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Abstract: - A keystroke dynamics authentication uses keystroke rhythm for each user on a keyboard to verify a 

real user. The idea is that each user has a unique keystroke rhythm such that it can be determined the identity of 

a user. To verify a user, a keystroke vector dissimilarity technique was proposed to use keystroke features as a 

vector and calculate a weight using SoftMax+1 to overcome the Euclidean distance problem. However, the 

weight has yet to be analyzed in detail. Therefore, this paper aims to find a normalization technique and a 

weight adjustment to enhance the accuracy of the keystroke vector dissimilarity technique. The normalization 

techniques and activation functions analyzed in this study are Euclidean norm, Mean normalization, Min-max 

normalization, Z-score normalization, SoftMax function, and ReLU function. The weight adjustment varies 

from w+1000 to 1000-w. The results show that the Mean and Min-max normalizations with 10-w as a weight 

gave the same results at 96.97% accuracy and 3.03% error, which are better than the previous work. 
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1  Introduction 
A keystroke dynamics authentication is a biometric 

authentication using keystroke rhythm on a 

keyboard to verify a real user. Each user has their 

keystroke rhythm or keystroke dynamics, which can 

classify a real user from a fake user. There are many 

techniques to verify a keystroke rhythm. One 

example is to use a statistical method using a 

Euclidean distance, which was used to measure the 

keystroke distance between a real user and a fake 

user, [1]. However, the Euclidean distance does not 

consider a sequence of input keys such that a fake 

user can be a real user even if the keystroke is 

different. For example, a fake user may type faster 

than a real user in the beginning but slower in the 

end, but the Euclidean distance between the real 

user and the fake user is small, and it is determined 

as the real user. In [1], a keystroke vector 

dissimilarity was proposed to enhance the keystroke 

dynamics authentication (KDA) by using a 

keystroke vector and a weight to reduce a flaw in 

Euclidean distance—however, the weight needed to 

be thoroughly analyzed to improve the 

authentication performance. The contribution of this 

study extends the limited research on the 

normalization techniques and weight adjustments 

for the keystroke vector dissimilarity technique. 

In this study, normalization techniques and 

weight adjustment are analyzed to improve the 

accuracy of [1]. A dataset from [1] is compared with 

the previous work. The normalization techniques 

and activation functions are Euclidean norm, Mean 

normalization, Min-max normalization, Z-score 

normalization, SoftMax function, and ReLU 

function, and a weight is adjusted from w+1000 to 

1000-w. The objective of this paper is to obtain a 

normalization technique and a weight adjustment 

such that the accuracy of the keystroke vector 

dissimilarity technique is improved. Therefore, a 

fake user has less chance to pass the authentication 

process, and a system is safe from several mishaps, 

such as information leaks and modifications, and 

privilege escalation. 

The organization of this paper is as follows. The 

next section presents the background of keystroke 

dynamics, normalization techniques, and activation 

functions. In addition, the literature review is also 

explained. Section 3 presents the overview of 

keystroke vector dissimilarity, which is used as a 

model to analyze the normalization techniques and 
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weight adjustment. Performance metrics and 

datasets used in this study are presented. Next, the 

experimental results are shown and analyzed in 

detail with an example. The last section is the 

conclusion, which summarizes the study results and 

future work.  

 

 

2 Background and Literature Review 
This section presents background on keystroke 

dynamics features and normalized techniques, along 

with the literature reviews in this research area. 

 

2.1 Background 
Fundamental keystroke dynamics features are 

presented in this section to give basic concepts of 

standard keystroke dynamics features. Moreover, 

normalization techniques and activation functions 

are explained to provide basic knowledge on how to 

normalize data in the study. 

 
2.1.1 Keystroke Dynamics Features 

Keystroke dynamics is a keystroke rhythm of a user 

on a keyboard. Each user has a unique keystroke 

rhythm that can be used to verify the user’s identity. 

To collect the keystroke dynamics, keystroke 

features are explained as follows.  

