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1  Introduction 
We are all familiar with the concepts of position 
(displacement), velocity, and acceleration. We 
experience velocity when we move and acceleration 
when we change our speed. However, when 
acceleration changes rapidly, we feel jerk and snap. 
These terms, jerk, and snap, along with crackle and 
pop, are less commonly understood and represent 
higher-order derivatives. Velocity, acceleration, 
jerk, snap, crackle, and pop are mathematically the 
first, second, third, fourth, fifth, and sixth 
derivatives of position with respect to time, 
respectively. There is no consensus on the names of 
higher-order derivatives. However, in this study, we 
use the more common terms “snap”, “crackle” and 
“pop” for the 4th–6th derivatives, named after the 
pictorial characters of three elves on Kellogg’s Rice 
Krispies cereal packages from the early 1930s. For 
the 7th–10th higher derivatives, the terms “lock”, 
“drop”, “shock”, and “put” have been used 
informally, as they are largely uncommon in the 
literature. Position and its various time derivatives 
define an ordered hierarchy of meaningful concepts. 
In everyday contexts, the influences of velocity, 
acceleration, and perhaps some higher-order 
derivatives are noticeable in situations where there 
are sudden changes in motion. For instance, an 
experienced driver accelerates smoothly, while a 
novice driver might cause a jerky ride, resulting in a 

jerk and snap. Additionally, when lifting heavy 
weights during a deadlift, there is a noticeable jerk 
when the lifter initially pulls the weight off the 
ground, indicating a rapid change in acceleration. 
Similarly, uprooting plants involves a sudden 
change in force and acceleration, corresponding to a 
jerk. These examples concretely illustrate how jerk 
manifests in real-world actions. However, higher-
order derivatives, including crackle and pop, are 
observed in many fields. In engineering and physics, 
they are evident during vibrations and transitions, 
especially when multi-resonant modes of vibration 
occur. For example, in mechanical engineering, they 
are seen when the cam-follower jumps off the 
camshaft in automotive systems. They are also 
observed in civil engineering when switching 
suddenly between train tracks and roads. It should 
be emphasized that sudden changes in forces, along 
with the resulting fluctuations in acceleration, jerk, 
and higher-order derivatives, can have significant 
negative impacts beyond the immediate effects of 
the forces themselves. Jerk and beyond can lead to 
fatigue cracks in metals and other materials, 
potentially resulting in structural failures, and can 
also cause injuries to humans and racing animals. 
This is why jerk and some higher derivatives are 
included in standards for limit states, such as those 
governing amusement rides and elevators. Notably,  
it has been demonstrated that humans innately 
attempt to minimize jerk when moving their limbs, 
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[1]. Additionally, experimental measurements of 
jerk have been linked to human movement 
impairment due to stroke, [2], [3], and fatigue, [4].  

Despite the importance of higher time 
derivatives of position in various standards and 
applications across science and engineering, they 
are rarely discussed in university textbooks, making 
them relatively unfamiliar even among engineering 
professionals. However, these higher time 
derivatives are crucial for understanding the effects 
on motion, oscillations, and vibrations in a wide 
range of applications.  Specifically, jerk and snap 
have numerous applications in motion control, 
manufacturing, and oscillators, [5], [6]. Higher 
derivatives such as snap, crackle, and pop have been 
discussed in a conference presentation, [7]. 
Additionally, several recent studies discussed these 
higher time derivatives. For instance, an insightful 
review of the application of jerk across various 
fields in science and engineering has been provided 
in [8]. The authors conducted a thorough systematic 
review of recent academic articles (2015–2020) and 
categorized them based on the application of jerk in 
twenty different categories. They also claimed that, 
although jerk is often overlooked in secondary and 
higher education, it is ubiquitous. This review has 
provided a solid foundation for future research on 
the significance of jerk in various fields. Also, 
several authors have explored the first derivative of 
force (or acceleration) for controls, [9], 
biomechanics, [10], and robotics, [11]. As well as 
first and second derivatives of force for robotics, 
[12]. In [13], the kinematic jerk and snap for 
multibody dynamics with joint constraints were well 
studied. In [14], jerk and snap were addressed in the 
cosmological equation of state. Hyper-jerk (snap) 
has also been used for arm-reaching tasks, [15] and 
analysis of handwriting, [16]. In addition, anomalies 
in the velocity, acceleration, jerk, snap, and crackle 
of limb segments during daily activities like 
walking, standing, and sit-to-stand movements have 
been shown to indicate deficits in neurological and 
cognitive function, [17]. 

