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Abstract: - A common application of the coefficient of variation (CV), which is the ratio of the population 
standard deviation to the population mean, is frequently used to assess quality control and economic processes, 
among others. The fiducial quantity approach, Bayesian confidence intervals (CIs) using the Jeffreys, uniform, 
or normal-gamma-beta (NGB) priors, and highest posterior density (HPD) intervals using the Jeffreys, uniform, 
or NGB priors were used to provide estimators for the CI for the ratio of CV of two delta-gamma distributions. 
An evaluation of their performance in terms of average length and coverage probability was carried out using 
Monte Carlo simulations. The results of this study indicate that the HPD using the Jeffreys prior and fiducial 
quantity methods are the best for estimating the CI for the ratio of the CV of two delta-gamma distributions. 
Rainfall data from Mae Hong Son province in Thailand was used to illustrate their practicability when 
analyzing real-life processes. 
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1   Introduction  

Thailand’s rainy season lasts from mid-May to mid-
October, with the southwest monsoon bringing an 
abundance of annual rainfall. For the majority of the 
country, the greatest rainfall occurs from August to 
September whereas January and December are 
exceptionally dry. Thus, rainfall data in Thailand 
and other nations typically includes zero readings at 
certain times of the year, which should be 
considered when researching rainfall. Aitchison  
presented a model for situations in which there are 
zero observations by assigning a probability of δ 
that the dataset contains zero observations and 1 − δ 
as the residual probability for the positive 
observations, [1]. The delta-lognormal distribution 
first suggested by Aitchison and Brown, includes a 
random variable with a lognormal distribution for 
the positive observations and a binomial distribution 
for the number of zero observations, [2]. 

The CIs for the parameters of the delta-gamma 
distribution and other related distributions have been 
determined by numerous researchers using various 
methods for statistical inference. For instance, 
Muralidharan and Kale created the CIs for the mean 
of the mixed distribution and a modified gamma 
distribution that includes a singularity at zero, [3]. 
Lecomte et al. suggested applying the compound 

Poisson-gamma and delta-gamma distributions to 
handle zero-inflated continuous data inside the 
variable sampling volume regime, [4].  

The population CV can be defined as the ratio of 
the population mean to the population standard 
deviation, [5]. Among other fields, biology, 
economics, and quality control all frequently use the 
CV, [6]. CIs have been provided by many 
researchers for the CV of different distributions. For 
instance, Methods for estimating the CI for the ratio 
of the CVs within two gamma distributions were 
proposed in [7]. In [8], it is proposed various methods 
to estimate the CI for the ratio of the CVs in two 
inverse gamma distributions. 

To compare CVs in two populations, one 
appropriate method is to use the ratio of the CVs of the 
two populations of rainfall data that contain zero 
observations. This ratio can be represented by utilizing 
the two delta-gamma distributions. So far, no 
publications have been forthcoming on estimating the 
CIs for the ratio of the CVs within delta-gamma 
distributions.  In the examination, we used the fiducial 
quantity (FQ) and six Bayesian-based approaches to 
estimate the CI for this scenario. The Bayesian 
methods are Bayesian CIs based on the Jeffreys 
(B.Jef), uniform (B.Uni), or NGB (B.NGB) priors and 
three HPD based on the Jeffreys (H.Jef), uniform 
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(H.Uni), or NGB (H.NGB) priors. Furthermore, we 
demonstrate their practicability for real-life situations 
by applying them to analyze rainfall data from Mae 
Hong Son province in Thailand.  

 
 

2   Preliminary  

The delta-gamma distribution function can be 
specified as follows:  
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The gamma cumulative distribution function can 

be indicated as  ; ,ij i iF x   . 
Moreover, i i   and 2

i i   are the respective 
means and variances of gamma  ,i i   distribution 
with shape parameter  i  and scale parameter 

 i . For the zero and positive observations, 
identified by (0)in and ,(1)in  respectively, where 
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gamma distribution and the zero observations follow 
a binomial distribution.  
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where 

ijX  represents the sample mean of 
ijX  [11].  

Following [1], the population mean and variance 
of 

ijX  are defined as follows: 
   ( ) 1ij i i iE X                                              
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and 
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Consequently, the CV of 

ijX  can be expressed as 
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The ratio of their CVs is given by 
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The methods to construct the CI for   are 
provided in the next subsections. 

