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Abstract: - This paper presents new time and frequency domain designs of a functional unknown input observer
for a class of linear delayed systems fed by unknown input in both dynamic and output equations. In addition a
comparative analysis between time domain, frequency domain based on time domain results and direct frequency
domain is provided. The main interest here is to propose an observer that estimates a functional state and an
unknown input vector. The time domain procedure design is based on Lyapunov-Krasovskii stability theory after
giving the existence condition of such observers. The optimal gain implemented in the functional observer with
internal delay design is obtained in terms of Linear Matrix Inequalities (LMIs). The frequency procedure design
is derived from time domain results by applying the factorization approach where we define some useful Matrix
Fraction Descriptions (MFDs). The efficiency of the proposed approach is shown by a numerical example.
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1 Introduction
It is obvious that the design of observers for linear
systems has been a topic of recurrent researches since
unknown inputs have been considered, [1], [2].

Moreover, linear delay systems have been a
recurring subject of much interest researches.Indeed,
the importance of such systems stems from their
ability to describe systems with which standard state
space representations are not applicable. Therefore,
the observers’ design for linear delay systems is of
considerable interest, [2], [3], [4], [5].

Not least, delay modeling has been extensively
studied as it influences the stability dynamic and
other performances of the systems, [6], [7], [8].
This situation becomes obvious when dealing with
communication networks, economic systems and
chemical processes, [6], [7], [9], [10].

In the frequency domain, there is less studies in the
state estimation relative to that of the time domain,
[4], [11], [12], [13], [14], although it is the basis of
most of the analyzes carried out in control systems
and implementation procedures, [4].

Motivated by these facts, a new time and a new
frequency domains technics have set up the main
methods of designing functional observers for time
delaying linear systems with unknown inputs that
have to be presented.

The time domain procedure is based on
Lyapunov stability theory, where we give the
existence conditions of such observers to get a gain
implemented in the design using (LMI). The design
of the procedure in the frequency domain is derived
from the time domain results where we propose

some appropriate (MFDs). The application of the
factorization approach helps to give a polynomial
description of the proposed function observer.

The paper outlines are as follows. The previous
section has already been part of the related work.
Section 3 will present the problem formulation that
we propose to solve. Section 4 will give a time
domain solution for the observer design problem.
A LMI approach is then applied to optimize the
gain implemented in the observer. The fifth section
will present the frequency domain representation of
the unknown input functional observer in terms of
polynomial matrices. This representation should be
based on time domain solution. In section 6, we will
sum up the time and the frequency domain design
steps of the functional observer. Section 7, will
illustrate a numerical example of our approach and
then section 8 will conclude the whole work.

2 Related Work
Several studies have been interested on the estimation
problem for a class of linear delayed systems.
So observers have been developed with respect
to stability performances. Then unmeasured state
vector components are reconstructed according to a
convergent dynamic.

In this scope, we propose a new estimator scheme
for linear delayed systems, [15], [16], [17]. Relevant
results have been, also, shown for the estimation
of a fault vector present in both state and output

descriptions. As presented by [18], [19],  frequency
method based on temporal contribution has been
highlighted in this work.
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Furthermore, polynomial approaches are operated
to design the frequency scheme of the proposed
observer. Compared to [4], [18], [19], precision
and ultra observer dynamic reaction is proved
especially when estimating the unknown input
vector. In fact, the fault vector is detected and
copied from the conditioned output measurement.
In addition, proposed approaches are verified
through a servomotor example used in a temperature
measurement installation.

3 Problem Formulation
Considering the following continuous-time linear
system.

ẋ(t) = Ax(t) +Adx(t− d) +Bu(t)

+Bdu(t− d) +R1v(t) (1)

y(t) = Cx(t) +R2v(t) (2)

z(t) = Lx(t) (3)

Where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp,
v(t) ∈ Rmv and z(t) ∈ Rmzare respectively the
state, the input, the output, the unknown inputs and
the functional state vectors.
A, Ad, B, Bd, R1, R2, L and C are the known
matrices of appropriate dimensions.
d ∈ R+ is the state and the input delay.
We assume that:

ψ =

(
x(t)
v(t)

)
(4)

Then, system of equations (1), (2), and (3) can be
written as :

Eψ̇(t) = Āψ(t) + Ādψ(t− d)

+ B̄u(t) + B̄du(t− d) (5)