Among the higher time derivatives of position, 
jerk has been extensively studied in various 
contexts. For instance, the jerk vector for Frenet 
curves in Euclidean 3-space 𝔼3 was resolved in 
[18]. Subsequently, a new resolution of the jerk 
vector in the same setting was presented in [19]. 
Additionally, resolutions of both acceleration and 
jerk vectors for modified curves in Euclidean 3-
space 𝔼3 were examined in [20]. Similarly, 
resolutions of the jerk vector for Bishop curves in 
Euclidean 3-space 𝔼3 were investigated in [21]. 
Also, resolutions of the jerk vector for Darboux 

curves on regular surfaces in Euclidean 3-space  𝔼3 
were explored, in [22]. Furthermore, in [23], the 
resolutions of the jerk and snap vectors of a point 
particle moving along a quasi-curve in Euclidean 3-
space 𝔼3 were studied. It is also worth noting that 
jerk has long been considered a design factor for 
ensuring ride comfort in various applications, such 
as amusement rides, [24], elevators, [25], ships, [26] 
and buses, [27]. However, these higher-order time 
derivatives are not typically covered in physics and 
engineering courses, except in a few textbooks, [28], 
[29], [30]. This lack of detailed coverage in 
educational materials often results in confusion 
regarding terminology. 

Studying the higher-order derivatives of 
position with respect to time and their applications 
provides a deeper understanding of how objects 
move and change over time, describing motion 
dynamics. This understanding enables better 
control, analysis, and optimization across a wide 
range of disciplines and applications, which is the 
primary motivation for this work. The purpose of 
this research is to study the higher derivatives of the 
position vector with respect to time and explore the 
applications of these higher-order derivatives across 
various fields of physics. In Section 2, the basic 
concepts and applicable formulas are presented. In 
Section 3, a series expansion of the position model 
is proposed. Section 4 is devoted to applications and 
illustrations of higher derivatives of the position 
vector with respect to time. In subsection 4.1, we 
study the higher-order derivatives in the context of 
spacecraft trajectory optimization. In subsection 4.2, 
as an illustration of advanced control systems, we 
consider a robotic arm that needs to follow a 
complex path with high precision. For vibration 
analysis and control, we study and illustrate higher 
derivatives of position in the context of a car 
suspension system in subsection 4.3. Subsection 4.4 
is devoted to seismology, where we provide an 
analysis of ground motion behavior during 
earthquakes. We address the question of how 
higher-order derivatives of position provide 
valuable insights into ground motion during an 
earthquake and discuss the importance of higher-
order derivatives in seismology. In Section 5, we 
provide additional practical applications. Our 
conclusions are presented in Section 6. 
 
 
2 Basic Concepts and Higher-Order 

Derivatives 
In physics, derivatives of the position with respect 
to time have specific names and interpretations. 
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Let’s present the well-known ones from the first to 
the tenth derivative: 

The position 𝑥(𝑡) gives the location of an object 
in space at any given time. 
 Velocity or the speed of an object: Is the 

magnitude of the change of its position 𝑥 over 
time. 

𝑣(𝑡) =
𝑑𝑥(𝑡)

𝑑𝑡
.                          (1) 

Therefore, first time derivative of position gives 
the object's velocity, indicating both how fast 
and in which direction the object is moving. 

 Acceleration: Is the second time derivative of 
position, representing the rate at which the 
velocity changes. 

𝑎(𝑡) =
𝑑𝑣(𝑡)

𝑑𝑡
=

𝑑2𝑥(𝑡)

𝑑𝑡2
.                     (2) 

It explains how the object's velocity changes 
over time, which is essential for understanding 
the forces acting upon it. 

 Jerk: Is the third derivative of position with 
respect to time. It is the rate of change of 
acceleration. The jerk is described by the 
following equation: 

 

𝑗(𝑡) =
𝑑𝑎(𝑡)

𝑑𝑡
=

𝑑2𝑣(𝑡)

𝑑𝑡2
=

𝑑3𝑥(𝑡)

𝑑𝑡3
.          (3) 

 
Its physical dimension is [𝑗] = 𝐿𝑇−3. Known as 

jerk because of the abrupt shift in acceleration that 
can cause a person to be jerked backward or 
forward. 

Exactly, the jerk shows how the acceleration is 
changing with time. It plays a crucial role in systems 
where sudden changes in acceleration can affect the 
behavior or structural integrity of an object. 

Applying a high jerk, which means a rapid 
change in acceleration within a brief period, subjects 
the object to a sudden and significant force. Here the 
forces involved can be very large, even if applied 
for a short time. This can lead to the object breaking 
or tearing because the sudden force can exceed the 
material's ability to withstand it. For example, if you 
pull a piece of paper slowly, the force you apply is 
spread out over a longer period. The paper's fibers 
can gradually adjust to the force, and it likely won't 
tear because the force at any given moment is not 
sufficient to break the fibers. But, if you grab the 
paper in the middle and jerk it quickly, you're 
applying a high jerk. The sudden force is 
concentrated in a very short time, which 
overwhelms the paper's fibers, causing them to 
break almost instantly. This is why the paper tears 
more easily with a quick jerk compared to a slow 

pull. This example provides a clear illustration of 
how jerk appears. 
 Snap (Jounce or hyper-jerk): Rate of change 

of jerk. It is the fourth derivative of position 
with respect to time. 