 
2.1  The Fiducial Quantity Method 
Krishnamoorthy and Wang derived an FQ based on cube 
root-transformed samples, [9]. Let 
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The respective FQs of i  and 2

i  are 
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where 

ijx and is  are the observed values of ijX  and 

iS , respectively;  0,1iZ N ; and 2
1n
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 is an 
independent random variable from a Chi-squared 
distribution. The FQs for the shape parameter are 
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Then, the FQs for i  are as follows, [10] 
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Therefore, the FQs for i  of a delta-gamma 

distribution have the following specifications: 
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Now, the FQs for   is given by 

1
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v

v

Q
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Subsequently, the equal-tailed 100(1 )%  FQ 

interval for  can be derived as 
( / 2), (1 / 2)FQCI Q Q      ,                         (12) 
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where ( / 2)Q

  and (1 / 2)Q


  are the ( / 2)100th  

and (1 / 2)100th  percentiles of the distribution of 
Q

, respectively. 
The CI for   can be obtained by executing 

Algorithm 1. 
 

Algorithm 1. 

1. Utilizing ( , , )ij i i iX   : , compute 
ijx  and 2

is  of 
the cube root-transformed samples. 
2. Generate (0,1)iZ N:  and 2

1n
i

 
. 

3. Generate ,(1) ,(0)Beta( , 1)i
i

n n   and 

,(1) ,(0)Beta( 1, )i in n . 
4. Calculate 

i
Q  and 2

i

Q


 using Equation (7). 

5. Calculate 
i

Q  and 
i

Q  using Equations (8) and 
(9). 
6. Calculate 

i
Q and Q

using Equations (10) and 
(11). 
7. Steps 2-6 are repeated 5,000 times to obtain the Q

. 
8. Calculate the 95% CIs for   using Equation (12). 
9. To acquire the average lengths (ALs) and 
coverage probabilities (CPs), steps 1 through 8 are 
repeated 10,000 times. 

 
2.2  The Bayesian Methods 
The posterior distribution is used to determine 
confidence intervals (CIs) based on the Bayesian 
technique for the parameter of interest. [11], 
whereas posterior distributions are used to create the 
HPD intervals using a Bayesian approach. The 
parameter values with the highest posterior density 
make up the HPD, whereas the narrowest interval 
that can be discovered for a parameter of interest 
with probability100(1 )%  is the HPD interval. [5], 
[12]. The HPD was first provided by [13]. 

Let ( | )p y  be a posterior density function. A 

region R in the parameter space of   is called a 

HPD region of content (1 )  if  
(i) ( | ) =1Pr R y   ,  
(ii) For 1 R   and 2 1 2, ( | ) ( | )R p R y p R y    .  
 

2.1.1  Jeffreys Prior 

Jeffreys  presented a prior created from the square 
root of the Fisher information matrix characterized 
as ( ) | ( ) |p I  , [14].  The Jeffreys prior for   of 
a binomial distribution is characterised as 

1 1
2 2( ) ( ) (1 )i i ip   
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  , from which the marginal 

posterior distribution of i  is obtainable in the 
manner described below: 
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Subsequently, the Jeffreys prior for 2
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as follows: 

2

,(1)2 =1
( )

( )
| ,

2 2

n
i

ij i
i i

i jef ij

x
n

x IG





 
 

 
 
 
 


: .              (14) 

 
Likewise, the following are the marginal 

posterior distributions of i : 
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Additionally, we may use 2
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Based on the B.Jef and H.Jef methods, the CI 

and HPD intervals for   of a delta-gamma 
distribution are defined as 

. .. = [ ( / 2), (1 / 2)]
B Jef B JefB Jef

CI     .                  (20) 
 
2.2.2  Uniform Prior 

The prior probability is a constant function, [15], 
that certainly sets a prior for all possible values, 
[16]. The uniform prior for i  of a binomial 
distribution is ( ) 1ip   , [12], from which the 
marginal posterior distribution of i  can be obtained 
as follows:  
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( ) ,(0) ,(1)| ( 1, 1)i unif ij i ix Beta n n  : .                  (21) 
 
Kalkur and Rao indicated the uniform prior for 

2
i  is 2 1i  , [17]. 