ȳ(t) = C̄ψ(t) (6)

z̄(t) = L̄ψ(t) (7)

Where

E =

(
In×n 0n×mv

0mv×n 0mv×mv

)
, Ā =

(
A R1

0mv×n 0mv×mv

)
,

B̄ =

(
B

0mv×m

)
, C̄ = (C R2) , B̄d =

(
Bd

0mv×m

)
,

Ād =

(
Ad 0n×mv

0mv×n 0mv×mv

)
, L̄ =

(
L 0mv×mz

0mz×mv
Imz

)
(8)

In the sequel, we suppose that :

Hypothesis 1 [18], [20]

1. rank (E) = r ≤ (n+mv)

2. rank

[
E
C̄

]
= n+mv

4 Time Domain Design
Under assumption 1 in hypothesis 1, there exists a no
singular matrix :

S =

(
a b
c d

)
(9)

Such as:

aE + bC̄ = L̄ (10)

cE + dC̄ = 0 (11)

with a ∈ R(mv+mz)×(n+mv), b ∈ R(mv+mz)×(p+mv),
c ∈ Rp×(n+mv), d ∈ Rp×(p+mv)

The functional observer of system of equations (5),
and (7), take the form of :

ż(t) = Fz(t) + Fdz(t− d) +Hu(t)

+Hdu(t− d) + L1ȳ(t) + L2ȳ(t− d) (12)

¯̂z(t) = z(t) + bȳ(t) + E2dȳ(t) (13)

ż(t) is the state vector of the observer and ¯̂z(t) is the
functional state estimate.
The matrices F , Fd, H , Hd, L1, L2 and E2 will be
determined using the LMI approach.

4.1 Condition of Synthesis of the Unknown

Input Observer
Using equations (7), and (13) the estimation error is
given as follows.

ez(t) = z̄(t)− ¯̂z(t)

= [a+ E2c]Eψ(t)− z(t)

= GEψ(t)− z(t) (14)

With
G = a+ E2c (15)

Having given the continuous-time linear system of
equations (1), (2), and (3)and the functional observer
of equations (12), and (13) we aim at designing the
observermatricesF ,Fd,H ,Hd,L1,L2 andE2 where
¯̂z(t) asymptotically converges to z̄(t), so :

lim
t→+∞

e(t) = 0 (16)

That’s why, we suggest the following theorem :
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Theorem 1 The functional observer of equations
(12), and (13) is an unknown input observer for
continuous-time delayed systems of equations (1),
(2), and (3) if and only if the following equations are
satisfied :

i. ėz(t) = Fez(t) + Fdez(t − d) is asymptotically
stable.

ii. GĀ− FGE − L1C̄ = 0

iii. GĀd − FdGE − L2C̄ = 0

iv. GB̄ −H = 0

v. GB̄d −Hd = 0

Proof 1 The derivative of equation (14) is given as
follows :

ėz(t) = GEψ̇(t)− ż(t) (17)

Using equations (5), and (12), equation (17) becomes:

ėz(t) = Fez(t) + Fdez(t− d) + [GĀ− FGE

− L1C̄]ψ(t) + [GĀd − FdGE

− L2C̄]ψ(t− d) + [GB̄ −H]u(t)

+ [GB̄d −Hd]u(t− d) (18)

In order to fit equation (16), we impose a dynamic
of the estimation error. Based on equation (18),
conditions ii) to v) become obvious.

4.2 Determination of Observer Matrices

This design procedure is based on
Lyapunov-Krasovskii stability theory using LMIs
tests. The functional observer equations (12), and
(13) estimates a functional state and an unknown
input vectors.
Replacing equation (15) in condition ii)-iv) and using
equations (10), and (11), we obtain :

aĀ = FaE + JC̄ − E2cĀ (19)

Likewise

aĀd = FdaE + JdC̄ − E2cĀd (20)

With

J = L1 − FE2d (21)

And

Jd = L2 − FdE2d (22)

Equations (19), (20), (21), and (22) can be written as
the following matrix form :

XΣ = θ (23)

With

X = [F Fd J Jd −E2] (24)

Σ =


aE 0
0 aE
C̄ 0
0 C̄
cĀ cĀd

 (25)

θ =
[
aĀ aĀd

]
(26)

Note that a general solution of equation (23) exists if
the condition in equation (27) satisfied :

rang

[
Σ
θ

]
= rang(Σ) (27)