𝑠(𝑡) =
𝑑𝑗(𝑡)

𝑑𝑡
=

𝑑4𝑥(𝑡)

𝑑𝑡4
.                (4) 

 
The physical dimension of snap is [𝑠] = 𝐿𝑇−4. 

The snap measures the rate of change of jerk. This 
can be useful for fine-tuning the control 
mechanisms in precise engineering applications to 
ensure smooth transitions and avoid mechanical 
stress. 
 Crackle: Rate of change of snap. The fifth 

derivative of position with respect to time. 

𝑐(𝑡) =
𝑑5𝑥(𝑡)

𝑑𝑡5
.                           (5) 

 Pop: The sixth derivative of position with 
respect to time. Rate of change of crackle. 

𝑝(𝑡) =
𝑑6𝑥(𝑡)

𝑑𝑡6
.                            (6) 

 
Crackle and pop are less commonly used but 

can be essential in extremely high-precision 
applications where even minor fluctuations need to 
be accounted for. 

 
2.1 Sixth and Beyond: Higher-Order 

Derivatives 
For the seventh and higher-order derivatives, there 
are no widely accepted names in classical 
mechanics, but sometimes physicists or engineers 
use whimsical names or terms in specialized 
contexts. 
 Lock 𝑙: The sixth derivative of position with 

respect to time. Rate of change of pop. 

𝑙(𝑡) =
𝑑7𝑥(𝑡)

𝑑𝑡7
.                              (7) 

 
This can be useful in highly dynamic systems 

where changes in the rate of change of crackle need 
to be monitored, though such situations are rare in 
typical applications. 
 Drop 𝑑: The sixth derivative of position with 

respect to time. Rate of change of lock. 

𝑑(𝑡) =
𝑑8𝑥(𝑡)

𝑑𝑡8
.                              (8) 

 
This could potentially be relevant in systems 

requiring extremely precise control over higher-
order dynamics, such as in advanced robotics or 
certain types of control theory. 
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 Shot 𝑠′: The sixth derivative of position with 
respect to time. Rate of change of drop. 

𝑠′(𝑡) =
𝑑9𝑥(𝑡)

𝑑𝑡9
.                              (9) 

 
This is even more specialized and might be 

relevant in theoretical contexts or in simulations 
where extremely fine control of motion is necessary. 
 Put 𝑝′: The sixth derivative of position with 

respect to time. Rate of change of shot. 

𝑝′(𝑡) =
𝑑10𝑥(𝑡)

𝑑𝑡10
.                       (10) 

 
The practical applications of such a high-order 

derivative are highly specialized and rare, possibly 
useful in detailed simulations of complex systems or 
in fields like advanced materials science or 
aerospace engineering. 

Generally, physical dimensions of higher order 
derivatives of position are defined to be quantities 
with 

[𝑄] = 𝐿𝑇−𝑞,                                (11) 
for any integer number 𝑞 greater or equal than zero. 
These derivatives provide a hierarchical framework 
to describe motion with increasing levels of 
precision regarding the behavior of a moving object.  
In general, the n-th derivative of the position can be 
referred to as the n-th order rate of change of the 
position. However, beyond the fifth or sixth 
derivative, these terms are not typically used in 
practical physics or engineering due to the 
diminishing physical significance of higher-order 
derivatives in most applications. If a specific higher-
order derivative needs to be referred to, it is often 
described by its order, e.g., "seventh-order 
derivative of position" or "eighth-order derivative of 
position," rather than a specific name. 
 
2.2 Applicable Formulas of Higher-Order 

Derivatives 
The yank 𝑌 is the derivative of the force 𝐹(𝑡) with 
respect to time, it is as well the mass 𝑚 multiplied 
by the jerk: 

𝑌(𝑡) =
𝑑𝐹(𝑡)

𝑑𝑡
= 𝑚𝑗(𝑡).                               (12) 

 
The tug 𝑇 is the derivative of the yank with 

respect to time, or the mass multiplied by the snap, 
also it equals to the third derivative of momentum 𝑃 
with respect to time 

𝑇(𝑡) =
𝑑𝑌(𝑡)

𝑑𝑡
=

𝑑2𝐹(𝑡)

𝑑𝑡2
=

𝑑3𝑃(𝑡)

𝑑𝑡3
= 𝑚𝑠(𝑡).    (13) 

With 𝑃 = 𝑚𝑣, and 𝐹 = 𝑚𝑎. Here 𝑚 is considered 
constant, [31]. 