Consequently, the following is the marginal 
posterior distribution of 2

i :  
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Likewise, the respective marginal posterior 

distribution of i  are as follows:  
2 2
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Additionally, we may use 2
( ) | ,i unif i ijx  and 
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Based on the B.Uni and H.Uni methods, the CI 

and HPD intervals for   of a delta-gamma 
distribution are defined as  

. .. = [ ( / 2), (1 / 2)B Uni B UniB UniCI     .                 (28) 
 

2.2.3  Normal-Gamma-Beta Prior 

Maneerat and Niwitpong  recommended employing 
the H.NGB interval to calculate the common mean 
for several delta-lognormal distributions, which 
worked well on small-to-large sample sizes, [18]. 
Let = log ; =1,2i iY W i  be a random variable of a 
normal distribution with mean i  and precision i  
where ( , )i i iW LN  :  and 2=i i   . The H.NGB for 
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distributions of i , 2
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Additionally, we may use ( ) |i NGB ijx and 

2
( ) |i NGB ijx to calculate the gamma distribution's mean 

and variance in the following ways:  
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Based on the B.NGB and H.NGB methods, the 

CI and HPD intervals for   of a delta-gamma 
distribution are defined  

as . .. = [ ( / 2), (1 / 2)].B NGB B NGBB NGBCI              (36) 
 

Algorithm 2. 

1. Utilizing ( , , )ij i i iX   : , compute 
ijx  and 2

is  of 
the cube root-transformed samples. 
2. Generate |i ijx  using Equations (13), (21) and 
(29). 
3. Generate 2 |i ijx  using Equations (14), (22), and 
(30). 
4. Generate 2| ,i i ijx   using Equations (15), (23) 
and (31). 
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5. Calculate the mean and variance using Equations 
(16), (17), (24), (25), (32) and (33). 
6. Calculate i  and   using Equations (18), (19), 
(26), (27), (34), and (35). 
7. Calculate the 95% CIs and HPD for   using 
Equations (20), (28) and (36). 
8. Steps 1-7 are repeated 10,000 times to obtain the 
CPs and ALs. 
 
 
3   The Monte Carlo Simulation Study 
The performances of the CI estimators for the ratio 
of CVs of two delta-gamma distributions 
constructed with FQ, B.Jef, H.Jef, B.Uni, H.Uni, 
B.NGB, and H.NGB were compared in terms of 
their CPs and ALs, with the most effective one for a 
given situation providing the CP close to or above 
0.95 and the shortest AL. There were 10,000 
repetitions (M) used in the Monte Carlo simulation 
and 5,000 replicates (m) for FQ with a nominal 
confidence level of 0.95 employing R statistics 
software (version 4.1.0). The data were generated 
for ( , , ); 1,2ij i i iX i   : and 1,2,..., ij n . We 
chose (15,15), (25,25), (50,50), or (100,100) for 
equal sample sizes 1 2( = )n n  and (15,25), (25,50), or 
(50,100) for unequal sample sizes 1 2( = )n n . The 
probabilities of zeros 1 2( , )   were set as (0.2,0.2), 
(0.4,0.4), or (0.6,0.6), the shape parameters 1 2( , )   
as (0.05,0.05), (0.05,0.06), (0.06,0.05) or 
(0.06,0.06), and the rate parameter 1 2( , )   as (2,2). 

The performance of the different techniques for 
estimating the nominal 95%  CIs for the ratio of the 
CV of two delta-gamma distributions are shown in 
Table 1, Table 2 and Figure 1, Figure 2, Figure 3 
and Figure 4 in Appendix. The simulation results are 
reported in Table 1 and Table 2, and the CPs and 
ALs from Table 1 and Table 2 are compiled in 
Figure 1, Figure 2, Figure 3 and Figure 4 in 
Appendix. 

 
 

4   Application of the Methods to Real-

World Data Situations 
The Upper Northern Region Irrigation Hydrology 
Center in Mae Hong Son province, Thailand, 
provided monthly rainfall data that were utilized to 
compare the CI estimators' performances. 

Initially, we employed four models: Cauchy, 
Normal, Gamma, and Lognormal to find the best 
fitting distribution for the positive rainfall data using 
the Akaike information criterion (AIC). AIC is 

defined as AIC = −2 lnL+ 2k where L is the 
likelihood function and k is the number of 
parameters and n be the number of recorded 
measurements. From the results in Table 3 
(Appendix) ; it can be seen that Data fitting to a 
gamma distribution produced the lowest AIC values, 
so it was deemed to be the most appropriate. 