 Interkey time (I) is the time duration from 

releasing one key to pressing a following 

key. 

 Hold time (H) is the time duration from 

pressing a key to releasing that key. 

 Latency (L) is a combination of Interkey 

time and Hold time or the time duration 

from pressing a key to pressing a following 

key. 

 

The standard keystroke features are illustrated in 

Figure 1. 
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Time
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Fig. 1: Keystroke dynamics features 

 
2.1.2 Normalization Techniques and 

Activation Functions 

This study investigates four normalization 

techniques and two activation functions to enhance 

the keystroke dynamics authentication performance. 

The techniques and functions in this research are 

described in detail as follows. 

 
2.1.2.1  Euclidean Norm 

An important component of Euclidean norm, or L2 

normalization, is the length or magnitude of a vector 

in mathematics using (1). 

||𝑉||2 = √𝑣1
2 + 𝑣2

2 + ⋯ + 𝑣𝑛
2 = √∑ 𝑣𝑖

2𝑛
𝑖=1           (1) 

 

where V is an n-dimension vector. 

 For the Euclidean norm, each value in the 

vector is divided by its length, as shown in (2). 

       ℓ2−𝑛𝑜𝑟𝑚(𝑉) =
𝑣

||𝑣||
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where n is the dimension of the vector. The 

Euclidean norm outputs are between 0 and 1. 

 
2.1.2.2  Mean Normalization 

Mean normalization is calculated using a mean as a 

reference for data scaling, as shown in (3). 

𝒙′ =  
𝒙−𝝁

𝒎𝒂𝒙(𝒙)−𝒎𝒊𝒏(𝒙)
                                                (3) 

 

where  is a mean, max(x) is the maximum value in 

a vector x, and min(x) is the minimum value in a 

vector x. The outputs from the Mean normalization 

are between -1 and +1. 

 
2.1.2.3  Min-max Normalization 

Min-max normalization is used to scale data using 

minimum value as a reference, as shown in (4). 

𝒙′ =  
𝒙−𝒎𝒊𝒏(𝒙)

𝒎𝒂𝒙(𝒙)−𝒎𝒊𝒏(𝒙)
                                                (4) 

 

The outputs from the Min-max normalization are 

between 0 and +1. 

 
2.1.2.4  Z-score Normalization 

Z-score normalization is applied to adjust data to 

exhibit a mean of 0 and a standard deviation of 1, as 

shown in (5). 

𝒙′ =  
𝒙−𝝁

𝝈
                                                                (5) 

 

where  is a standard deviation. The outputs from 

the Z-score normalization are between negative and 

positive values. 

 
2.1.2.5  SoftMax function 

SoftMax is a mathematical function commonly 

employed in Deep learning for classification. This 
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function transforms data into probability values, as 

shown in (6). 

𝝈(𝒛)𝒊 =  
𝒆𝒛𝒊

∑ 𝒆
𝒛𝒋𝑲

𝒋=𝟏
                                                     (6) 

where (z)i is a SoftMax function, z is an input 

vector, ezi is a standard exponential function, K is a 

number of an input vector, and ∑ 𝒆𝒛𝒋𝑲
𝒋=𝟏  is a 

summation of all standard exponential functions. 

The total sum of the SoftMax function outputs is 1. 

 

2.1.2.6  ReLU (Rectified Linear Unit) function 

ReLU is a mathematical function used in Deep 

learning for its simplicity with no negative value. It 

transforms data from 0 to maximum value, as shown 

in (7). 

𝒙′(V) =  𝒎𝒂𝒙(𝟎, 𝒗𝒊)                                             (7) 

 

where V is an input vector, and vi is an ith vector 

element. 

 

2.2 Literature Review 
Keystroke dynamics authentication research can be 

classified into two main research techniques: 

statistical and machine learning. The reviews for 

each technique are as follows. 