If we respect condition of the equation (27) we will
find :

X = θΣ+ − Z(I − ΣΣ+) (28)

Then Σ+ is the pseudo-inverse of the matrix Σ and
Z is an unknown matrix of appropriate dimension,
which will be determined by the LMI approach.
The unknown matrix F is as follows :

F = X


I
0
0
0
0

 = A11 − ZB11 (29)

After replacing the expression of the equation (28)
in equation (29), we have obtained the following
equation :

A11 = θΣ+


I
0
0
0
0

 , B11 = (I − ΣΣ+)


I
0
0
0
0

 (30)

Similarity, we obtain the matrix Fd:

Fd = X


0
I
0
0
0

 = A22 − ZB22 (31)

with

A22 = θΣ+


0
I
0
0
0

 , B22 = (I − ΣΣ+)


0
I
0
0
0

 (32)
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The same case for the matrix J in order to reach :

J = X


0
0
I
0
0

 = A33 − ZB33 (33)

We consider that:

A33 = θΣ+


0
0
I
0
0

 , B33 = (I − ΣΣ+)


0
0
I
0
0

 (34)

Similarity, we obtain the matrix Jd

Jd = X


0
0
0
I
0

 = A44 − ZB44 (35)

With

A44 = θΣ+


0
0
0
I
0

 , B44 = (I − ΣΣ+)


0
0
0
I
0

 (36)

At the end E2 is defined by :

−E2 = A55 − ZB55 (37)

With

A55 = θΣ+


0
0
0
0
I

 , B55 = (I − ΣΣ+)


0
0
0
0
I

 (38)

In order to determine arbitrary matrix Z based on
the Lyapunov-Krasovskii stability theory, we have
proposed the following theorem :

Theorem 2 The functional observer in the form
of equations (12), and (13) is an unknown input
functional observer for the system of equations (1),
(2), and (3) if there exist matrices P = P T > 0,
Q = QT > 0 and Y satisfying the following (LMI) :(

Q1 PA22 − Y B22

AT
22P −BT

22Y
T −Q

)
< 0 (39)

Where

Q1 = AT
11P −BT

11Y
T + PA11 − Y B11 +Q (40)

The gain Z is given by

Z = P−1Y (41)

Proof 2 Theorem 2 is based on the use of the
Lyapunov functional which is presented as follows :

v(ez, t) = eTz (t)Pez(t) +

t∫
t−d

eTz (k)Qez(k)dk (42)

Where P = P T > 0, Q = QT > 0
Using condition i) of theorem 1, the differentiating of
equation (42) is defined by :

v̇(ez, t) = eTz (t)[F
TP + PF +Q]ez(t)

+ eTz (t− d)F T
d Pez(t) + eTz (t)PFdez(t− d)

− eTz (t− d)Qez(t− d) (43)

This can be written as :

v̇(ez, t) = δT (t)

[
F TP + PF +Q PFd

F T
d P −Q

]
δ(t)

(44)

Where: δ(t)=[ez(t) ez(t− d)]

From equation (43) v̇(ez, t) < 0 if and only if :[
F TP + PF +Q PFd

F T
d P −Q

]
< 0 (45)

All the matrices of the observer become well
determined, if the matrix Z is solved.

5 Frequency Domain Design

5.1 Frequency Domain : Method 1
In this section we propose an easier technique of
designing an unknown input functional observer
described in the frequency domain by applying the
left co-prime factorization of the transfer matrix. The
observer transfer matrix is presented by the following
theorem :

Theorem 3 The observer frequency description
given by equations (12), and (13) for system of
equations (1), (2) and (3) is defined by :

¯̂z = T1u(s) + T2u(s) + T3ȳ(s) + T4ȳ(s) (46)

Where

T1 = N−1
1 (s)M1(s) = (sI − Fx(s))

−1H (47)

T2 = N−1
2 (s)M2(s) = (sI − Fx(s))

−1Hde
ds (48)

T3 = N−1
3 (s)M3(s) = (sI − Fx(s))

−1L1

+D (49)

T4 = N−1
4 (s)M4(s) = (sI − Fx(s))

−1L2e
ds (50)
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With

Fx(s) = F + Fde
ds (51)

D = b+ E2d (52)

After using the left co-prime factorization and based
on [7], [18], we can deduce all matrices implemented
in this design which are shown by :