 

4.1 The CI for the Ratio of the CVs with 

Equal Sample Sizes 

The monthly rainfall data from Mueang district, 
Mae Hong Son province, in February from 1987 to 
2022 and December from 1987 to 2022 were used as 
the datasets. The summary statistics in February 

were 1x = 14.1461, 1n = 36, 1,(1)n = 13, 1,(0)n = 23 and 

the MLEs for 1 1 1, ,   , and 1  were 1̂ = 

1.0676, 1̂ = 0.64, 1̂ = 13.2501, and 1̂ = 2.0888, 
respectively. The summary statistics in the 

December dataset were 2x = 26.10, 2n = 36, 2,(1)n = 

17, 2,(0)n = 19 and the MLEs for 2 2 2, ,   , and 2  

were 2̂ = 0.6115, 2̂ = 0.52, 2̂ = 42.6811, and 2̂ = 
0.9760, respectively. The 95% CIs estimates for   
are shown in Table 4 (Appendix). 

From the simulation study results for 1 2,n n = 25 

and 1 2,  = 0.6, although all of the techniques 
achieved CPs close to 0.95, H.Jef obtained the 
shorter AL. Therefore, H.Jef is the most effective 
technique for creating the CI for the ratio of CVs of 
rainfall datasets from the Mueang district in Mae 
Hong Son province for February from 1987 to 2022 
and December from 1987 to 2022. 

 
4.2 The CI for the Ratio of the CVs with 

Unequal Sample Sizes 
The monthly rainfall data from Mueang district, 
Mae Hong Son province, for January from 2000 to 
2022 and November from 1992 to 2022 were used 
as the datasets. The summary statistics in the 

January dataset from January were 1x = 20.48, 1n = 

23, 1,(1)n = 15, 1,(0)n = 8 and the MLEs for 1 1 1, ,   , 

and 1  were 1̂ = 0.9641, 1̂ = 0.35, 1̂ = 21.2435, 

and 1̂ = 1.4573, respectively. The summary 

statistics in November dataset were 2x = 45.8519, 

2n = 30, 2,(1)n = 27, 2,(0)n = 3 and the MLEs for 

2 2 2, ,   , and 2  were 2̂ = 1.2111, 2̂ = 0.1, 2̂ = 
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37.8569, and 2̂ = 1.0141, respectively. The 95%  
CIs estimates for   are showed in Table 5 
(Appendix). 

From the simulation study results for 1n = 15, 

2n = 25, and 1 2,  = 0.2, the FQ, H.Jef, H.Uni, 
B.NGB, and H.NGB techniques achieved CPs close 
to 0.95 but H.Jef obtained the shorter AL. 
Therefore, H.Jef is the most effective technique for 
creating the CI for the ratio of CVs of rainfall data 
from the Mueang district in Mae Hong Son province 
for January from 2000 to 2022 and November from 
1992 to 2022. 

 
 

5   Conclusions 
We produced estimators for the CI for the ratio of 
the CVs of two delta-gamma distributions by 
utilizing the FQ, B.Jef, H.Jef, B.Uni, H.Uni, 
B.NGB, and H.NGB techniques. To assess their CPs 
and ALs, a Monte Carlo simulation was run. 
Following that, monthly rainfall data from 
Thailand's Mae Hong Son province were used to test 
the proposed approaches. The findings indicate that 
the H.Jef and FQ methods are the best for estimating 
the CI for the ratio of the CVs of two delta-gamma 
distributions. 
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APPENDIX 
 

 
Fig. 1: Charts of lines of the CPs provided by the 
techniques for the CI of the ratio of the CVs for 
various probabilities of zero values ( 1 2n n ) 
 
 

 
Fig. 2: Charts of lines of the ALs provided by the 
techniques for the CI of the ratio of the CVs for 
various probabilities of zero values ( 1 2n n ) 
 
 

 
Fig. 3: Charts of lines of the CPs provided by the 
techniques for the CI of the ratio of the CVs for 
various probabilities of zero values ( 1 2n n ) 
 

 
Fig. 4: Charts of lines of the ALs provided by the 
techniques for the CI of the ratio of the CVs for 
various probabilities of zero values ( 1 2n n ) 
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Table 1. The CPs and the ALs of the different techniques for estimating the nominal 95% two-sided CI for    
( 1 2n n ) 

1 2,n n  1 2,   1 2,   

CPs 
(ALs) 

FQ B.Jef H.Jef B.Uni H.Uni B.NGB H.NGB 
15,15 0.2,0.2 0.04,0.04 0.9707 0.9605 0.9667 0.9538 0.9627 0.9951 0.9945 

   (1.4425) (1.3376) (1.2569) (1.4186) (1.3244) (2.2530) (2.0220) 
  0.05,0.05 0.9677 0.9554 0.9653 0.9461 0.9584 0.9960 0.9958 

