
Eng, vol. 174, p. 108825, 2022, doi:
https://doi.org/10.1016/j.cie.2022.108825.
[9] H. Kaur, M. Gupta, and S. P. Singh,
“Integrated model to optimize supplier
selection and investments for cyber
resilience in digital supply chains,” Int J
Prod Econ, vol. 275, p. 109338, 2024, doi:
https://doi.org/10.1016/j.ijpe.2024.109338.
[10] W. Chen and Y. Zou, “An integrated method
for supplier selection from the perspective of
risk aversion,” Appl Soft Comput, vol. 54,
no. Supplement C, pp. 449–455, 2017, doi:
https://doi.org/10.1016/j.asoc.2016.10.036.
[11] M. Y. Jaber, J. Peltokorpi, and T. L. Smunt,
“The lot size problem and the learning curve:
A review of mathematical modeling (1950’s
-2020),” Appl Math Model, vol. 105, pp.
832–859, 2022, doi:
https://doi.org/10.1016/j.apm.2022.01.007.
[12] S. Chen, R. Berretta, A. Clark, and P.
Moscato, “Lot Sizing and Scheduling for
Perishable Food Products: A Review,” in
Reference Module in Food Science, Elsevier,
2019. doi: https://doi.org/10.1016/B978-0-
08-100596-5.21444-3.
[13] P. Amorim, E. Curcio, B. Almada-Lobo, A.
P. F. D. Barbosa-Póvoa, and I. E.
Grossmann, “Supplier selection in the
processed food industry under uncertainty,”
Eur J Oper Res, vol. 252, no. 3, pp. 801–
814, 2016, doi:
https://doi.org/10.1016/j.ejor.2016.02.005.
[14] Y. Li, M. Liu, F. Saldanha-da-Gama, and Z.
Yang, “Risk-averse two-stage stochastic
programming for assembly line
reconfiguration with dynamic lot sizes,”
Omega (Westport), vol. 127, p. 103092,
2024, doi:
https://doi.org/10.1016/j.omega.2024.103092
[15] I. Slama, O. Ben-Ammar, S. Thevenin, A.
Dolgui, and F. Masmoudi, “Stochastic
program for disassembly lot-sizing under
uncertain component refurbishing lead
times,” Eur J Oper Res, vol. 303, no. 3, pp.
1183–1198, 2022, doi:
https://doi.org/10.1016/j.ejor.2022.03.025.
[16] I. Slama, O. Ben-Ammar, D. Garcia, and A.
Dolgui, “Two-stage stochastic program for
disassembly lot-sizing under random
ordering lead time,” IFAC-PapersOnLine,
vol. 55, no. 10, pp. 1363–1368, 2022, doi:
https://doi.org/10.1016/j.ifacol.2022.09.580.
[17] B. Liu, Uncertainty Theory. in Springer
Uncertainty Research. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015. doi:
10.1007/978-3-662-44354-5.
[18] J. C. Figueroa–García, G. Hernández, and C.
Franco, “A review on history, trends and
perspectives of fuzzy linear programming,”
Operations Research Perspectives, vol. 9, p.
100247, 2022, doi:
https://doi.org/10.1016/j.orp.2022.100247.
[19] N. Karimi, M. R. Feylizadeh, K. Govindan,
and M. Bagherpour, “Fuzzy multi-objective
programming: A systematic literature
review,” Expert Syst Appl, vol. 196, p.
116663, 2022, doi:
https://doi.org/10.1016/j.eswa.2022.116663.
[20] B. Liu and Y. K. Liu, “Expected value of
fuzzy variable and fuzzy expected value
models,” IEEE Transactions on Fuzzy
Systems, vol. 10, no. 4, pp. 445–450, 2002,
doi: 10.1109/TFUZZ.2002.800692.
Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)
The authors equally contributed to the present
research, at all stages from the formulation of the
problem to the final findings and solution.
Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
This work was supported by DRPM
KEMENRISTEK Indonesia under Penelitian
Terapan research grant contract no. 257-
99/UN7.P4.3/PP/2019.
Conflict of Interest
The authors have no conflicts of interest to declare.
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US
WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.30
Purnawan Adi Wicaksono, Sutrisno