N1(s) = −(sI − Fx(s) + P1)
−1 + I (53)

M1(s) = (sI − Fx(s) + P1)
−1H (54)

N2(s) = (sI − Fx(s)− P2)
−1P2 + I (55)

M2(s) = (sI − Fx(s)− P2)
−1Hde

−ds (56)

N3(s) = −(sI − Fx(s) + P3)
−1 + I (57)

M3(s) = (sI − Fx(s) + P3)
−1(L1 − P3D)D (58)

N4(s) = (sI − Fx(s)− P4)
−1P4 + I (59)

M4(s) = (sI − Fx(s)− P4)
−1L2e

−ds (60)

Note that P1, P2, P3 and P4 are respectively matrices
of appropriate dimensions such as : det(sI−Fx(s)+
P1), det(sI−Fx(s)−P2) det(sI−Fx(s)+P3) and
det(sI − Fx(s)− P4) which are stable.

Proof 3 When applying the Laplace transformation
on system of equation (12) and considering equation
(51), we can write here :

z(s) = (sI − Fx(s))
−1Hu(s) + (sI − Fx(s))

−1

Hde
−dsu(s) + (sI − Fx(s))

−1L1ȳ(s)

+ (sI − Fx(s))
−1L2e

−dsȳ(s) (61)

Using equation (61) and taking into consideration
equations (51), and (52), the Laplace transformation
of equation (13) will be :

¯̂z(s) = (sI − Fx(s))
−1Hu(s) + (sI − Fx(s))

−1

Hde
−dsu(s) + [(sI − Fx(s))

−1L1 +D]ȳ(s)

+ (sI − Fx(s))
−1L2e

−dsȳ(s) (62)

So the frequency description of the proposed observer
can be justified.

5.2 Frequency Domain : Method 2

In this part, system of equations (1), (2), and (3) can
be written as follows :

ψ̇(t) = Āψ(t) + Ādψ(t− d) + B̄u(t)

+ B̄du(t− d) + F̄m(t) (63)

ȳ(t) = C̄ψ(t) (64)

z̄(t) = L̄ψ(t) (65)

Where

Ā =

(
A R1

0mv×n 0mv×mv

)
, Ād =

(
Ad 0n×mv

0mv×n 0mv×mv

)
,

F̄ =

(
0mv×n

G

)
, L̄ =

(
L 0mv×mz

0mz,×mv
Imz

)
, (66)

B̄ =

(
B

0mv×m

)
, B̄d =

(
Bd

0mv×m

)
, C̄ = (C R2)

With

v̇(t) = −v(t) +Gm(t) (67)

G is an unknown matrix and m(t) is an unknown
function. In this section, we propose to raise a
functional observer for delayed linear system with
unknown input mentioned in the frequency domain
by applying the polynomial approach, [22], [23].
The proposed functional observer has to take the
following scheme :

¯̂z(s) = Gu(s)u(s) +Gȳ(s)ȳ(s) (68)

After applying the Laplace transformation in
equations (63), and (64) we have reached:

ȳ(s) = Gu(s)u(s) +Gm(s)m(s) (69)

with

Gu(s) = C̄(sI −A1)
−1B1 (70)

Gm(s) = C̄(sI −A1)
−1F̄ (71)

and

A1 = Ā+ Āde
−ds (72)

B1 = B̄ + B̄de
−ds (73)

The right co-prime factorization of Gu(s) can be
shown as [4], [13], [25] :

Gu(s) = Nu(s)M
−1
u (s) (74)

WhereNu(s) andMu(s) are matrices ∈ R∞such as :

Mu(s) = [Ak, B1,K, I] (75)

Nu(s) = [Ak, B1, C̄, 0] (76)

Ak = A1 +B1K (77)

K has been chosen in condition that det(sI − A1 −
B1K) is stable.
Let’s define β(s), which is called pseudo-state as
follows :

u(s) =Mu(s)β(s) (78)
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Replacing respectively Gu(s) and u(s) by their
expressions of equations (74), and (78) in equation
(69), we reach the following from :

ȳ(s) = Nu(s)M
−1
u (s)Mu(s)β(s) +Gm(s)m(s)

= Nu(s)β(s) +Gm(s)m(s) (79)

After exploring equations (70), and (74), and
supposing that C̄ = I , we can have :