   (1.3944) (1.2003) (1.1374) (1.3217) (1.2400) (2.1218) (1.9129) 
  0.06,0.06 0.9649 0.9538 0.9622 0.9456 0.9577 0.9948 0.9929 

   (1.3384) (1.0984) (1.0471) (1.2464) (1.1725) (1.9911) (1.8044) 
 0.4,0.4 0.04,0.04 0.9851 0.9954 0.9927 0.9872 0.9850 0.9985 0.9973 

   (1.3342) (1.4070) (1.3211) (1.6104) (1.4756) (1.8695) (1.7111) 
  0.05,0.05 0.9833 0.9927 0.9927 0.9851 0.9853 0.9977 0.9965 

   (1.3373) (1.3354) (1.2569) (1.5878) (1.4513) (1.8376) (1.6825) 
  0.06,0.06 0.9859 0.9939 0.9945 0.9878 0.9863 0.9986 0.9981 

   (1.3259) (1.2748) (1.2035) (1.5582) (1.4238) (1.7969) (1.6460) 
 0.6,0.6 0.04,0.04 0.9940 0.9992 0.9981 0.9946 0.9905 0.9992 0.9972 

   (0.9942) (1.6701) (1.5299) (2.5930) (2.1140) (2.1456) (1.8853) 
  0.05,0.05 0.9959 0.9993 0.9991 0.9961 0.9927 0.9991 0.9988 

   (1.7455) (1.6467) (1.5066) (2.7124) (2.1831) (2.1908) (1.9151) 
  0.06,0.06 0.9949 0.9997 0.9985 0.9956 0.9899 0.9994 0.9976 

   (1.7861) (1.6212) (1.4821) (2.7826) (2.2238) (2.2108) (1.9253) 
25,25 0.2,0.2 0.04,0.04 0.9688 0.9273 0.9358 0.9240 0.9345 0.9976 0.9982 

   (1.0913) (0.8949) (0.8677) (0.9215) (0.8921) (1.7492) (1.6234) 
  0.05,0.05 0.9665 0.9273 0.9345 0.9238 0.9314 0.9972 0.9971 

   (1.0313) (0.8046) (0.7838) (0.8428) (0.8189) (1.5958) (1.4897) 
  0.06,0.06 0.9630 0.9255 0.9328 0.9229 0.9309 0.9958 0.9960 

   (0.9725) (0.7484) (0.7312) (0.7946) (0.7737) (1.4561) (1.3664) 
 0.4,0.4 0.04,0.04 0.9857 0.9885 0.9901 0.9836 0.9848 0.9994 0.9992 

   (0.9662) (0.9784) (0.9458) (1.0214) (0.9833) (1.4278) (1.3504) 
  0.05,0.05 0.9799 0.9836 0.9854 0.9772 0.9809 0.9993 0.9988 

   (0.9496) (0.9285) (0.8994) (0.9844) (0.9489) (1.3682) (1.2963) 
  0.06,0.06 0.9810 0.9852 0.9878 0.9800 0.9838 0.9991 0.9989 

   (0.9274) (0.8899) (0.8636) (0.9547) (0.9210) (1.3090) (1.2430) 
 0.6,0.6 0.04,0.04 0.9922 0.9985 0.9983 0.9938 0.9952 0.9997 0.9987 

   (1.0493) (1.1545) (1.1031) (1.2878) (1.2098) (1.4506) (1.3636) 
  0.05,0.05 0.9913 0.9979 0.9975 0.9953 0.9942 0.9995 0.9993 

   (1.0616) (1.1243) (1.0750) (1.2872) (1.2062) (1.4412) (1.3540) 
  0.06,0.06 0.9804 0.9852 0.9866 0.9782 0.9817 0.9992 0.9988 

   (0.9255) (0.8878) (0.8616) (0.9538) (0.9200) (1.3032) (1.2377) 
50,50 0.2,0.2 0.04,0.04 0.9701 0.9007 0.9050 0.9003 0.9042 0.9992 0.9993 

   (0.7754) (0.5754) (0.5671) (0.5829) (0.5743) (1.2727) (1.2147) 
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Table 1. continued. 