 

2.2.1 Statistical Techniques 

For keystroke dynamics authentication, statistical 

techniques were proposed because of less data 

usage. It means that the amount of collected 

keystroke data is small and practically useful for 

real-world applications. [1], proposed a Keystroke 

Vector Dissimilarity using a vector to represent 

keystroke dynamics features. The technique 

proposed to use a Master vector profile and an SD 

vector profile to verify a user. The SD vector profile 

served as a weight vector to assign the importance 

of each feature (or position in a vector) differently. 

The proposed work gave 96.67% accuracy and 

3.33% EER. 

[2], proposed using dynamic time warping for 

keystroke dynamics authentication with the CMU 

dataset. The result showed that the proposed 

technique gave a False Accept Rate (FAR) of 

39.9%, False Reject Rate (FRR) of 3.3%, and EER 

of 17.6%. [3], proposed using the Generalized 

Fuzzy model (GFM), a combination of Mamdani-

Larsen and Takagi-Sugeno fuzzy models for 

keystroke dynamics authentication. It was tested 

with the CMU dataset and the GFM model gave the 

best performance at 7.86% EER. 

[4], proposed a simple statistical method using an 

average and a standard deviation to create a profile 

from crowdsourcing. The best results were obtained 

in 2 cases. The first case gave FAR at 0.0% and 

FRR at 2.54%. The second case gave FAR at 0.0% 

and FRR at 2.87%.  

 

2.2.2 Machine Learning Techniques 

Machine learning techniques for KDA are actively 

used in the research area. The techniques also gave 

high accuracy, but they require a large amount of 

data for training. 

[5], proposed using Chinese keystroke dynamics 

for continuous authentication by selecting 5 timing 

features and using one-class SVM for 

authentication. The accuracy was 62.3%. [6], 

proposed to use the Artificial Bee Colony algorithm 

to classify a user using their dataset. The keystroke 

dynamics features in this work were pressure, dwell 

time, and flight time. The best accuracy was 

90.63%, using Dwell time and pressure as the 

features. 

[7], studied four machine learning models, i.e. 

KNN, SVC, Random Forest, and XGBoost using 

CMU dataset. The XGBoost gave the best 

performance at 93.59% accuracy. [8], created their 

application to collect keystroke data and tested with 

several classifier algorithms. The best algorithm was 

the tree-based algorithm, and the accuracy was 94%.  

[9], studied five machine learning algorithms, 

i.e., Manhattan Distance, Manhattan Filtered 

Distance, Manhattan Scaled Distance, Gaussian 

Mixture Model, and Support Vector Machine, for 

biometric authentication with CMU dataset. The 

Manhattan Scaled Detector statistical algorithm was 

the best algorithm, which gave EER 11.76%. [10], 

proposed to transform behavioral biometrics (time 

series) into three-dimensional (3D) images to test 6 

deep learning algorithms. The best algorithm was 

the GoogleNet model, which gave EER 4.49%.  

 

Table 1. Literature work summary 
Reference Dataset Acc. EER FAR FRR 

Stat [1] own  96.67% 3.33% 3.33% 3.33% 

Stat [2] 
CMU 

Dataset 
- 17.6% 39.9% 3.3% 

Stat [3] 
CMU 

Dataset 
- 7.86% - - 

Stat [4] own - - 0% 2.54% 

ML [5] own  62.3% - - - 

ML [6] own 90.63% - - - 

ML [7] own 93.59% - - - 

ML [8] own 94% - - - 

ML [9] 
CMU 

Dataset 
- 11.76% - - 

ML [10] own - 4.49% - - 

Note: Stat is a statistical technique, and ML is a machine 

learning technique. 

 

Table 1 shows the summary of the literature 

works using accuracy, EER, FAR, and FRR as 
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performance metrics to compare with other works. 

Some metrics cannot be determined in their papers. 

Datasets were from different sources, and each 

source collected keystroke dynamics features 

differently. The results are highly challenging to 

compare against one another. The highest accuracy 

is 96.67%, with 3.33% error in [1] with their own 

dataset. However, this study obtains the dataset 

from [1]. The results can be compared fairly with 

the same dataset. 