(sI −A−1
1 )B1 = (sI −AK)−1B1M

−1
u (s) (80)

In the sequel, we can deduce :

ψ(s) = (sI −A1)
−1(B1u(s) + F̄m(s))

= (sI −AK)−1B1M
−1
u (s)B1u(s)

+ (sI −A1)
−1F̄m(s) (81)

If we replace u(s) by its given equation, in equation
(81), we will have :

ψ(s) = (sI −AK)−1B1β(s)

+ (sI −A1)
−1F̄m(s) (82)

Therefore the functional observer z̄ = L̄ψ(s) can be
performed as follows :

L̄ψ(s) = Lβ(s) + Lm(s)m(s) (83)

with

Lβ(s) = L̄(sI −AK)−1B1 (84)

Lm(s) = L̄(sI −A1)
−1F̄ (85)

The proposed observer gives an estimation of both the
functional state and the unknown input at the same
time in equation (65) as follows :

lim
t→∞

(z̄(t)− ¯̂z(t)) = 0 (86)

Here, we propose the following theorems :

Theorem 4 The system of equation (68) is a
functional observer for system of equation (1) if and
only if :

Ku(s)Mu(s) +Kȳ(s)Nu(s) = L(s) (87)

Proof 4 Form = 0, after replacing u(s) and ȳ(s) by
their expressions in equation (68), we have found :

¯̂z(s) = Ku(s)u(s) +Kȳ(s)ȳ(s)

= Ku(s)Mu(s)β(s) +Kȳ(s)Nu(s)β(s)

= (Ku(s)Mu(s) +Kȳ(s)Nu(s))β(s)

= L(s)β(s) (88)

By the identification,
L(s) = Ku(s)Mu(s) +Kȳ(s)Nu(s) theorem 4
is then held.

Theorem 5 the system of equation (68) is a linear
functional observer for system of equations (1), (2),
and (3) if and only if :

Ku(s) = L(s)Yu(s)−Q1N̂u(s) (89)

Kȳ(s) = L(s)Xu(s)−Q1M̂u(s) (90)

Q1(s) ∈ R∞ (91)

With N̂u(s) and M̂u(s) is the left co-prime
factorization of Gu(s):

N̂u(s) = C̄(sI −AL)
−1B1 (92)

M̂u(s) = −C̄(sI −AL)
−1L1 (93)

AL = A1 − L1C̄ (94)

L1 has to be chosen in condition that det(sI − A1 +
L1C̄) is stable.
X(s) and Y (s) are matrices which satisfy the Bezout
identity as in [4], [13], [21], [23] :

X(s) = −K(sI −AL)
−1L1 (95)

Y (s) = −K(sI −AL)
−1B1 + I (96)

And

X(s)Nu(s) + Y (s)Mu(s) = I (97)

Proof 5 N̂u(s) and M̂u(s) are the left co-prime
factorization ofGu(s). Nu(s) andMu(s) are the right
co-prime factorization ofGu(s). We can then deduce
the following equation :

Nu(s)M
−1
u (s)− M̂u

−1
(s)N̂u(s) = 0 (98)

After using equations (95), and (96) and choosing
Q1(s) ∈ RH∞, we will find :

L(s) = L(s)[Xu(s)Nu(s) + Yu(s)Mu(s)]

+Q1(s)[M̂u(s)Nu(s)− N̂u(s)Mu(s)]

= L(s)Xu(s)Nu(s) + L(s)Yu(s)Mu(s)

+Q1(s)M̂u(s)Nu(s)−Q1(s)N̂u(s)Mu(s)

= [L(s)Xu(s) +Q1(s)M̂u(s)]Nu(s)

+ [L(s)Yu(s)−Q1(s)N̂u(s)]Mu(s) (99)

Thus, according to theorem 5, we notice that :

L(s) = Ku(s)Mu(s) +Kȳ(s)Nu(s) (100)

6 Algorithm for Functional Observer

Design

6.1 Time Domain Algorithm
1. Check that conditions 1 and 2 of hypothesis are

satisfied.
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2. Calculate S using equations (10), and (11).

3. CalculateΣ and θ using equations (25), and (26).

4. Deduce the values of matricesA11,B11,A22 and
B22 from equations (31), and (32).

5. Verify if the condition of equation (28) is
satisfied. Then the resolution of the proposed
LMI of equations (39), and (40), gives the gain
matrix Z.

