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Abstract: In this paper, we present a detailed analysis and construction of the bifurcation diagram for the
damped-driven pendulum system. The bifurcation diagram in general presents the qualitative changes of the
steady-state behavior for the pendulum. For this purpose, we implement the use of the Python programming
language with the inclusion of scientific libraries. This nonlinear dynamical system is an example of a system that
exhibits a chaotic regime, which is the sensitivity of its behavior to the initial conditions and the parameters of the
system. We investigate the response of the system to a range of drive strengths γ applied. By changing the driving
strength, the system reveals patterns of periodicity, quasi-periodic, and chaotic regimes. The critical values where
it goes from regular motion to chaotic one are highlighted, offering further understanding of the mechanisms of the
transitions. This study presents the use of the Python programming language for the modeling and visualization
of non-dynamic systems and contributes to a deeper understanding of nonlinear oscillator dynamics.
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1 Introduction
In complex systems, the state of apparently
stochastic and unpredictable behavior derived from a
deterministic description of them is called chaos. This
concept defines the limits of order and predictability,
[1]. Its presence is ubiquitous, from turbulence in
weather systems to the behavior of electronic circuits,
[2]. This behavior generally comes from nonlinear
systems under certain conditions; this means that
not all nonlinear systems are chaotic, [3]. During a
chaotic regime, the behavior of the system becomes
unpredictable, giving the impression of stochastic
and random operation, [4]. 

The bifurcation diagram is a powerful tool for
understanding the evolution of a complex system by
changing a parameter of them, [5]. The bifurcation
diagram plots the possible steady state values of the
system against a varying parameter, [6]. This diagram
starts with a stable state, and as the parameters
change, these states branch into multiple branches;
this is an indication of different behaviors. The points
where the graph is splitting are known as bifurcation
points, [7].

The logistic map is an example of a bifurcation
diagram in which the parameter of the growth rate
increases. In this diagram, the population can first
stabilize in a value, then oscillate between two values
and eventually become chaotic, [8]. The stability

and periodicity within the system reveal the intricate
transition to chaos. This reveals the delicate interplay
between order and disorder in natural phenomena, [9].

The use of advanced computational tools for
modeling, data analysis, and visualization of the
results in the fields of dynamical systems creates new
opportunities for research, [10]. The widespread use
of Python as a tool for studying dynamical systems
has been well established during recent years. There
are numerous examples presented in literature for the
application of Python in studying dynamical systems,
[11], [12], [13]. The potential use of chaotic systems
for cryptography purposes and their use in secure
communication systems in general has increased the
interest in their study, [14].

In this paper, we investigate the dynamics of the
non-linear dumped-driven pendulum and explore the
construction of bifurcation diagrams using Python
programming. Several analytical solutions exist in
the literature for the damped pendulum, but when
an external force is applied, the solution is typically
only approximated numerically, [15], [16]. The
proposed method is efficient and easy to implement in
other chaotic systems. Another advantage is that our
proposal is based on free source code, available in the
public domain, and the program used and described
in this paper.
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2 Problem Formulation
We present a new approach to constructing the
bifurcation diagram in a dynamic system. We have
chosen Python as the programming language for this
purpose. We will use it to model the system, simulate
it, and present the results.

A nonlinear damped pendulum is an extension of
the simple pendulum that incorporates both damping
effects and nonlinearity in its restoring force. This
system is governed by a differential equation that
accounts for the pendulum’s angle, damping, and
nonlinear restoring forces, [6]. Such pendulums are
found in various natural and engineered systems,
and their study provides insight into the dynamics
of oscillatory systems with energy dissipation and
nonlinearities.

Fig. 1: A simple pendulum where three forces are
applied, the weight, the resistive force and the driven
force, [6]

The equation describing the motion of the
pendulum can be derived from the equation of a rigid
object under a net torque Iθ̈ = Γ, where I denotes the
moment of inertia of the object in our case I = mL2,
and Γ is the net torque about the pivot point. Figure
(1) shows three forces applied on the object: the
weight of the objectmg applies a torque−mgL sin θ,
the resistive force is proportional to the speed of the
object and has a magnitude bv, hence exerts a torque
−Lbv = −bL2θ̇ and the driving force F (t) applying
a torque LF (t). Thus, the equation of motion:

mL2θ̈ = −mgL sin θ − bL2θ̇ + LF (t) (1)

The drive external force F (t) is sinusoidal given by:

F (t) = A cos(ωDt)

where A is the amplitude of the driving force (in
Newtons) and ωD is the drive frequency. Rearranging
the equation (1) we have and substituting the
expression for the external force we have:

θ̈ +
g

L
sin θ + b

m
θ̇ =

A

mL
cosωDt (2)

By substituting the coefficient b/m = 2β where β
is called the damping constant, g/L = ω2

o where
ωo denotes the natural frequency of the pendulum
and A

mL = γω2
o where γ denotes the drive strength,

we have the differential equation of the motion for a
driven damped pendulum:

θ̈ + ω2
o sin θ + 2βθ̇ = γω2

o cosωt (3)
When the dimensionless parameter γ is less than

1, it indicates that the driving force is weaker than the
pendulum’s weight. In this case, the motion induced
by the driving force is relatively small compared
to the overall dynamics governed by gravity and
damping, [6]. We investigate the motion of the
pendulum by varying the parameter γ across a range
of values.

3 Solution
We will use numerical methods to solve the equation
presented in (3). Numerical methods have been made
easier through their implementation in packages such
as Scipy in the Python programming language, [17].
The results from the simulation will be presented
using the matplotlib package, [18]. These tools are
easy to use and do not require a lot of computing
power. The parameters of the system are chosen
ωD = 2π, ωo = 1.5ω and β = ωo/4.

The second-order differential equation (3) is
rewritten as a system of two second-order equations
as follows:

dω

dt
= −ω2

o sin θ − 2βθ̇ + γω2
o cosωDt

dθ

dt
= ω

(4)

The system of differential equations can be solved
through the function odeint, which is in the scipy
package of the Python ecosystem. The function
odeint is using lsoda from the FORTRAN library
odepack. For solving the equations we use γ = 0.9,
we use the initial conditions θ̇ = 0 and several
values for the initial angle listed bellow, θ0 =
[−2.5,−1.5,−0.5, 0.5, 0, 1.5, 2.5]. The solutions for
every initial angle value are plotted together and
presented in Fig. 2.

The first we notice in Fig. 2 is that the system,
after a transition state which depends on the initial
conditions, ends up in a steady state which does not
depend on the initial conditions. For a linear damped
oscillator subjected to a sinusoidal driving force,
there is a unique attractor that the system’s motion
will approach regardless of the initial conditions.
Moreover, the motion of the attractor is sinusoidal
and has a frequency that precisely corresponds to the
drive frequency. As can be seen here, the period of
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Fig. 2: The angle θ of the pendulum as a
function of time for various initial conditions θ0 =
[−2.5,−1.5,−0.5, 0.5, 0, 1.5, 2.5] when γ = 0.09

the motion is T = 1s, which is equal to the period
of the external force. So, in the linear regime, the
system obeys the frequency of the external force.
This behaviour is thoroughly analyzed in, [19]. This
will continue to happen as the value for γ remains
sufficiently small. For some value of drive strength
γ, the attractor becomes unstable, and the system’s
behaviour becomes more complex.

Fig. 3: The angle θ of the pendulum with time for two
different initial conditions with θ = 0 and θ = 0.001,
when drive strength = 1.5.

In Fig. 3, the angle θ is presented as a function of
time when the value of = 1.503, two different initial
conditions θ = 0 and θ = 0.001. As can be seen from
the graph, at the beginning, the system’s behaviour
is the same for both initial conditions, but then their
difference begins to increase exponentially. The
Lyapunov exponent measures the rate of separation,

[20]. For a nonlinear oscillator, different initial
conditions can result in distinct attractors. Here, the
behaviour is not periodic as in Fig. 2, and the slight
difference in initial conditions leads the system to
different trajectories.

Οne way to show the correlation between the
parameter γ and the transition of the system to chaos
is the bifurcation diagram, [6]. The construction of
this diagram is presented in detail in the following
paragraph.

4 Bifurcation
A bifurcation diagram presents the evolution of the
motion of θ(t) as the driving strength γ changes.
Our chosen values in this study are 1.03 ≤ γ ≤
2.15. A large number of values of γ evenly
spaced, by an interval of ∆γ = 0.0001 could be
taken using the numpy function arange as follows:
numpy.arange(1.03,2.15,1e-5). By executing
this command, we get a matrix of 112000 elements
for the driving strength γ. Continuing our analysis,
we are solving the equations describing the system’s
behaviour (4) for each value of γ presented in
the matrix, with the same parameters and initial
conditions given in the previous paragraph.

The time for simulation is from 0 to 500 seconds;
the initial conditions are θ = −π/2 and θ̇ = 0.
We choose the last 100 seconds to sample the angle
θ that the oscillator is at. Sampling is done at the
same frequency as the frequency of the external force
ωD = 2π, so Ts = 1s. The calculated values of θ
for each of the values of γ are stored in the matrix
biff, and are presented in Fig. 4. The time needed
to run the code is approximately 5 hours on a laptop.
The code is publicly available and can be found here,
[21].

