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Abstract: The extremal index is a parameter associated with the extreme value distributions of dependent
stationary sequences. Under certain local dependence conditions, exceedances above a specified threshold tend
to occur in isolated clusters. The reciprocal of the extremal index can be interpreted as the limiting size of these
clusters. Accurately estimating the size of such clusters is crucial for analyzing real data and can significantly
influence decision making processes that impact population well being. The paper presents a recent method for
the estimation of the extremal index which starts by the estimation of the parameter itself and, only then, to use
that estimate in the cluster mean size estimation. The procedure starts with the estimation of a specific proportion
by the corresponding relative frequency. Thus, it is very simple, intuitive, it has good statistical properties, and it
does not depend on the method used for the mean cluster estimation. The interpretation of the extremal index as
a proportion is known, but it has not been used directly as an estimation method. In recent years, various authors
have proposed different estimators for the extremal index. This paper applies some of the latest estimationmethods
for the extremal index to real data and analyses their performance using training and test samples. The results
are compared with other well known estimators, for which R packages are available. The results show a better
performance of the Proportion estimator, followed by the Gaps estimator, when compared to the other considered
index estimators.
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1 Introduction
Extreme value theory (EVT) addresses the study of
extreme value distributions. The occurrence of rare
events in real life, such as floods, strong winds,
extreme temperatures, epidemic peaks, or stock
market crashes, often has catastrophic consequences
for populations. This reality spurred the
development of EVT around the 1950´s, particularly
in the Netherlands, due to its geographic
characteristics and the need to survive in a territory
below the sea level. In the 1980’s, the classical
independent and identically distributed (IID)
approach was extended to stationary sequences, [1].
Under suitable local dependence conditions, it is also
possible to obtain the limit distribution for the
maximum of stationary sequences. In fact, this limit
distribution presents the same shape parameter but
the location and scale are affected by an extra
parameter, the Extremal Index (EI), hereby denoted
by θ.

In an IID scenario, extreme values typically
manifest as rare and isolated occurrences. However,
in dependent sequences, the dynamics change
significantly. The structure of dependence leads to
clusters of extreme values rather than isolated

events. As the strength of dependence increases, so
does the size of these clusters. The EI can be
interpreted as the reciprocal of the mean size of
clusters of exceedances above a specified threshold.
Therefore, EI estimation is crucial as it provides a
measure of the duration of periods with consistently
high or low values in the sequence under study.
A different approach is to consider the sequence as a
compound Poisson Process. Extreme events occur as
rare phenomena as in a Poisson Process, [2]. Under
suitable local dependence conditions, when the
sequence is stationary but not I.I.D., the process of
exceedances converges to a compound Poisson
Process with intensity related to the EI, [3]. When
analysed in the dynamical systems framework, the
EI may be seen as a measure about the dynamics of
the underlying systems, [4].

Since the first proposed estimators, in the 90’s,
estimating the EI is an issue that has been addressed
with increased attention. Some of the existing
proposals are based on the size of the clusters and
how these clusters are identified. This is the case
with the runs estimator and the blocks estimator
which require additional parameters in turn, [5], [6],
[7]. The intervals estimator, [8], is one of the most
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popular in the literature and is based on the
interexceedances times of overpassing a high
threshold. The intervals estimator motivated the
work of Süveges, who proposed a maximum
likelihood estimator, the so called Kgaps estimator,
[9], which also depends of a K parameter. A detailed
synthesis of the EI estimation options may be found
at the book by [10], or in the recent paper of [11].
Variations of the initial blocks and runs estimators
include the disjoint blocks estimator and the sliding
blocks estimator, [12]. Based on the maxima
method, [13], proposed a semiparametric approach
producing more efficient estimates. Relevant
asymptotic results and a moments EI estimator is
presented in the paper from [14]. To reduce bias,
[15], applies the Jackknife methodology. A key
problem with EI estimation is the choice of the
threshold to be considered, originating the process of
exceedances. Some of the existent estimators are too
sensitive to the choice of that parameter, [16].
Recent research addresses to this problem, proposing
a new way to select the threshold in a context of non
parametric estimation of the extremal index of
stochastic processes, [17]. When academics are
called to apply their results to real data, it is frequent
not to encounter the conditions assumed to validate
the results. In that sense, there is the recognized need
for robust procedures which are not so vulnerable in
the absence of those conditions. The estimator
proposed in [18], is a robust proposal to estimate the
EI.
More recently, an interesting proposal uses artificial
censoring of interexceedances times with some
evidence of stability improvement and less
sensitivity to the choice of the parameter evolved, D,
in this case, and to the choice of the high threshold,
[19]. In the present paper, two different proposals
are considered to estimate the EI: a robust estimator,
based on the Negative Binomial (NB) model, and a
proportion estimator, also based in the
interexceedances times.