6. ComputeF andFd using equations (29) and (31).

7. Calculate J , Jd and E2 respectively from
equations (33), (35) and (37).

8. Cet L1 and L2 using equations (21) and (22).

9. GetH and Hd using iv) and v) from Theorem 1.

6.2 Frequency Domain Algorithm : Method

1

1. Determine matrices P1, P2, P3, and P4 in a way
that det(sI−Fx(s)+P1), det(sI−Fx(s)−P2),
det(sI −Fx(s)+P3) and det(sI −Fx(s)−P4)
are stable.

2. Calculate Ni(s) and Mi(s), for i ∈ 1, 2, 3, 4
using equations (53), (54), (55), (56), (57), (58),
(59), and (60).

3. Deduce T1, T2, T3 and T4 from equations (47),
(48), (49), and (50).

4. Synthesize the estimated state vectors in the
frequency domain using equation (46).

6.3 Frequency Domain Algorithm : Method

2

1. Based on MFD’s, we can calculate L1 and K as
det(sI − A1 + L1C̄) and det(sI − A1 +B1K)
are stable.

2. Get N̂u and M̂u using equations (92), and (93).

3. Get Nu andMu using equations (75), and (76).

4. CalculateXu(s) and Yu(s) using equations (97),
and (98).

5. Determine the configuration matrix Q1

7 Numerical Example
In order to point the automated sensor temperature
effectively and accurately to the frontal area of the
human body, it is sufficient to regulate the angular
position of the servomotor according to the angle α
as shown in Figure 1:

Fig. 1: Measuring principle

d as the distance that separates the highest point of the
visitor from the ceiling of the tunnel as follows:

d = HT − Th

andHT as the height of the tunnel and Th as the height
of the visitor (Human).
Having Known that n is the distance that separates
the visitor from the projection of the servomotor on
the mass, we obtain :

n = arctg(
d

n
)

The DC servomotor is assimilated to a second-order
system following a physical description using
differential equations of its mechanical and electrical
feed back, [25], [26].
With

H(s) =
Mδ

JRns2 + (BRn +MδMn)s

Let u(t) ∈ Rq and θ(t) ∈ Rp be respectively the
known input vector and the output which measures
the angular position of a point on the servomotor
shaft.
We note by w(t) the speed of rotation of the
servomotor as follows:

w(s) = sθ(s)

Knowing that :

H(s) =
θ(s)

U(s)

and by developing the equation H(s), we have :

JRnsw(s) + Znw(s) =MδU(s)

Add to it :

Zn = BRn +MδMn = 24

so

sw(s) = − Zn

JRn
w(s) +

Mδ

JRn
U(s)
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After an adequate modeling, we have obtained the
model of the equations (1), (2), and (3).
With :

A =

(
0 1
0 −Zn

JRn

)
, B =

(
0
Mδ

JRn

)
B: Coefficient of viscosity-friction.
Rn: Armature resistance which is equal to 4.
Mδ: Torque constant which is equal to 2.
Mn: Back electromotive force (f.e.m) constant.
J : Inertial constant which is equal to 1.
Let’s consider system of equations (1), (2), and (3)
where :

E =

(
1 0
0 0

)
, A =

(
0 1
0 −6

)
, L = (0 1) ,

B =

(
0
0.5

)
, Bd =

(
−1
1

)
, C = (1 0) ,

R1 =

(
1.5
5

)
, R2 = (1) , Ad =

(
0 0
−1 −2.3

)

7.1 Functional Unknown Input Observer :

Time Domain Algorithm
We suggest that the known and the unknown input
signals are presented respectively by Figure 2 and
Figure 3.

According to the condition given by equations
(10), and (11), we obtain :

a =

(
0 1 3
−1 0 −2

)
, b =

(
0
1

)
,

c = (0 0 2) , d = (0)

The LMI resolution presents the observation matrices
as follows :

F =

(
−6 5
−1 −1.5

)
, Fd =

(
−2.3 1
0 0

)
J =

(
5

−1.5

)
, Jd = 10−16

(
0.2395

0

)
H =

(
0.5
0

)
,Hd =

(
1
1

)
, E2 =

(
0
0

)
L1 =

(
5

−1.5

)
, L2 = 10−16

(
0.2395

0

)

Fig. 2: Known Input Signal u(t)

Fig. 3: Unknown Input Signal v(t)

Figure 4 and Figure 5 show, respectively, a
comparison between the real and the estimated
components of the functional state and the unknown
input vector.