 
There is also the snatch S, which is the fourth 

derivative of momentum with respect to time, or it is 
the mass multiplied by the crackle: 

𝑆(𝑡) =
𝑑4𝑃(𝑡)

𝑑𝑡4
= 𝑚𝑐(𝑡).                             (14) 

We have the shake 𝑆′, which is the fifth derivative 
of momentum or it is the mass multiplied by the 
pop: 

𝑆′(𝑡) =
𝑑5𝑃(𝑡)

𝑑𝑡5
= 𝑚𝑝(𝑡).                          (15) 

 
 
3 Series Expansion of Position Model 
The Taylor series expansion of the position 𝑥(𝑡) 
around t=0, known as the Maclaurin series, 
incorporates all the higher-order derivatives of the 
position with respect to time. This series can 
describe the motion of an object with high precision. 
Exploring a model based on higher-order 
derivatives, potentially extending to an infinite 
derivative order, is intriguing and may have 
potential applications in various advanced fields of 
physics and engineering. 

The following equation is used for higher-order 
derivatives of the position (series expansion of the 
position in terms of its time derivatives around t=0): 
𝑥(𝑡) = 𝑥(0) + 𝑥(1)(0)𝑡 + 𝑥(2)(0)

𝑡2

2
+ 𝑥(3)(0)

𝑡3

3!
+

𝑥(4)(0)
𝑡4

4!
+ ⋯  = ∑ 𝑥(𝑛)(0)

𝑡𝑛

𝑛!
∞
𝑛=0 ,                (16)  

 
Here 𝑥(𝑛)(0) represents the n-th time derivative 

of the position around t=0. There is an infinite 
derivative series. However, this series can be 
extended to infinite order, provided the series 
converges. Note that in this series expansion, each 
term represents a time derivative of the position 
evaluated at t=0. 

Now, we move to show how study the 
convergence of the Taylor series expansion 
∑ 𝑥(𝑛)(0)

𝑡𝑛

𝑛!
∞
𝑛=0 . 

We need to consider the following aspects: 
1. Radius of Convergence: The radius of 

convergence of a Taylor series can be 
determined using the ratio test or the root test as 
follows: 
 

 Ratio Test: The ratio test involves examining 
the limit of the absolute value of the ratio of 
consecutive terms: lim

𝑛→∞
|

𝑎𝑛+1

𝑎𝑛
|, for our case: 

|
𝑎𝑛+1

𝑎𝑛
| = |

𝑥(𝑛+1)(0)

(𝑛 + 1)𝑥(𝑛)(0)
| 𝑡.               (17) 
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Here the general term 𝑎𝑛 =
𝑥(𝑛)(0)

𝑛!
𝑡𝑛. If this 

limit exists and is less than 1, the series 
converges. 

 Root Test: The root test involves examining the 
limit lim

𝑛→∞
√|𝑎𝑛|𝑛 , and for our series: 

√|𝑎𝑛|
𝑛

= |
𝑥(𝑛)(0)

𝑛!
|

1

𝑛

𝑡.                   (18) 

The series converges if this limit is less than 1. 
 

2. Practical Steps to Determine Convergence: 
 
 Behavior of derivatives: Analyze the growth of 

the derivatives 𝑥(𝑛)(0). If they grow factorially 
or more slowly, the series is more likely to 
converge for a larger range of 𝑡. 
 

 Analytic Functions: If 𝑥(𝑡) is an analytic 
function (i.e., it can be represented by a 
convergent power series around t=0), then the 
radius of convergence 𝑅 is non-zero, and the 
series converges for 𝑡 < 𝑅. 

 
 Special Cases:  
(i) For many common functions (e.g., exponential, 
sine, cosine), the Taylor series converges for all 𝑡. 
(ii) For more complex functions, specific analysis of 
the growth rate of 𝑥(𝑛)(0) is required. 

To determine the convergence of the series 
∑ 𝑥(𝑛)(0)

𝑡𝑛

𝑛!
∞
𝑛=0 , we analyze the behavior of the 

derivatives 𝑥(𝑛)(0). We use the ratio test or root test 
to find the radius of convergence and ensure the 
series converges within this radius. For many 
functions encountered in practice, particularly those 
that are analytic, this approach will confirm the 
convergence of their Taylor series expansions. 

This series expansion model is a powerful tool 
in describing the motion of objects with high 
precision by incorporating the higher-order 
derivatives. This model has potential to enhance the 
precision and smoothness of control in a variety of 
physical systems in fields such as robotics, 
aerospace, and theoretical physics, although there 
are significant challenges about convergence, 
computational complexity, and practical application. 
The potential advantages of this model make it an 
extremely valuable tool. 
4 Practical Applications 
In everyday physics, pop, crackle, and other higher-
order time derivatives are rarely discussed. But, they 
are very relevant in specialized and advanced fields 
of physics and engineering like control systems, 

robotics, and applied mathematics. In the following, 
we provide some examples in which these higher-
order time derivatives play a particularly important 
role. 
 
4.1  Spacecraft Trajectory Planning 
In space missions, precise control of a spacecraft's 
trajectory is vital. Engineers need to ensure smooth 
transitions between the different phases of mission, 
requiring careful management of higher-order time 
derivatives of position to avoid sudden changes in 
motion that could strain the spacecraft's structure or 
cause instability. Furthermore, snap, crackle, and 
pop should be considered when planning orbital 
maneuvers or landings in order to ensure smooth 
and continuous trajectory adjustments, thereby 
reducing stress on the spacecraft and optimizing fuel 
efficiency.  