 1 2,n n  1 2,   1 2,   

CPs 
(ALs) 

FQ B.Jef H.Jef B.Uni H.Uni B.NGB H.NGB 
  0.05,0.05 0.9627 0.8895 0.8948 0.8872 0.8913 0.9968 0.9971 

   (0.7201) (0.5239) (0.5171) (0.5337) (0.5266) (1.1243) (1.0790) 
  0.06,0.06 0.9598 0.8948 0.8931 0.8943 0.8949 0.9955 0.9955 

   (0.6650) (0.4882) (0.4825) (0.4994) (0.4933) (0.9931) (0.9577) 
 0.4,0.4 0.04,0.04 0.9831 0.9770 0.9768 0.9730 0.9740 0.9995 0.9998 

   (0.6788) (0.6408) (0.6300) (0.6491) (0.6379) (1.0479) (1.0128) 
  0.05,0.05 0.9794 0.9737 0.9741 0.9703 0.9703 0.9994 0.9993 

   (0.6569) (0.6110) (0.6014) (0.6218) (0.6116) (0.9731) (0.9431) 
  0.06,0.06 0.9787 0.9754 0.9765 0.9725 0.9734 0.9986 0.9989 

   (0.6307) (0.5877) (0.5790) (0.6007) (0.5913) (0.9054) (0.8796) 
 0.6,0.6 0.04,0.04 0.9916 0.9960 0.9948 0.9934 0.9930 0.9999 0.9998 

   (0.6987) (0.7463) (0.7304) (0.7651) (0.7478) (1.0328) (0.9985) 
  0.05,0.05 0.9882 0.9946 0.9944 0.9906 0.9926 0.9999 0.9997 

   (0.6917) (0.7268) (0.7119) (0.7504) (0.7337) (0.9925) (0.9609) 
  0.06,0.06 0.9895 0.9955 0.9949 0.9930 0.9927 0.9998 0.9996 

   (0.6799) (0.7120) (0.6978) (0.7390) (0.7227) (0.9530) (0.9240) 
100,100 0.2,0.2 0.04,0.04 0.9694 0.8822 0.8806 0.8839 0.8827 0.9995 0.9995 

   (0.5520) (0.3915) (0.3880) (0.3939) (0.3904) (0.9206) (0.8944) 
  0.05,0.05 0.9656 0.8740 0.8718 0.8726 0.8717 0.9983 0.9985 

   (0.5064) (0.3569) (0.3540) (0.3597) (0.3567) (0.7881) (0.7693) 
  0.06,0.06 0.9587 0.8707 0.8694 0.8721 0.8688 0.9963 0.9971 

   (0.4619) (0.3321) (0.3296) (0.3355) (0.3329) (0.6765) (0.6629) 
 0.4,0.4 0.04,0.04 0.9851 0.9695 0.9705 0.9686 0.9691 0.9999 0.9999 

   (0.4854) (0.4403) (0.4359) (0.4423) (0.4379) (0.7673) (0.7509) 
  0.05,0.05 0.9816 0.9673 0.9679 0.9661 0.9672 0.9994 0.9992 

   (0.4658) (0.4199) (0.4159) (0.4224) (0.4183) (0.6994) (0.6862) 
  0.06,0.06 0.9803 0.9693 0.9699 0.9687 0.9684 0.9990 0.9991 

   (0.4426) (0.4042) (0.4005) (0.4072) (0.4034) (0.6359) (0.6251) 
 0.6,0.6 0.04,0.04 0.9909 0.9927 0.9922 0.9916 0.9900 0.9999 0.9998 

   (0.4941) (0.5074) (0.5012) (0.5115) (0.5052) (0.7568) (0.7411) 
  0.05,0.05 0.9884 0.9913 0.9900 0.9889 0.9889 0.9997 0.9998 

   (0.4849) (0.4954) (0.4895) (0.5001) (0.4942) (0.7115) (0.6978) 
  0.06,0.06 0.9894 0.9932 0.9921 0.9910 0.9899 0.9997 0.9998 

   (0.4726) (0.4864) (0.4807) (0.4916) (0.4859) (0.6721) (0.6602) 
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Table 2. The CPs and the ALs of the different techniques for estimating the nominal 95% two-sided CI for     
 ( 1 2n n ) 

 1 2,n n  1 2,   1 2,   

CPs 
(ALs) 

FQ B.Jef H.Jef B.Uni H.Uni B.NGB H.NGB 
15,25 0.2,0.2 0.04,0.04 0.9674 0.9405 0.9645 0.9288 0.9660 0.9960 0.9993 

   (1.3107) (1.1344) (1.0835) (1.2516) (1.1762) (1.9902) (1.8374) 
  0.05,0.05 0.9628 0.9350 0.9584 0.9243 0.9601 0.9945 0.9987 