Fig. 4: Real and Estimated Functional State
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Fig. 5: Real and Estimated Unknown Input

However, according to Figure 4, we can notice
that unknown inputs affect estimation dynamic and
create transitory phases but the proposed observer
retrieves real component in a short time t ∈ [0.5, 1].

Fig. 6: Estimation Error of Functional State

Fig. 7: Estimation Error of Unknown Input

The estimation error is given in Figure 6 and
Figure 7. We can deduce a convergence of the error
dynamic which proves the efficiency of the proposed
approach.

7.2 Functional Unknown Input Observer :

Frequency Domain Algorithm : Method

1
After using the left co-prime factorizations, matrices
of the frequency domain description of the observer
for linear system of equations (1), (2), and (3) are as
follows:

P1 =

(
0 0
0 0

)
, P2 =

(
1 1
0 1

)

P3 =

(
2 1
0 1

)
, P4 =

(
1 0
0 1

)
Then

N1 =
1

σ 1

(
N11

1 N12
1

N21
1 N22

1

)
,M1 =

1

σ 1

(
M11

1
M21

1

)

N2 =
1

σ 21

(
N11

2 N12
2

N21
2 N22

2

)
,M2 =

−1

σ 22

(
M11

2
M21

2

)

N3 =
1

σ 3

(
N11

3 N12
3

N21
3 N22

3

)
,M3 =

1

σ 3

(
M11

3 M12
3

M21
3 M22

3

)

N4 =
1

σ 41

(
N11

4 N12
4

N21
4 N22

4

)
,M4 =

1

σ 42

(
M11

4
M21

4

)
By keeping the same command and unknown input
signals.

Fig. 8: Real and Estimated Functional State
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Fig. 9: Real and Estimated Unknown Input

Figure 8 and Figure 9 show, respectively, a
comparison between the real and the estimated
components of the functional state and the unknown
input vector.

Fig. 10: Estimation Error of Functional State

Fig. 11: Estimation Error of Unknown Input

The estimation error is given in Figure 10 and
Figure 11.We deduce another convergence of our
functional observer in the frequency domain design
which is self-evident at the level of the efficiency of
the proposed approach.

7.3 Functional Unknown Input Observer :

Frequency Domain Algorithm : Method

2

L1 and K are chosen so that det(sI − A1 + L1C̄)
and det(sI−A1+B1K) are stable, this results in the
following equations:

L1 =

(
0
0
4

)
,K = (0 0 0)

Using Pade approximation we reach, [4], [24]:

e−ds = e−s =
−s+ 2

s+ 2

A1 = AK =

 0 1 1.5
s−2
s+2

2.3s−4.6
s+2 − 6 5

0 0 0



The functional observer transfer function for system
equations (1), (2), and (3) is given in the below
formulas when taking into account the proposed
polynomial approach defined previously, as:

M̂u(s) = M̂u11, N̂u(s) = N̂u11,Mu(s) = 1

Nu(s) = Nu11, Xu(s) = 0, Yu(s) = 0

Q1(s) =

(
σQ1

σQ1

)

Lβ =

(
Lβ1

0

)
, L(s) =

(
L1(s)
0

)

Ku =
1

σK

(
ku1
ku2

)
, kȳ =

(
kȳ1
kȳ2

)

The latter command and the unknown input signals
have to be kept. Figure 12 and Figure 13 show,
undoubtedly, a comparison between the real and the
estimated components of the functional state and the
unknown input vector.
However, according to Figure 12, we easily notice
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that unknown inputs affect estimation dynamic and
create transitory phases but the proposed observer
retrieves real component in a short time t ∈ [2, 10]
and t ∈ [18, 25].

Fig. 12: Real and Estimated Functional State

Fig. 13: Real and Estimated Unknown Input

Fig. 14: Estimation error of Functional State vector

Fig. 15: Estimation error of Unknown Input Vector

The estimation errors is given in Figure 14 and
Figure 15.

Anew convergence has been deduced, it deals with
error dynamic which proves the proposed approach’s
suitability.

7.4 Comparison Between the two Methods

in Frequency Domain and the Method

in Time Domain
The following figures (Figure 16, Figure 17) show,
respectively, a comparison between the estimated
error in time domain,frequency domain based on time
domain and direct frequency domain of the functional
state and the unknown input vector.