 

 

3  Keystroke Vector Dissimilarity 
The concept of the keystroke vector dissimilarity 

technique was proposed in [1]. However, this 

research aims to analyze the normalization 

techniques and weight adjustment of the keystroke 

vector dissimilarity technique. An overview of the 

keystroke vector dissimilarity is presented to explain 

how the technique works.  

 
3.1 Overview 
The keystroke vector dissimilarity was proposed to 

overcome a weakness of Euclidean distance by 

using a keystroke vector and a standard deviation 

(SD) vector as weights to verify a user. The 

overview diagram for the keystroke vector 

dissimilarity technique is shown in Figure 2. 

 

Calculate mean
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Weight adjustment
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X
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Vector
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Fig. 2: Keystroke vector dissimilarity diagram 

 

This technique consisted of 5 main components, 

i.e., 1) a keystroke vector, 2) a vector normalization, 

3) a master vector and SD vector profile, 4) a master 

vector profile and modified input keystroke vector, 

and 5) a verification process. A keystroke vector is 

created from keystroke dynamics features: Interkey 

time and Latency for each key to create a vector 

using a sequence of input keystrokes. A vector 

normalization was used to normalize the standard 

deviation for each feature in a vector, and it is used 

as a weight for each feature. This vector has to be 

adjusted so that weights are not zero.  

A Master Vector is a vector created from a 

means of 10 real user inputs to create a master 

vector profile by multiplying it with an SD vector 

profile, which weighs each element in a vector to 

overcome the weakness of the Euclidean distance. 

When a user inputs his username on a keyboard, an 

input keystroke vector is created and calculated the 

Euclidean norm for each feature. Then, the vector is 

multiplied by the SD vector profile to create a 

modified input keystroke vector compared with a 

Master vector profile. A verification process is done 

using the Euclidean distance and a Six Sigma 

technique. If the distance between a new input 

vector and a Master vector profile is in the range of 

a real user, the verification is passed, and vice versa. 

 

3.2 Performance Metrics 
In this study, standard keystroke dynamics 

performance metrics are False Accept Rate (FAR), 

False Reject Rate (FRR), and Equal Error Rate 

(EER). Moreover, the machine learning 

performance metrics, i.e., Accuracy (Acc.) and 

Error (Err.), are used in this study when EER cannot 

be evaluated in some cases. Therefore, Accuracy is 

the main performance metric of this study for 

comparing results. 

 

3.2.1 False Accept Rate (FAR) 
False Accept Rate (FAR) is the percentage of fake 

user inputs accepted as a real user. The FAR 

formula is displayed in (8). 

𝐹𝐴𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐹𝑎𝑘𝑒 𝑢𝑠𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑘𝑒 𝑢𝑠𝑒𝑟 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠
 × 100         (8) 

 

3.2.2 False Reject Rate (FRR) 

False Reject Rate (FRR) is the percentage of real 

user inputs rejected as a fake user. The FRR formula 

is displayed in (9). 

𝐹𝑅𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑎𝑙 𝑈𝑠𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑎𝑙 𝑈𝑠𝑒𝑟 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠  
× 100           (9) 
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3.2.3 Equal Error Rate (EER) 

The Equal Error Rate (EER) is a cross point 

between FAR and FRR: the lower the EER, the 

higher the accuracy of a biometric system. 

 

3.2.4 Accuracy 

Accuracy (Acc.) is a percentage of predictions that 

match the actual results. The accuracy formula is 

displayed in (10). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
× 100       (10) 

 
3.2.5 Error 

Error (Err.) is a percentage of predictions that do not 

match the actual results. It is the opposite of 

Accuracy. The error formula is displayed in (11). 