Following the introduction, Section 2 refers to
the basic principles of EVT in the case of IID
samples and for specific dependent sequences. In
Section 3 and 4, two recently proposed EI estimators
are presented. Section 5 presents other known
estimators to be considered in the data analysis.
Section 6 contains the results of applying both
robust and non robust estimators to a real data set.
The paper concludes in Section 7 with comments
and conclusions.

2 EVT classic theory
2.1 IID case
The theory of extreme values is highly developed
when dealing with IID samples. In this case, there
exists the well known theorem in EVT that allows us
to obtain the distribution of the limit of the
maximum when appropriately normalized, and
whenever such a limit exists. This theorem provides
a convenient way to understand the behaviour of
extreme values in large samples drawn
independently and identically distributed,
(Y1, Y2, ..., Yn), with some unknown common
cumulative distribution function (CDF), F (y). The
Fisher, Tippett, Gnedenko extremal types theorem
determines the limiting CDF of the maximum as a
member of the general extreme value (EV)
distribution family. If Yn:n = max{Y1, Y2, ..., Yn}
and if there are constants an > 0 and bn ∈ R such
that the standardized maximum Z = (Yn:n − bn)/an
converges for some non degenerate distribution,
then, such a limit CDF is of the type of

EVξ(y) =


exp(−(1 + ξy)−1/ξ), 1 + ξy > 0,

if ξ ̸= 0

exp(− exp(−y)), y ∈ R,
if ξ = 0.

(1)
Several advancements have expanded the

applicability of EVT to dependent sequences, just as
sketched in Section 2.2. This is especially relevant
in the analysis of time series, where dependencies
among observations are typical. In such cases, recent
developments in EVT have adapted to account for
these dependencies, offering insights into the
distribution of extremes and enhancing our
understanding of their behaviour over.

2.2 EVT for dependent structures
When we have an IID sequence, extreme values tend
to be rare events, usually far apart from each other in
time. But when some dependence structure is
present, this affects their behaviour, originating
clusters of high values close to each other.
Dependent observations tend to exhibit similar
patterns. When an extreme value is observed, the
next observation is likely to be close to the previous
one. The presence of autocorrelation induces
proximity between observations, leading to clusters
of high values rather than isolated extremes.

In some sequences, those clusters appear
separated in time. So in limit, the clusters
ocuurrence times tend to be independent. This paper
addresses to the problem of estimating a parameter
that measures the interdependence among sequences
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of random variables. For sequences that verify
certain stationary and mixing conditions, the classic
EVT remains applicable with few changes, [1].

Definition 2.1. D(un) The dependent sequence
{Xn}n≥1 , with marginal CDF F , verifies the
mixing condition D(un) of [1], if, for each
i1, ..., ip, j1, ..., jq such that

1 ≤ i1 < ... < ip < j1 < ... < jq ≤ n, j1−ip ≥ l,

and the notation

Fk1...kr
(un) := P(Xk1

≤ un, ..., Xkr
≤ un),∣∣Fi1...ipj1...jq(un)− Fi1...ip(un)Fj1...jq(un)
∣∣ < αn,l

where αn,ln → 0 as n → ∞ for some sequence ln
with ln = o(n).

If the D condition in Definition (2.1) is assumed
for a stationary sequence {Xn}n≥1 , then the limit
distribution of the maximum will be one of the three
types, Fréchet (ξ > 0), Gumbel (ξ = 0) or Weibull
(ξ < 0), depending on the ξ value, in (1).