For illustrating higher-order time derivatives of 
position in the context of spacecraft trajectory 
optimization, we can depict their vectors within 
three-dimensional (3D) space. In the following, we 
model the spacecraft position, velocity, acceleration, 
and other derivatives vectors employing sinusoidal 
functions where the connection between these 
vectors is demonstrated.  

We use the following helical trajectory 
parameters: The Amplitude A=1 represents the 
radius of the helix; the growth rate B=1, which 
determines the linear progression along the z-axis. 
The angular frequency 𝜔 = 1 that controls how 
many turns the helix makes over the specified 
period.  
Also, we use the following position components: 

{

𝑥(𝑡) = 𝐴 cos(𝜔𝑡),
𝑦(𝑡) = 𝐴 sin(𝜔𝑡)

𝑧(𝑡) = 𝐵𝑡.             

,                               (19) 

 
Now, by using a helical path, a common 

representation in orbital mechanics for a stable and 
periodic motion, we plot a 3D spacecraft trajectory 
in Figure 1. Note that the visualization helps in 
understanding the trajectory in 3D space, exactly, it 
is important for effective planning and analysis in 
spacecraft trajectory optimization.  
 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.39 Ilyas Haouam

E-ISSN: 2224-2678 358 Volume 23, 2024



 
Fig. 1: Visualization of a helical 3D trajectory for a 
spacecraft 
 

Knowing that for simulating different trajectory 
shapes and behaviors in Figure 1, the parameters 𝐴, 
𝐵, and 𝜔 can be adjusted. 

Subsequently, we include velocity, acceleration, 
jerk, crackle and pop vectors along the 3D helical 
trajectory to have the following Figure 2: 
 

 
 

 
Fig. 2: Plot of the helical trajectory, along with the 
velocity, acceleration, jerk, crackle and pop vectors 
in sub-fig a). The projection of this helical trajectory 
in 𝑥𝑦-plane, along with these vectors is displayed in 
sub-fig b) 

However, for further illustration, we include the 
velocity, force, and yank vectors in the 3D helical 
trajectory of the spacecraft, as shown in Figure 3. 

 
 

 
 

 
Fig. 3: The helical trajectory, accompanied by 
velocity, force, and yank vectors. The 3D plot is 
shown in sub-fig a], with its projection onto 𝑥𝑦-
plane shown in sub-fig b] 
 

Knowing that the interval variable can be 
adjusted to modify the density of the plotted vectors 
as necessary in Figure 2 and Figure 3.  

These figures provide a good detailed view of 
the spacecraft's trajectory and the dynamic forces 
acting upon it, which are essential for trajectory 
planning and analysis.  

Now, we move to depict the evolution of the 
jerk, crackle, and pop components over time as 2D 
plots of the higher-order time derivatives of 
position, for the helical trajectory example.  
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Fig. 4: A figure consisting of three subplots 
displaying the evolution of jerk, crackle, and pop 
components over time 
 

A comprehensive view of higher-order 
derivatives of the spacecraft’s trajectory is given in 
Figure 4. Again, we confirm that higher-order 
derivatives are essential for optimizing spacecraft 
path, as they offer valuable insights into the motion, 
ensuring smoother and more efficient trajectories.  
 
4.2 Control Systems: Robotics and 

Mechanical Systems 
In robotic systems, particularly those requiring 
precise movements such as robotic arms or surgical 
robots, higher-order derivatives are used to achieve 
smooth and controlled motion. This is because in 
motion, abrupt changes, which are characterized by 
high jerk, snap, crackle, or pop, can cause wear or 
damage to mechanical components and by 
minimizing these sudden changes, robotic systems 
can operate with greater precision, resulting in more 
reliable and efficient performance. So, advanced 
control algorithms often involve the higher-order 
time derivatives of position to optimize the robot's 
path ensuring smooth and efficient movement. 

We consider a robotic arm that must follow a 
complex path with high precision as an example of 
an advanced control system. Traditional control 
systems typically use velocity, acceleration, and 
sometimes jerk for path planning, but the infinite 
derivative model given in equation (16) provide a 
control input 𝑢(𝑡) that takes into account all higher-
order derivatives in order to ensure the arm moves 
with the highest level of smoothness and precision. 

𝑢(𝑡) = ∑ 𝐾𝑛
𝑑𝑛𝑥(𝑡)

𝑑𝑡𝑛
∞
𝑛=0 ,             (20)  

where 𝐾𝑛 are control coefficients that could be 
optimized. Then, the implementation steps are as 
follows: 
1- We clearly define the infinite series and the 
conditions for its convergence. 

2- We develop and create algorithms to compute the 
higher-order derivatives efficiently. 
3- We apply the model to simulated systems to test 
its performance and stability. 
4- We use optimization techniques to find the best 
coefficients for the specific application. 
 