𝐸𝑟𝑟𝑜𝑟 =  100 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦                                 (11) 

 

3.3 Dataset 
In this study, a dataset used for the experiments is 

from [1]. The dataset was collected from 18 users, 

15 real users, and 3 fake users. Each real user typed 

their username (not a password) on a keyboard in 2 

sets. For each set, a user typed his username 10 

times. The total data for real users is 300 records. A 

fake user typed the usernames of real users 30 times 

for each user. The total data for fake users is 1,350 

records. The total data is 1,650 records in this 

dataset. 
 

 

4 Normalization Technique and 

 Weight Analysis 
From the previous section, the overview of the 

keystroke vector dissimilarity technique is 

explained. Figure 2 shows the overall components 

of the technique, and the component that will be 

analyzed in this study is the normalization and 

weight adjustment component, as shown in Figure 

3. The main reason to examine this component is 

that its function is to determine weights for creating 

an SD vector profile to solve the Euclidean distance 

problem. The previous research in [1] only proposed 

to use the SoftMax function as a normalization 

technique and SoftMax outputs (w) +1 as weights. 

The accuracy and EER were 96.67% and 3.33%, 

respectively.  

 This study aims to analyze other normalization 

techniques and weight adjustment values to improve 

the accuracy of the keystroke vector dissimilarity 

technique. However, the previous analysis of SD 

vector values found that the standard deviation 

value for each keystroke feature was very small. 

The SD vector must first be normalized so that the 

values can give significant weight to the keystroke 

vectors. 

 In this section, the normalization techniques and 

weight adjustment are under-investigated to study 

the performance and how to calculate a proper 

weight for the keystroke vector dissimilarity 

technique. The normalization techniques in this 

study are Euclidean norm, Mean normalization, 

Min-max normalization, Z-score normalization, 

SoftMax function, and ReLU function. It is 

important to note that the output from a 

normalization technique is represented as “w” in 

this study. 

 

Normalization

(w)

Weight adjustment

SD 

Vector Profile

SD Vector

 
Fig. 3: Normalization and Weight adjustment. 

  

 In addition, weight adjustment is an important 

component, such that the weight is not zero when 

multiplying with the master profile or a modified 

input keystroke vector, and the effect of that 

element is still important for the verification 

process. The weight adjustment value can be added, 

subtracted, or multiplied to make a proper weight 

for creating an SD vector profile. Sometimes, the 

outputs from a normalization technique are small, 

such that multiplying by 10, 100, or 1000 is a 

reasonable weight adjustment, and the addition or 

subtraction by 1 is crucial to ensure that weights are 

not zero. Several weight adjustment values are 

investigated such as w+1, w+1000, (1000w)+1, 1-

w, 1000-w, and 1-(1000w). 

 The overview of an SD vector as the input to a 

normalization technique is that all elements in the 

vector are standard deviations, always positive 

numbers. Each standard deviation value is 
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calculated from 10 username inputs. The standard 

deviations for all elements in the SD vector are 

small. A component of the SD vector with a high 

standard deviation means that a user is unfamiliar 

with that feature, and the weight should be small. 

This hypothesis is shown later in this section. 

 Table 2, Table 3, Table 4, Table 5, Table 6 and 

Table 7 show the results from different 

normalization techniques and activation functions: 

Euclidean norm, Mean normalization, Min-max 

normalization, Z-score normalization, SoftMax 

function, and ReLU function, respectively. The 

weights are varied, and the performance metrics are 

accuracy (Acc.), error (Err.), FAR, FRR, and EER. 

In the Tables, some values of EER cannot be 

determined because the cross point between FAR 

and FRR was not found. The bold row in the Tables 

gives the best performance compared to other table 

rows. 

 The results from the Euclidean norm are 

presented in Table 2. The outputs from the 

Euclidean norm are ranging between 0 and 1. The 

best weight for the Euclidean norm is 10-w with 

96.91% accuracy and 3.09% error.  
 