Other local dependence conditions are usually
necessary in the framework of the EI estimation so
that the asymptotic distribution of the sample
maximum can be calculated. These may be
formulated in terms of the Dk condition, [20], [21],
which may be stated as follows:

Definition 2.2. Dk (un) Suppose that a sequence
{Xn}n≥1 verifies the D Leadbetter condition, given
above in Definition (2.1). The Dk (un) condition is
said to hold if for some {kn}n≥1 such that

kn → ∞, knαn,ln → 0, knln/n → 0

as n → ∞, we have

nP (X1 > un,M1,k ≤ un < Mk,rn) →
n→∞

0

with {rn = [n/kn]}n≥1 , [x] denoting the integer part
of x andMi,j = max {Xi, ..., Xj} , (j > i).

Understanding the joint distribution of k
consecutive terms enables us to derive the limiting
distribution of the maximum for these sequences.

2.3 The extremal index
Consider a strictly stationary process {Xn}n≥1 with
CDF F , with finite or infinite right endpoint. The
process is said to have an extremal index θ ∈ [0, 1]
if, for each τ > 0, there is a sequence {un}n≥1 such
that, as n → ∞:

a. nF̄ (un) → τ and

b. P[Mn ≤ un] → exp(−τθ),

where F̄ := 1 − F and Mn := M0,n denotes the
maximum of n consecutive observed variables,
defined byMk,l := max{Xi : i = k + 1, . . . , l}.

Let {Yn}n≥1 be an IID sequence, and suppose
{Xn}n≥1 is a stationary sequence with the same
marginal F. Then, if there exist real constants an and
bn, such that

FYn:n
(any + bn) → H(y),

where H(y) needs to be of the type of the EV
distribution, in (1), then, for the stationary sequence
{Xn}n≥1, with an extreme value index, θ,

FXn:n
(any + bn) → Hθ(y).

So, the EI value has an effect of clustering and
shrinking the extreme values when we compare the
two types of samples. The EI is a parameter that may
be interpreted as a measure of the dimension of the
clusters of exceedances over some high threshold. In
fact, it may be interpreted as the limit of the
reciprocal of the cluster mean size, [22]. For
independent sequences or asymptotically
independent sequences, θ = 1. This means that
exceedances do not form clusters as it happens with
dependent samples. The value of θ relates to the
dimension of the clusters: the closest to zero, the
greater the clusters size will be (in average). Figure
1 illustrates the difference between sequences for
which θ = 1 and an associated dependent sample
with a small value of θ.

Figure 1: Circles represent a sample with θ = 1;
triangles denote a dependent sample, with θ = 0.2.

3 Robust estimation based on the NB
A recent proposed method also based in the limit
mean size estimation of the clusters uses the
uniparametric NB model and robust estimation of its
parameter. The model was suggested by [23], upon
the NB2 reparametrization of the model, [24], which
turns easier robust estimation in the framework of
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the generalized linear regression. The process was
investigated aiming to improve robustness of the
runs estimator in the sense that we are interested in
modelling the number of exceedances that occur
before a non exceedance and to bypass difficulties
caused by the presence of too many zeros and
distributional overdispersion, [18].

Assume a GLM with independent response
variables Yi, i = 1, . . . , n, such that Yi follow a NB
distribution. With the NB2 reparametrization, the
probability function NB can be expressed in terms of
µi and σ, where σ is a shape parameter and µi is the
conditional mean, being given by

f(yi;µi, σ) =

Γ(yi+σ
−1)

Γ(yi + 1)Γ(σ−1)

(
1

1 + σµi

)σ−1 (
σµi

1 + σµi

)yi

,

(2)

where yi = 0, 1, ..., n, Γ(.) is the Gamma
function and σ > 0 is the overdispersion parameter
of the Yi distribution. Under that parametrization
(and denoting by xi an observation of a potential k
dimensional regressor), the conditional variance is:

µi = E[Yi|xxxi], V (µi) = V (Yi|xxxi) = µi+σµ2
i . (3)

Expression (3) shows that when σ → 0, V (µi)
converges to the variance of a Poisson distribution.
Thus, we will work on the GLM setting

Yi ∼ NB(µi, σ), i = 1, . . . , n,

g(µi) = g(E[Yi|xxxi]) =
xxxTi βββx

T
i + ϵi = β0 + β1x1 + · · ·+ βkxk + ϵi, (4)

with the link function g(.) = log(.) and where
βββ ∈ Rk+1 is the unknown parameter. Robust
estimators for βββ and σ are based on maximum
likelihood estimators (MLE), substituting estimating
equations by bounded functions. They are already
disposable from R package robNB for the model
parameter that we are interested in. Particularly, we
only need to estimate the intercept, thus without
regressors. So, from (4), the cluster mean size
estimate will be µ̂i = exp β̂0 and the EI estimate will
be its reciprocal, i.e.,

θ̂NB = 1/µ̂i = exp{−β̂0}.