Let's generate similar visualizations for a 
robotic arm (or surgical robot), where the position, 
velocity, acceleration, jerk, snap, crackle, and pop 
vectors are derived from sinusoidal functions to 
demonstrate the relationships between these vectors.  
So, for the circular trajectory parameters R=5 
(radius of the circle), and 𝜔 =

2𝜋

10
 (angular frequency 

of the circular motion). The position components 
(circular trajectory) are as follows: 

{
𝑥(𝑡) = 𝑅 cos(𝜔𝑡),                     
𝑦(𝑡) = 𝑅 sin(𝜔𝑡),                      

  Linear movement in z direction.

             (21) 

 
We used a circular trajectory in the 𝑥𝑦-plane 

with a linear motion in the z-direction. In Figure 5, 
we simulate a simple robotic arm with a fixed base 
and an end effector that moves along a predefined 
trajectory (e.g., a circular path). 

 

 
Fig. 5: Movement of a robotic arm in 3D space and 
its various derivatives (velocity, acceleration, jerk, 
crackle, and pop) over time 
  

Next, we illustrate the vectors at various points 
(position, velocity, acceleration and jerk) along the 
trajectory of a robotic arm with joints in 3D.  
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Fig. 6: visualization of velocity, acceleration, and 
jerk vectors on a hand-like robotic arm with joints 
 

Here, in Figure 6, we use the following 
calculations: 
 
For joint angles, we have: 

𝜃1 = sin(𝑡) ; 𝜃2 = cos(𝑡) ; 𝜃3 = sin(2𝑡).    (22) 
 
For, arm segment lengths, we use: 

  𝐿1 = 1; 𝐿1 = 0.8; 𝐿1 = 0.6.               (23) 
 
Then, the positions are: 

  𝑥 = 𝐿1 cos(𝜃1) + 𝐿2 cos(𝜃1 + 𝜃2) +
𝐿3 cos(𝜃1 + 𝜃2 + 𝜃3),                                            (24) 

 
  𝑦 = 𝐿1 sin(𝜃1) + 𝐿2 sin(𝜃1 + 𝜃2) + 𝐿3 sin(𝜃1 +

𝜃2 + 𝜃3),                                                                   (25) 
 

  𝑧 =
1

2
(𝜃1 + 𝜃2 + 𝜃3).                      (26) 

 
This comprehensive visualization helps in 

understanding the dynamics and control of the 
robotic arm.  

Besides, we can find applications of higher time 
derivatives of position in automotive control. In 
advanced driver assistance systems and autonomous 
vehicles, controlling jerk is essential for passenger 
comfort and safety. Sudden changes in acceleration 
can lead to discomfort and potential loss of control. 
For control systems, especially in mechanical 
systems, it is essential to analyze the system's 
response to control inputs, thus we consider the time 
derivatives of position. 
 
4.3  Vibration Analysis and Control 
In engineering, especially in structures subject to 
dynamic loads such as bridges, buildings, or vehicle 
suspensions, understanding and controlling 
vibrations is crucial. Higher-order time derivatives 
of position can describe the detailed response of a 

system to external forces like wind, earthquakes, 
and traffic. For example, in designing a car 
suspension system, considering snap, crackle, and 
pop can help engineers predict and mitigate 
complex vibrational behaviors, improving ride 
comfort and vehicle stability. 

In engineering, particularly for structures and 
systems subject to dynamic loads, these higher-
order derivatives are crucial for understanding and 
controlling vibrations. By analyzing these vectors, 
engineers can design systems that mitigate complex 
vibrational behaviors, thereby improving stability, 
longevity, and performance. For example, in a car 
suspension system, minimizing high snap, crackle, 
and pop values can lead to a smoother ride and 
reduced mechanical wear. To illustrate higher time 
derivatives of position vectors in the context of a car 
suspension system, we show how these derivatives 
manifest in response to a bump in the diagram 
provided in Figure 7.  

 

 
Fig. 7: A diagram showing the suspension system 
responding to a bump, with annotations indicating 
the higher derivatives of position 
 

In the context of vehicle suspension, 
encountering a bump leads to a series of dynamic 
responses related to acceleration and other higher-
order derivatives. Thus, higher-order derivatives are 
necessary for analyzing and predicting the detailed 
conduct of the suspension, basically contributing to 
better ride comfort and vehicle stability. So, to 
illustrate how these higher-order derivatives vary 
over time as the suspension reacts to a bump, we 
depict acceleration, jerk, snap, crackle, and pop as 
functions of time in Figure 8. Knowing that basic 
functions are used to represent these higher-order 
derivatives and demonstrate their conduct. In a real-
world scenario, these used functions are taken from 
the well-known physical equations that describe the 
dynamics of the suspension system.   