When the system has periodic behaviour,
sampling at times equal to its period will give
us the same value. So, only one value will appear
for a given value of γ in the bifurcation diagram.
This occurs for small values of γ from γ = 1.03
to γ = 1.06631. After the value γ = 1.06631, the
system displays two points for each value of γ. This
is referred to in the literature as bifurcation, and the
system has doubled its period. The period doubles
again for γ = 1.07951, where we can get four
different points for θ. The next bifurcation occurs
when γ = 1.08268. In more detail, our plot shows
the transition to chaos than the work done before,
[22].

For constructing the bifurcation diagram, we do
not require the pendulum’s motion to be limited in
space. We aim to study when the system goes
into chaotic behaviour for a more extensive range of
values −π ≤ θ ≤ π of the parameter g. We believe
that changing the angle’s values affects the emergence
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Fig. 4: Bifurcation diagram for 1.06 ≤ γ ≤ 1.09. The
period-doubling occurs for value γ equal to 1.06631,
1.07935, 1.08207 and 1.08268.

Fig. 5: Bifurcation diagram for 1.03 ≤ γ ≤ 1.53.

of the system’s behaviour and, in general, its chaotic
operation.

In Fig. 5, the bifurcation diagram is present for
a wide range of values of the parameter g where
1.03 ≤ γ ≤ 1.53. For 1.26 ≤ γ ≤ 1.45 we
have a long stretch of period 1, followed by another
period-doubling cascade and the final section which
is primarily chaotic. What you notice is that in this
diagram, the dynamics of the system are the same
compared to diagram 12.18 form, [6].

In Fig. 6, after the chaotic section 1.495 ≤ γ ≤
1.55, the system exhibits periodic behaviour for the
values 1.54 ≤ γ ≤ 1.68.

The Fig. 7 presents the bifurcation diagram
when drive strength 1.65 ≤ γ ≤ 2.15. Here,
the chaotic behaviour is present for values 1.68 ≤
γ ≤ 1.815. The system exhibits periodic behaviour

Fig. 6: Bifurcation diagram for 1.4 ≤ γ ≤ 1.85.

Fig. 7: Bifurcation diagram for 1.65 ≤ γ ≤ 2.15.

between 1.815 ≤ γ ≤ 1.865. The transition to
chaos is done with a period-doubling cascade, as seen
in Fig. 4. The chaotic regime is present for values
1.865 ≤ γ ≤ 2.125. After that, the system became
again periodic.

5 Conclusion
In this study, we have created the bifurcation diagram
for the damped-driven pendulum, focusing on the
transition from periodic to chaotic behavior. The
bifurcation diagram was contracted over extended
time periods. The results give a detailed bifurcation
diagram, where the complex behavior of the system
changes between periodic and chaotic regimes as the
drive strength parameter, γ, is varied.

When the drive strength value γ is low, the system
shows periodic behavior that is characterized by a
single attractor that is not affected by the initial
conditions of the system. As γ increases, a series

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.27 Joan Jani

E-ISSN: 2224-2678 246 Volume 23, 2024



of period-doubling bifurcations are observed, which
are leading to the chaotic behavior. The transitions
from periodic to chaotic regimes are presented in the
bifurcation diagram, with the values of drive strength
for which this occurs. For values of γ smaller than
1.06631, the system is periodic. The first period
doubling occurs when γ = 1.07935 and the next at
γ = 1.0820. For values of γ > 1.08268, the system
enters into chaotic behavior.

The investigation of chaos generated by a
damped-driven pendulum could be considered a
case study with implications in various fields, like
chaos-based cryptography for applications in secure
communications. The investigation of conditions
where chaos emerges in this system gives us potential
for controlling chaotic systems through adjusting the
parameters precisely.

The complex dynamical systems could be
effectively analyzed with the Python programming
language and libraries like SciPy for scientific
computation and Matplotlib for visualization of
results. Our approach facilitated the exploration
of the pendulum’s dynamics and underscored the
usability of these methods and in other systems. The
code is available publicly available, and it can be
found on github, [21].

Overall, in this paper we have presented a
methodology for studying the transitions of the
system from periodic to chaotic behavior of a
nonlinear system using the bifurcation diagram.
Future work will extend this analysis to explore the
effects of additional parameters, such as changing
the damping parameter. Similar approaches could be
applied in other nonlinear dynamic systems.
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