Table 2. Euclidean norm results 
Weight 

Adjustment 
Acc. Err. FAR  FRR EER 

w+1 95.33% 4.67% 4.67% 4.67% - 

w+10 96.67% 3.33% 3.33% 3.33% 3.33% 

w+100 96.67% 3.33% 3.33% 3.33% 3.33% 

w+1000 96.67% 3.33% 3.33% 3.33% 3.33% 

(10*w)+1 91.09% 8.91% 8.89% 9.00% - 

(100*w)+1 90.00% 10.00% 10.00% 10.00% 10.00% 

(1000*w)+1 90.06% 9.94% 9.93% 10.00% - 

1-w 96.67% 3.33% 3.33% 3.33% 3.33% 

10-w 96.91% 3.09% 3.11% 3.00% - 

100-w 96.67% 3.33% 3.33% 3.33% 3.33% 

1000-w 96.67% 3.33% 3.33% 3.33% 3.33% 

1-(w*10) 88.06% 11.94% 11.93% 12.00% - 

1-(w*100) 89.94% 10.06% 10.07% 10.00% - 

1-(w*1000) 90.06% 9.94% 9.93% 10.00% - 

  

Table 3. Mean normalization results 
Weight 

Adjustment 
Acc. Err. FAR  FRR EER 

w+1 93.52% 6.49% 6.52% 6.33% - 

w+10 96.49% 3.52% 3.48% 3.67% - 

w+100 96.67% 3.33% 3.33% 3.33% 3.33% 

w+1000 96.67% 3.33% 3.33% 3.33% 3.33% 

(10*w)+1 87.39% 12.61% 12.59% 12.67% - 

(100*w)+1 86.24% 13.76% 13.78% 13.67% - 

(1000*w)+1 86.24% 13.76% 13.85% 13.33% - 

1-w 96.67% 3.33% 3.33% 3.33% 3.33% 

10-w 96.97% 3.03% 3.04% 3.00% - 

100-w 96.73% 3.27% 3.26% 3.33% - 

1000-w 96.67% 3.33% 3.33% 3.33% 3.33% 

1-(w*10) 87.70% 12.30% 12.30% 12.33% - 

1-(w*100) 86.18% 13.82% 13.85% 13.67% - 

1-(w*1000) 86.30% 13.70% 13.78% 13.33% - 

 The outputs from Mean normalization range 

between -1 and +1, but the outputs from Min-max 

normalization range between 0 and 1. The best 

weight for Mean and Min-max normalizations is  

10-w with the same accuracy at 96.97% and error at 

3.03%, as shown in Table 3 and Table 4. This is 

because both normalization techniques have the 

same denominator, but the numerators differ by 

changing from a mean to a minimum value. The 

overall results from Min-max normalization are 

better than that from Mean normalization. 

 

Table 4. Min-max normalization results 
Weight 

Adjustment 
Acc. Err. FAR  FRR EER 

w+1 94.49% 5.52% 5.48% 5.67% - 

w+10 96.49% 3.52% 3.48% 3.67% - 

w+100 96.67% 3.33% 3.33% 3.33% 3.33% 

w+1000 96.67% 3.33% 3.33% 3.33% 3.33% 

(10*w)+1 90.55% 9.46% 9.48% 9.33% - 

(100*w)+1 90.06% 9.949% 9.93% 10.00% - 

(1000*w)+1 90.06% 9.94% 9.93% 10.00% - 

1-w 95.64% 4.36% 4.37% 4.33% - 

10-w 96.97% 3.03% 3.04% 3.00% - 

100-w 96.73% 3.27% 3.26% 3.33% - 

1000-w 96.67% 3.33% 3.33% 3.33% 3.33% 

1-(w*10) 88.91% 11.09% 11.11% 11.00% - 

1-(w*100) 90.06% 9.94% 9.93% 10.00% - 

1-(w*1000) 90.06% 9.94% 9.93% 10.00% - 

  

 For Z-score normalization, the outputs from this 

normalization range between negative and positive 

numbers, which can be less than -1 or more than 1. 

