valencia, M., Chavez, M., Diaz-
Guilera, A., Latora, V. Remote
synchronization reveals network symmetries
and functional modules. Physical Review
Letters, 2013, 110(17), 174102–174106.
https://doi.org/10.1103/PhysRevLett.110.1741
02.
[14] Cavagna, A., Cimarelli, A., Giardina, I.,
Parisi, G., Santagati, R., Stefanini, F., Viale,
M. Scale-free correlations in starling flocks.
Proceeding of the National Academy of
Sciences of the United States of America,
2010, 107(26), 11865–11870.
https://doi.org/10.1073/pnas.1005766107
[15] Drouetm, D., Kotz, S. Correlation and
Dependence, Imperial College Press: London,
UK, 2001, [Online].
https://books.google.it/books?id=n18JPpKgL
usC&printsec=frontcover&hl=it&source=gbs
_ge_summary_r&cad=0#v=onepage&q&f=fal
se (Accessed Date: December 15, 2024).
[16] Kreuz, T. Measures of neuronal signal
synchrony. Scholarpedia, 2011, 6(12), 11922,
https://doi.org/10.4249/scholarpedia.11922.
[17] Pourahmadi, M. High-Dimensional
Covariance Estimation, Wiley: Hoboken, NJ,
USA, 2013.
https://doi.org/10.1002/9781118573617.
[18] Kantz, H., Schreiber, T. Nonlinear Time
Series Analysis, Cambridge University Press:
Cambridge, UK, 1997.
https://doi.org/10.1017/CBO9780511755798.
[19] Pereda, E., Quiroga, R. Q., Bhattacharya, J.
Nonlinear multivariate analysis of
WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.40