The position function 𝑥(𝑡) is defined as a 
damped sinusoid: 

𝑥(𝑡) = 𝐴𝑒−𝛽𝑡 sin(𝜔𝑡),                    (27) 
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where the amplitude A=1, the damping coefficient 
𝛽 = 0.1, and the angular frequency 𝜔 = 2𝜋.  
 

In Figure 8, we show how the derivative of 
position evolves as the system responds to a bump. 

 

 
Fig. 8: The evolution of acceleration, jerk, snap, 
crackle, and pop over time in the context of a car 
suspension system responding to a bump 
 

 
4.4  Seismology 
In earthquake studies and investigations, the ground 
motion can be described using higher-order 
derivatives to understand the intensity and the 
impact of seismic waves. While acceleration is 
commonly emphasized, high-order derivatives such 
as jerk, snap, crackle, and pop can provide more 
detailed insights into the characteristics of ground 
motion and its effects on structures. Thus, this is 
very relevant for understanding and predicting 
seismic activity. 

In seismology, analyzing ground motion 
through higher-order time derivatives of ground 
displacement provides a more comprehensive 
understanding of the characteristics of earthquakes 
and their potential effects on both structures and 
landscapes. 

 

 
Fig. 9: A basic cross-sectional illustration of the 
Earth that shows the crust, mantle, and core along 
with vector representations for position, velocity, 
jerk, and additional higher-order derivatives 

The crust is the outermost layer, the Mantle is 
the layer beneath the crust, the Outer Core is the 
liquid layer beneath the mantle, and the inner Core 
is the solid innermost layer. 

Note that in Figure 9, a diagram illustrating the 
Earth's layers during an earthquake, the higher-order 
derivatives (velocity, acceleration, etc.) are 
represented as vectors. However, these vectors 
indicate how the motion of the ground changes at 
different rates, providing a detailed understanding of 
seismic wave propagation and its effects. We also 
give a simulation of ground motion over time, 
calculating the higher-order derivatives (position, 
velocity, acceleration, jerk, snap, crackle, and pop). 
We plot these derivatives to visualize how they 
change over time during an earthquake in Figure 10. 
This provides a clear visual representation of how 
higher-order derivatives change over time during an 
earthquake, offering detailed insights into the 
ground motion characteristics and potential impacts 
on structures. 
 

 
Fig. 10: A representation of how higher-order 
derivatives change over time during an earthquake 
 
Here, we simulated ground motion (position) as a 
combination of sine and cosine functions: 

𝑥(𝑡) = sin(𝑡) +
1

2
sin(2𝑡).               (28) 

 
Now, let's address the following question: How do 

higher-order derivatives of position provide 

valuable insights into ground motion during an 

earthquake, and what is the importance of higher-

order derivatives of the position vector in 

seismology? 

We answer this question through the following 
explanations: 
1. Understanding seismic wave propagation: 
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 Position or displacement: This shows the actual 
movement of the ground, which is crucial for 
determining the extent of the earthquake. 

 Velocity: Helps in understanding how fast the 
seismic waves are traveling. Higher velocities 
can indicate more intense shaking. 

 Acceleration: Critical for assessing the forces 
that buildings and infrastructure will experience. 
High accelerations can cause severe damage. 

 Jerk: Indicates rapid changes in acceleration, 
which can be particularly damaging as 
structures may not have time to adapt to these 
changes. 

 Snap, crackle, and pop offer even more precise 
insights into ground motion. These derivatives 
help assess the smoothness and continuity of 
seismic waves. Sudden shifts in these 
derivatives signal areas of potential structural 
weakness or the onset of stronger shaking.  
 

2. Impact on structural design: 
 Most building codes emphasize acceleration as 

it directly relates to the constraints that a 
structure needs to endure. 

 Jerk and higher-order derivatives impose 
additional stress on structure. Buildings and 
materials can fail not only due to the 
magnitude of constraints but also because of 
the speed at which these constraints change. 
For instance, sudden shifts in acceleration can 
create a high dynamic load on structural 
components, potentially causing failure points. 

 Snap, crackle, and pop help in identifying 
resonant frequencies or periods during which 
the structure may undergo amplified 
vibrations, potentially increasing damage. 

 
3. Seismic hazard assessment: Analyzing higher-

order derivatives in detail leads to the 
development of more accurate seismic hazard 
models. Also, understanding time variations in 
ground motion, improves predictions of 
earthquake impact locations and intensities 
across various regions. 
 

4. Early warning systems: Integrating higher-order 
derivatives into early warning systems leads to 
more accurate alerts, which facilitate better 
preparation and response. 
 

5. Post-earthquake analysis: Examine recorded 
data for higher-order derivatives following an 
earthquake, providing valuable insights into the 
behavior of ground motion and the specific 
factors that contribute to the most damage. This 

analysis helps to refine building codes and 
improves the design of future structures. 