Fig. 16: Comparison between the two Functional
status errors
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Fig. 17: Comparison between the two Unknown
Inputs errors

We notice quicker dynamics in time domain.
Then, it is clearer that in frequency domain based
on temporal during the permanent phase, the error
is better than in direct frequency domain which is
quite slower. Where as the observer implementation
is more obvious and feasible when using frequency
domain design described only by the system input and
output and fraction functions.

8 Conclusion
In this paper, we have presented a functional observer
design for linear system with constant time delay and
unknown input in time and frequency domains. Based
on the application of the factorization approach, the
frequency domain algorithm is derived from the
time domain results. In addition, stable dynamic
of the Time Domain approach is ensured by using
the Lyapunov-Krasoveskii stability theory and LMI
tools. Finally, we have used a numerical example to
justify the efficiency of the proposed method through
comparative analysis between the time domain , direct
frequency domain and the classical one.

Appendix A: Frequency Domain

Algorithm : Method 1

σ1 = 20s3 + 144s2 + 583s+ 738

N11
1 = −(s+ 2)(2s+ 3) ∗ 10 + σ1

N12
1 = −(s+ 3) ∗ 80, N21

1 = (s+ 2) ∗ 20
N22

1 = −(10s2 + 57s+ 166) ∗ 2 + σ1

M11
1 = (s+ 2)(2s+ 3) ∗ 5,M21

1 = (s+ 2) ∗ 10
σ21 = 20s3 + 104s2 + 439s+ 426

σ22 = 20s4 + 144s3 + 647s2 + 1304s+ 852

N11
2 = (s+ 2)(2s+ 1) ∗ 10 + σ21

N12
2 = 20s2 + 150s+ 300, N21

2 = −(s+ 2) ∗ 20
N22

2 = 20s3 + 124s2 + 513s+ 678

M11
2 = (20s3 + 110s2 − 600)

M21
2 = 20s3 + 34s2 + 104s− 504

σ3 = 20s3 + 204s2 + 857s+ 1230

N11
3 = −(s+ 2)(2s+ 5) ∗ 10 + σ3

N12
3 = −(3s+ 10) ∗ 20

N21
3 = (s+ 2) ∗ 20

N22
3 = −(10s2 + 77s+ 206) ∗ 2 + σ3

M11
3 = 80s2 + 210s− 100

M21
3 = 20s3 + 154s2 + 392s+ 40

σ41 = 20s3 + 104s2 + 419s+ 386

σ42 = (s+ 2)(20s3 + 104s2 + 419s+ 386)

N11
4 = (s+ 2)(2s+ 1) ∗ 10 + σ41

N12
4 = (s+ 3) ∗ 80

N21
4 = −(s+ 2) ∗ 20

N22
4 = (10s2 + 47s+ 146) ∗ 2 + σ41

M11
4 = −(s+ 2)(2.395 ∗ 10−17s− 4.79 ∗ 10−17)

∗ (2s+ 1) ∗ 10
M21

4 = (s+ 2)(2.395 ∗ 10−17s− 4.79 ∗ 10−17) ∗ 20

Appendix B: Frequency Domain

Algorithm : Method 2

M̂u11 =
s(10s3 + 57s2 + 156s+ 20)

10s4 + 97s3 + 444s2 + 1186s+ 1476

N̂u11 =
N̂u111

N̂u112

N̂u111 = s(10s3 + 32s2 + 72s− 272)

N̂u112 = (10s5 + 117s4 + 638s3 + 2074s2

+ 3848s+ 2952)

Nu11 =
10s3 + 32s2 + 72s− 272

10s4 + 77s3 + 270s2 + 332s+ 40

σQ1
=

10s4 + 97s3 + 444s2 + 1186s+ 1476

10s2 + 77s3 ++40

Lβ1
=

−5s3 + 30s2 + 20s+ 40

10s4 + 77s3 + 270s2 + 332 + 40
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σk = 10s5 + 97s4 + 424s3 + 872s2 + 704s+ 80

Ku1 = −15s4 − 12s3 + 8s2 + 352s+ 80

ku2 = −s(10s3 + 32s2 + 72s− 272)

L1(s) =
−5s3 + 30s2 + 20s+ 40

10s4 + 77s3 + 270s2 + 332s+ 40
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