4 Proportion estimator
The EI proportion estimator appeared recently, [25],
on the basis of a completely different estimation

approach. While other methods are developed
aiming to find the best estimator for the limiting
clusters mean size, and then to take the reciprocal of
that estimate as the EI estimate, the proportion
estimator goes directly to the estimation of the EI as
a distributional parameter by its own. The procedure
emerged taking a particular attention to the
distribution of the interexceedances times, like it is
presented in [8]. Those authors proved that the
distribution of the interexceedances times is the
mixture:

(1− θ)ϵ0 + θfD(θ), (5)
where ϵ0 is the degenerate probability distribution at
0 and fD(θ) represents an exponential distribution
with mean θ−1. Thus, as referred in that paper, the
EI is the proportion of strictly positive
interexceedances times.
More formally, let {Xn}n≥1 be a strictly stationary
sequence of random variables with marginal
cumulative function F (.) and consider a chosen high
threshold u. Suppose the exceedances occur at times
j1, ..., jN , N being the number of exceedances, i.e.,

N =

n∑
i=1

I{Xn>u}, (6)

Consider also Si (i = 1, . . . , N, N ≤ n), the times
of isolated exceedances or of the first element of a
cluster, and

T ∗
i = Si+1 − Si with i = 1, . . . , N − 1.. (7)

In the limit distribution, clusters occur at the
singularities of the compound Poisson process.
Sequential exceedances will belong to the same
cluster with null interexceedances times and they
represent the multiplicity of each singularity of the
compound Poisson process. So, in the limit
distribution, the T ∗

i i = 1, . . . , N − 1) correspond to
the realizations of a random variable Tθ, whose
distribution is characterized by (5).
The simplest way and also the most intuitive method
for estimating a proportion is to use the relative
frequency. Besides, the estimator has good
properties, as strong convergence results are known,
without requirements of differentiability or even
continuity, for the EI parameter space is the interval
[0, 1] and the estimates will take values in (0, 1).
Particularly, they will take values in (0, 1) and they
are defined by

θ̂P =
#{T ∗

i > 0}
N − 1

, (8)

where N (N < n) is the number of exceedances to
the fixed threshold observed in the sample.
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In what concerns robustness, things are not so clear.
The most commonly used criteria for evaluating
robustness are B robustness and the breakdown point
(BP) value. B robustness ensures that a robust
estimator has a bounded influence function, which,
in simple terms, measures the sensitivity of the
estimator to changes in individual observed values.
The breakdown point, on the other hand, is related to
the estimator’s resistance, where a strictly positive
BP indicates that the estimator can handle a certain
proportion of altered observations without leading to
a breakdown in the estimate. Actually, the
proportion estimator is not B robust. Nevertheless, it
has a positive breakdown point, thus it is robust in
the last sense.
Perhaps even more interesting is the fact that the
type of dependence structure is ignored in the
estimation process. The proportion estimator seems
not to be very sensitive to the type of dependence
within clusters of exceedances, like it happens with
real data sequences. This is because the proportion
of strictly positive interexceedance times is
unaffected by the numerical values of the
exceedances. In fact, what truly matters are the times
between clusters of exceedances, rather than the
times within different clusters.
There are only a few technical details: the
convergence is based on the number of exceedances
in the sample and not directly in the sample size, as
usual. Different samples with the same n dimension
may have different numbers of exceedances. So,
with an unique sample there is only one observation
of the relative frequency. It is impossible to interpret
the EI as the binomial parameter (exception for the
Bernoulli model). Fortunately, the nature of extreme
values assure that exceedances are rare events. Most
real data sets have the size enough for splitting the
original sample into several subsamples with
constant number of exceedances N . In fact, some
big data collections contain too many zero values
and they are already cyclic. Thus, some subsamples
will turn possible to define a particular N value. The
properties of the relative frequency (consistency and
positive BP) will assure good results or, at least,
reasonable results even in the worst cases. In
simulations studies the last question is overpassed
using only samples with the same number of
exceedances (which are random realizations of a
Poisson distribution), eventually discarding other
generated samples. Another technical suggestion
deals with the choice of N , which must cover the
dependence structure in such a large part as possible.
That is an issue in current investigation by the
authors.