The weights can be large such that the best weight is 

100-w with 96.79% accuracy and 3.21% error, as 

shown in Table 5. 
  

Table 5. Z-score normalization results 
Weight 

Adjustment 
Acc. Err. FAR  FRR EER 

w+1 89.46% 10.55% 10.52% 10.67% - 

w+10 95.70% 4.30% 4.30% 4.33% - 

w+100 96.67% 3.33% 3.33% 3.33% 3.33% 

w+1000 96.67% 3.33% 3.33% 3.33% 3.33% 

(10*w)+1 86.18% 13.82% 13.85% 13.67% - 

(100*w)+1 86.30% 13.70% 13.78% 13.33% - 

(1000*w)+1 86.24% 13.76% 13.85% 13.33% - 

1-w 93.03% 6.97% 6.96% 7.00% - 

10-w 96.67% 3.33% 3.33% 3.33% 3.33% 

100-w 96.79% 3.21% 3.19% 3.33% - 

1000-w 96.67% 3.33% 3.33% 3.33% 3.33% 

1-(w*10) 86.36% 13.64% 13.63% 13.67% - 

1-(w*100) 86.30% 13.70% 13.70% 13.67% - 

1-(w*1000) 86.30% 13.70% 13.78% 13.33% - 

 

 The SoftMax function outputs are probabilities 

ranging between 0 and 1, and the summation of all 

weights has to be 1. Since the values of SD are 

small when the SoftMax function calculates 
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weights, the outputs from the function are almost 

similar for all positions in the vector. That makes 

the performance for all weights look identical at 

96.67% accuracy and 3.33% error, as shown in 

Table 6. 

 The last function is the ReLU function, which 

changes negative values to zeros but keeps the 

values of positive numbers as they are. This 

function does not normalize any values, but it 

eliminates the negative values to solve the vanishing 

gradients in deep learning. The best weight is 1-

(w*10) at 96.85% accuracy and 3.15% error, as 

shown in Table 7. 

 

Table 6. SoftMax function results 
Weight 

Adjustment 
Acc. Err. FAR  FRR EER 

w+1 96.67% 3.33% 3.33% 3.33% 3.33% 

w+10 96.67% 3.33% 3.33% 3.33% 3.33% 

w+100 96.67% 3.33% 3.33% 3.33% 3.33% 

w+1000 96.67% 3.33% 3.33% 3.33% 3.33% 

(10*w)+1 96.67% 3.33% 3.33% 3.33% 3.33% 

(100*w)+1 96.67% 3.33% 3.33% 3.33% 3.33% 

(1000*w)+1 96.67% 3.33% 3.33% 3.33% 3.33% 

1-w 96.67% 3.33% 3.33% 3.33% 3.33% 

10-w 96.67% 3.33% 3.33% 3.33% 3.33% 

100-w 96.67% 3.33% 3.33% 3.33% 3.33% 

1000-w 96.67% 3.33% 3.33% 3.33% 3.33% 

1-(w*10) 96.67% 3.33% 3.33% 3.33% 3.33% 

1-(w*100) 96.67% 3.33% 3.33% 3.33% 3.33% 

1-(w*1000) 96.67% 3.33% 3.33% 3.33% 3.33% 

  

Table 7. ReLU function results 
Weight 

Adjustment 
Acc. Err. FAR  FRR EER 

w+1 96.67% 3.33% 3.33% 3.33% 3.33% 

w+10 96.67% 3.33% 3.33% 3.33% 3.33% 

w+100 96.67% 3.33% 3.33% 3.33% 3.33% 

w+1000 96.67% 3.33% 3.33% 3.33% 3.33% 

(10*w)+1 96.67% 3.33% 3.33% 3.33% 3.33% 

(100*w)+1 95.70% 4.30% 4.30% 4.33% - 

(1000*w)+1 91.33% 8.67% 8.67% 8.67% - 

1-w 96.67% 3.33% 3.33% 3.33% 3.33% 

10-w 96.67% 3.33% 3.33% 3.33% 3.33% 

100-w 96.67% 3.33% 3.33% 3.33% 3.33% 

1000-w 96.67% 3.33% 3.33% 3.33% 3.33% 

1-(w*10) 96.85% 3.15% 3.19% 3.00% - 

1-(w*100) 96.42% 3.58% 3.56% 3.67% - 

1-(w*1000) 86.30% 13.70% 13.70% 13.67% - 

 