 
6. Improving building codes: Information obtained 

from higher-order derivatives leads to revising 
and updating the building codes, ensuring new 
constructions are better equipped to withstand 
complex seismic forces. Thus, using jerk and 
snap derivatives, building codes can be updated 
to incorporate rapid acceleration changes and 
their impact on structural integrity.   

 
7. Practical example: If we consider a scenario 

where the data of ground motion during an 
earthquake is collected, then by analyzing this 
data, we have: 

 High acceleration, indicates that strong shaking 
forces can cause considerable damage to 
buildings. 

 High jerk, this implies that the structure will be 
subjected to quick and jarring movements that 
can lead to damage and crack the structural 
components.  

 High snap, this implies a significant rate of 
change in jerk or rapid jarring abrupt 
movements, increasing the risk of structural 
failure. 

 
Last but not least, engineers by understanding 

these factors, can design strong buildings that 
withstand high acceleration, as well as flexible 
structures that absorb and dissipate energy from 
rapid force changes. Materials can also be 
developed to withstand these dynamic loads, and 
structural elements can be reinforced and well-
equipped by damping systems.  

Indeed high-order derivatives analysis provides 
valuable insights into ground motion during 
earthquakes, which leads to improve structural 
design, along with, enhanced safety measures, and 
more accurate seismic risk assessments. This in turn 
helps to better prepare structures that withstand 
seismic events, reduce damages, and protect lives. 
 
 
5 Additional Practical Applications 
Finally, yet importantly, higher-order time 
derivatives of position actually have many other 
applications. Here are a few additional important 
examples that we will briefly touch on without 
going into more detail as before. 
 
5.1  Animation and Special Effects 
In the world of animation and computer graphics, 
particularly when simulating realistic movements, 
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higher-order time derivatives are essential for 
achieving smooth, natural-looking motions. 
Animators and simulation software use these 
derivatives to ensure fluid transitions between 
frames, in order to eliminate abrupt, jerky motions. 
In addition, higher-order derivatives are applied in 
predictive modeling, such as weather forecasting, 
leading to the capture of subtle dynamics that 
simpler models may ignore, enhancing forecast 
accuracy. For instance, Numerical Weather 

Prediction (NWP), and General Circulation Models 
(GCMs) are likely to include higher-order time 
derivatives of position through physical processes 
governed by differential equations, particularly in 
fluid dynamics and atmospheric modeling. 
 
5.2  Theories in Theoretical Physics 
 Non-local field theories: Such theories 

frequently use infinite derivatives to present 
interactions extending beyond a single point in 
space-time, offering insights into phenomena 
that are challenging for local theories to explain. 
 

 String field theory, here non-local actions with 
infinite derivatives naturally arise, with the aim 
of describing the fundamental nature of particles 
and forces within a unified framework. 

 

 p-Adic string theory: A form of string theory 
where the action includes infinite derivatives, 
resulting in non-local equations of motion. 
 

 Higher-order gravity, here some approaches 
incorporate higher-order derivatives of the 
metric tensor to develop a quantum theory of 
gravity. Models based on infinite derivative 
gravity aim to address challenges like 
renormalizability and the singularity problem in 
general relativity.  

 
 Infinite derivative gravity, here a non-local 

extension of general relativity that incorporates 
an infinite series of higher-order curvature terms 
presumably addresses singularities and provides 
a pathway toward a consistent quantum theory 
of gravity. 

 
Finally, the aforementioned examples explain 

how important the higher-order time derivatives of 
position are for achieving precise, smooth, and well-
controlled motion across diverse fields in physics 
and engineering. 

 
 

6  Conclusion 
In this work, we studied the higher-order time 
derivatives of position up to the tenth order and 
presented a mathematical model that accurately 
describes the motion of objects and smoother 
control. It is confirmed that higher-order time 
derivatives of position provide important 
information about the dynamics of object motion, 
which allows for more precise control, improved 
performance, and increased safety across a variety 
of applications in physics and engineering. In most 
practical scenarios, time derivatives beyond jerk or 
fourth-order snap are rarely utilized due to their 
limited physical impact and the challenges 
associated with measurement control. But in highly 
specialized fields like advanced robotics, aerospace 
engineering, or theoretical physics, these higher-
order time derivatives may be essential for 
accurately modeling and controlling complex, high-
precision dynamic systems. 

Although higher-order time derivatives of 
position can be defined and sometimes named, their 
practical usefulness declines significantly beyond 
the sixth time derivative, making them largely 
theoretical rather than practical in most real-world 
contexts. 

Our results can be used as a basis for further 
investigations and explorations across other 
scenarios.   For example, combining higher 
derivatives with fractional calculus allows for more 
sophisticated modeling and control strategies, 
enabling more precise and flexible approaches to 
complex problems in engineering and physics, as 
well as providing insights into systems where the 
memory effect is important. Such as in spacecraft 
trajectory planning, fractional calculus can be used 
to model the effects of perturbations and non-
idealities in the system, while higher-order 
derivatives help design smooth and precise 
trajectories. This represents a promising avenue for 
future research. 
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