5 Other EI estimators under
consideration

In this paper the authors choose to give particular
attention to the EI estimators based on the
interexceedance times initially proposed by [8]. In
previous simulation studies they included the Blocks
and the Runs estimators, [26], [7], also. In this paper
the option was to analyse the EI estimators that are
based on the interexceedance times only. To
compare the performance of the author’s proposals
referred above, namely, θ̂NB and θ̂Prop, the
following were also computed at the same high
thresholds:

• the Intervals estimator, [8], hereby denoted by
θ̂Int;

• the K generalized Gap estimator, θ̂KGaps, [9];

• the DGaps estimator, θ̂DGaps, [19].

5.1 Intervals estimator
The authors in [8], pointed out the nature of the
asymptotic distribution of the interexceedance times
Ti = ji+1 − ji as part of a parametric family of
distributions indexed by the extremal index. Under
the same notation used in Section 4, with a
preliminary estimator of θ, on the basis of

θ̂n(u) =
2
(∑N−1

i=1 Ti

)2

(N − 1)
∑N−1

i=1 T 2
i

(9)

and

θ̂∗n(u) =
2{
∑N−1

i=1 (Ti − 1)}2

(N − 1)
∑N−1

i=1 (Ti − 1)(Ti − 2)
, (10)

the Intervals estimator is θ̂Int(u) is defined by

θ̂Int(u) =


min{1, θ̂n(u)} if maxTi :

1 ≤ i ≤ N − 1 ≤ 2

min{1, θ̂∗n(u)} if maxTi :

1 ≤ i ≤ N − 1 > 2

.

(11)

5.2 K Gaps estimator
The θ̂KGaps estimator eliminates small
interexceedance times by setting them to zero. This
approach appears reasonable at a first glance: if a
period of high sales is briefly interrupted by an
external event, the total count of high sales days
shouldn’t be markedly impacted. This interruption
can be viewed as an outlier within the larger cluster
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of high sales days. Therefore, a more appropriate
strategy might involve disregarding such values and
treating the entire set of observations as a single
cluster. The K Gaps estimator is a maximum
likelihood estimator, turned possible due to the
inclusion of a new variable in the likelihood
function, namely, the K Gap,
SuK(un) = max{T (un) − K; 0}, [9], [19], with
T (un) = min{j ≥ 1 : Xj+1 > u|X1 > u}.

5.3 D Gaps estimator
The θ̂DGaps estimator is presented by [19], as a
generalization of the θ̂KGaps estimator. An artificial
scheme of censoring is introduced where the small
interexceedance times are censored. This procedure
requires a new time parameter D to be conveniently
chosen. Consider the order statistics of the
interexceedance times as defined in Section(5.1).
The authors in [19], apply a type I left censoring
after choosing a time censor D ≥ 0 and consider the
loglikelihood function of the censored sample. Their
estimator is the value which minimizes that function.

6 Application to real data
Recent years brought new challenges to international
markets in several fields like electronics and
pharmaceutical products, either due to COVID or
justified by the constraints of war. In times of
COVID, pharmaceutical laboratory suffered extra
stress and this is still presently pointed occasionally
at news. High values of drug sales frequently happen
in clusters. This can be explained by some
epidemiology or by some other phenomena, not so
easy to identify. Being able to estimate the size of
the clusters allows for better planning the production
and, on the other side, may help to study eventual
hidden causes for the peaks of sales. High levels of
air pollution tend to be associated with high levels of
antihistaminic sales. Available since the 40’s, this
type of drugs represent an option of treatment that
can improve life quality to a vast number of people,
[27]. The sales numbers of this type of drugs show
clusters of high values which may be relevant, either
to pharma business or to the medical research. The
data set used in the present work was obtained from
Kaggle [28], and consists of weekly pharma sales
data from antihistamines for systemic use (R06,
accordingly to Anatomical Therapeutic Chemical
(ATC) Classification System), since 2014 to 2019.
As shown in Figure 2 , this data set presents clusters
of high values separated from each other. We’ll
assume the validity of the conditions of local
dependence.