   (1.2418) (1.0178) (0.9732) (1.1579) (1.0855) (1.8367) (1.7028) 
  0.06,0.06 0.9582 0.9325 0.9570 0.9203 0.9589 0.9925 0.9980 

   (1.1907) (0.9500) (0.9075) (1.1098) (1.0369) (1.7087) (1.5895) 
 0.4,0.4 0.04,0.04 0.9817 0.9888 0.9958 0.9779 0.9945 0.9980 0.9994 

   (1.2286) (1.2319) (1.1644) (1.4611) (1.3313) (1.7007) (1.5738) 
  0.05,0.05 0.9808 0.9882 0.9954 0.9757 0.9942 0.9979 0.9992 

   (1.2233) (1.1702) (1.1047) (1.4355) (1.2991) (1.6635) (1.5376) 
  0.06,0.06 0.9821 0.9878 0.9952 0.9777 0.9943 0.9978 0.9994 

   (1.2086) (1.1223) (1.0579) (1.4205) (1.2767) (1.6130) (1.4894) 
 0.6,0.6 0.04,0.04 0.9896 0.9985 0.9981 0.9904 0.9973 0.9990 0.9984 

   (1.5507) (1.4614) (1.3389) (2.3973) (1.9161) (1.9469) (1.7062) 
  0.05,0.05 0.9907 0.9982 0.9994 0.9910 0.9978 0.9988 0.9990 

   (13.9172) (4.3773) (3.3945) (61.8114) (20.9648) (11.1420) (7.1361) 
  0.06,0.06 0.9919 0.9990 0.9993 0.9915 0.9978 0.9992 0.9993 

   (1.6515) (1.4261) (1.2965) (2.6117) (2.0281) (2.0214) (1.7451) 
25,50 0.2,0.2 0.04,0.04 0.9635 0.9069 0.9222 0.8999 0.9215 0.9944 0.9989 

   (0.9494) (0.7537) (0.7342) (0.7905) (0.7671) (1.4994) (1.4314) 
  0.05,0.05 0.9609 0.9039 0.9214 0.8931 0.9198 0.9919 0.9984 

   (0.8858) (0.6849) (0.6667) (0.7286) (0.7057) (1.3358) (1.2815) 
  0.06,0.06 0.9574 0.9018 0.9173 0.8958 0.9192 0.9907 0.9985 

   (0.8250) (0.6386) (0.6212) (0.6865) (0.6641) (1.1938) (1.1513) 
 0.4,0.4 0.04,0.04 0.9788 0.9764 0.9882 0.9656 0.9862 0.9974 0.9997 

   (0.8556) (0.8362) (0.8107) (0.8906) (0.8566) (1.2629) (1.2124) 
  0.05,0.05 0.9751 0.9754 0.9860 0.9649 0.9844 0.9963 0.9999 

   (0.8318) (0.7939) (0.7692) (0.8567) (0.8222) (1.1896) (1.1438) 
  0.06,0.06 0.9771 0.9799 0.9887 0.9672 0.9871 0.9967 0.9996 

   (0.8050) (0.7630) (0.7390) (0.8312) (0.7966) (1.1226) (1.0810) 
 0.6,0.6 0.04,0.04 0.9886 0.9950 0.9990 0.9888 0.9991 0.9990 0.9999 

   (0.9379) (0.9913) (0.9476) (1.1353) (1.0568) (1.2998) (1.2281) 
  0.05,0.05 0.9879 0.9958 0.9988 0.9889 0.9982 0.9990 0.9999 

   (0.9371) (0.9617) (0.9180) (1.1246) (1.0414) (1.2760) (1.2040) 
  0.06,0.06 0.9893 0.9970 0.9993 0.9911 0.9985 0.9992 0.9999 

   (0.9368) (0.9443) (0.8997) (1.1295) (1.0399) (1.2523) (1.1795) 
50,100 0.2,0.2 0.04,0.04 0.9666 0.8846 0.8909 0.8817 0.8905 0.9973 0.9991 

   (0.6665) (0.4914) (0.4841) (0.5013) (0.4937) (1.0882) (1.0572) 
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Table 2. continued. 