Following the holdout procedure, which is typical
in time series analysis, [29], the sample was divided

Figure 2: Sales data from antihistamines for systemic
use (R06), since 2014 to 2019

into a training sub sample containing the first 60% of
observations and a test sample, consisting of the
latest 40% observations (Initially, 70% of the first
observations were considered for the training
sample. However, the decision to use 60% instead
was made, to ensure that the test sample visually
preserved the behaviour of the entire series more
accurately). The resulting samples are illustrated in
Figure 3. To obtain the results presented in this
paper the R packages extRemes, fExtremes and exdex
were used.

Figure 3: Sales data from antihistamines for systemic
use (R06): training sample (left) an test sample
(right).

Different estimates were computed using the
training sample and then tested by comparing these
estimates with the reciprocal of the average size of
the observed clusters of exceedances in the test
sample. These clusters were defined as groups of
exceedances above the specified high thresholds
after the first one observed. A set of thresholds
corresponding to the highest quantiles, from 0.6 to
.98 was considered. For the KGaps and DGaps
estimators, the suitable combination of the pair
(u,K) (of the threshold and the tuning parameter)
was selected, accordingly to the graphical
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diagnostics based on the information matrix test, [9].
Figure 4 shows the behaviour of the obtained
estimates for the data. Apart from the intervals
estimate, it is possible to identify two main
tendencies: one group with higher values includes
the KGaps and the Proportion estimators, and
another group with lower values, with the NB and
the DGaps estimators. In the present case, it seems
that the former would perform better if used to
preview the future θ value as the corresponding lines
are closer to the observed value of θ.

Figure 4: EI estimates for the antihistamines (R06)
data: estimates computed with the training sample
and the reciprocal of the mean size of the observed
clusters for the test sample (θTest).(K = 1 and D =
4) for the KGaps and DGaps, respectively.)

Considering the former group corresponding to
better performances the best results are provided by
the Proportion estimator herein suggested. Thus,
while ignoring completely the type of dependence
and being very simple to interpret, the well known
properties of the relative frequency assure a good
performance. The approach by the NB estimator
does not show advantages, though the trajectory is
similar to the θTest but with an almost constant
considerable bias. It is also relevant to notice that the
Intervals estimator seems to produce poor estimates.

7 Conclusions
This paper gives a contribution to the estimation of
the EI. Among different existing proposals in the
literature, two recent new approaches were applied
to a real data set: a robust estimator based on the
uniparametric NB model (3), and an estimator based
on the interexceedance times (4). The resulting
estimates were then compared for different high
thresholds showing a better performance from the
Proportion estimator. Assuming the θ̂Test is the most
close to the real value, the θ̂Prop estimator seems to
have better performance since their paths are the
closest to the θ̂test path.

The simplicity, the properties, and the performance
of the Proportion estimator make it well suited for
application in more practical fields, particularly
when the dependence structure of the clusters is
unknown, which is often the case. However, some
disadvantages arise in simulation studies, potentially
due to the fact that the choice of N does not depend
on the sample size, as well as limitations in the
application of resampling methods.

Local dependence conditions might be difficult to
prove. So, other alternative robust forms must be
found. The θ̂NB seems to be the one that shows
more stability concerning the threshold level.
The main conclusion after this paper is that there is
still much work to do for the academic community to
provide more accurate tools for the decision makers.
For a parameter that takes values between 0 and 1,
the results obtained by different approaches show a
range af values that is considerably high, like it
happens with the present data.

Future research will focus on identifying the
optimal number of exceedances for analysis (related
to the threshold choice), and conducting a deeper
study on robustness, particularly by considering
simulated contaminated samples. Additionally,
further investigations will explore the application of
the method in outlier detection and comparisons of
robust estimators. The variation in estimates
produced by different methods suggests the need for
developing confidence intervals for the EI.
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