 1 2,n n  1 2,   1 2,   

CPs 
(ALs) 

FQ B.Jef H.Jef B.Uni H.Uni B.NGB H.NGB 
  0.05,0.05 0.9612 0.8844 0.8907 0.8802 0.8883 0.9939 0.9967 

   (0.6155) (0.4501) (0.4435) (0.4614) (0.4543) (0.9396) (0.9186) 
  0.06,0.06 0.9553 0.8866 0.8888 0.8825 0.8889 0.9915 0.9959 

   (0.5640) (0.4195) (0.4134) (0.4316) (0.4249) (0.8153) (0.8012) 
 0.4,0.4 0.04,0.04 0.9803 0.9707 0.9762 0.9652 0.9727 0.9987 0.9995 

   (0.5936) (0.5519) (0.5431) (0.5630) (0.5536) (0.9203) (0.8989) 
  0.05,0.05 0.9751 0.9653 0.9722 0.9592 0.9691 0.9969 0.9988 

   (0.5703) (0.5267) (0.5183) (0.5394) (0.5302) (0.8426) (0.8253) 
  0.06,0.06 0.9774 0.9744 0.9767 0.9669 0.9742 0.9974 0.9990 

   (0.5431) (0.5059) (0.4978) (0.5198) (0.5108) (0.7713) (0.7575) 
 0.6,0.6 0.04,0.04 0.9872 0.9912 0.9952 0.9869 0.9935 0.9993 0.9999 

   (0.6144) (0.6424) (0.6291) (0.6644) (0.6490) (0.9169) (0.8930) 
  0.05,0.05 0.9872 0.9926 0.9952 0.9878 0.9947 0.9986 0.9998 

   (0.6031) (0.6248) (0.6117) (0.6492) (0.6338) (0.8698) (0.8480) 
  0.06,0.06 0.9873 0.9936 0.9962 0.9901 0.9952 0.9991 0.9996 

   (0.5918) (0.6142) (0.6010) (0.6421) (0.6262) (0.8296) (0.8095) 
∗ Italicize the shortest AL and bold the CPs greater than the nominal confidence level of 0.95.

 
 

Table 3. AIC results to check the distributions of the rainfall datasets. 
Rainfall Station Cauchy  Normal Lognormal Gamma 

Mueang (February) 104.4263  105.8415 101.4244 98.6124 

Mueang (December) 164.8593  166.1968 151.0278 147.6980 

Mueang (January) 134.2037  136.2560 124.8226 124.4980 

Mueang (November) 269.6906  266.3669 273.2349 263.1739 

 
 

Table 4. The 95% CIs for the ratio of CV of rainfall data in Mueang district, Mae Hong Son province ( 1 2n n ) 

Methods 
CI for   

Length of intervals 
Lower bound Upper bound 

FQ 0.4551 1.6011 1.1460 
B.Jef 0.4779 1.6134 1.1356 
H.Jef 0.4297 1.5260 1.0963 

B.Uni 0.4162 1.6564 1.2402 
H.Uni 0.3693 1.5682 1.1989 

B.NGB 0.4439 1.6068 1.1629 
H.NGB 0.4057 1.5104 1.1047 

 

 

Table 5. The 95% CIs for the ratio of CV of rainfall data in Mueang district, Mae Hong Son province ( 1 2n n ) 

Methods 
CI for   Length of intervals 

Lower bound Upper bound  FQ 0.0278 0.5704 0.5426 
B.Jef 0.0175 0.5525 0.5350 
H.Jef 0.0000 0.5058 0.5058 

B.Uni 0.0223 0.5921 0.5698 
H.Uni 0.0009 0.5370 0.5361 

B.NGB 0.0233 0.5669 0.5436 
H.NGB 0.0003 0.5168 0.5165 

 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.29

Wansiri Khooriphan, Sa-Aat Niwitpong, 
Suparat Niwitpong

E-ISSN: 2224-2678 272 Volume 23, 2024



Contribution of Individual Authors to the 

Creation of a Scientific Article (Ghostwriting 

Policy) 

Wansiri Khooriphan: performed the experiments, 
analyzed the data, authored or reviewed drafts of 
the paper; Sa-Aat Niwitpong: concived and 
designed the experiments, approved the final draft; 
Suparat Niwitpong: contributed analysis tools, 
prepared tables. 
 
Sources of Funding for Research Presented in a 

Scientific Article or Scientific Article Itself 

This research was funded by Faculty of Applied 
Science, King Mongkut’s University of 
Technology North Bangkok, Thailand. (Contract 
no. 671181) 
 

Conflict of Interest 

The authors have no conflicts of interest to declare. 
 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 

This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.e
n_US 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.29

Wansiri Khooriphan, Sa-Aat Niwitpong, 
Suparat Niwitpong

E-ISSN: 2224-2678 273 Volume 23, 2024

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