Table 8. Summary 

Technique 
Weight 

Adj. 
Acc. Err. FAR FRR EER 

Euclidean 

Norm 
10-w 96.91% 3.09% 3.11% 3.00% - 

Mean  10-w 96.97% 3.03% 3.04% 3.00% - 

Min-Max  10-w 96.97% 3.03% 3.04% 3.00% - 

Z-score 100-w 96.79% 3.21% 3.19% 3.33% - 

SoftMax All 96.67% 3.33% 3.33% 3.33% 3.33% 

ReLU 
1-

(w*10) 
96.85% 3.15% 3.19% 3.00% - 

 The summary of the best weight adjustment for 

each normalization technique and activation 

function is shown in Table 8. The overall weights 

are x-w, where x can be 1, 10, or 100, depending on 

the technique. The best result is 96.97% accuracy 

and 3.03% error for Mean and Min-max 

normalizations with 10-w as weight adjustment. 

 

4.1  Example Data 
From the results in Table 1, Table 2, Table 3, Table 

4, Table 5 and Table 6, numerical example data 

from 1 user is explained in detail. This user has a 

six-character username, and the SD vector contains 

2 keystroke features for each key, and the total is 12 

elements in the vector. The SD vector is shown as 

follow. 

 

SD vector 

[0.00000, 0.00234, 0.00229, 0.00255, 0.00177, 

0.00230, 0.00118, 0.00086, 0.00085, 0.00133, 

0.00109, 0.00000] 

 

 The values in the SD vector are all positive 

numbers with very small magnitudes. The SD vector 

has to be normalized using one of six normalization 

techniques. The outputs from all techniques are 

shown as follows. 

 

Euclidean norm 

[0.00000, 0.41756, 0.40853, 0.45481, 0.31578, 

0.40957, 0.21054, 0.15394, 0.15134, 0.23661, 

0.19370, 0.00000] 

 

Mean normalization 

[-0.54096, 0.37714, 0.35728, 0.45904, 0.15336, 

0.35958, -0.07803, -0.20249, -0.20821, -0.02071, -

0.11506, -0.54096] 

 

Min-max normalization 

[0.00000, 0.91810, 0.89824, 1.00000, 0.69432, 

0.90054, 0.46293, 0.33847, 0.33275, 0.52025, 

0.42590, 0.00000] 

 

Z-score- normalization 

[-1.55996, 1.08757, 1.03029, 1.32374, 0.44224, 

1.03691, -0.22502, -0.58391, -0.60041, -0.05971, -

0.33179, -1.55996] 

 

Softmax function 

[0.08322, 0.08341, 0.08341, 0.08343, 0.08337, 

0.08341, 0.08332, 0.08329, 0.08329, 0.08333, 

0.08331, 0.08322] 
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ReLU function 

[0.00000, 0.00234, 0.00229, 0.00255, 0.00177, 

0.00230, 0.00118, 0.00086, 0.00085, 0.00133, 

0.00109, 0.00000] 

 The minimum values from each output are in 

bold, while the maximum values are underlined for 

better visualisation. Since the outputs from 

normalization techniques can be zero, the weights 

must be manipulated to avoid the weights being 

zero. In addition, the output values are small, and 

the outputs or weights from each technique have to 

be adjusted to give the best accuracy. The best SD 

vector profiles for each technique with different 

weight adjustments are presented as follows. 

 

SD vector profile (Best results) 

 at 10-w as weight adjustment 

Euclidean norm 

[10.00000, 9.58244, 9.59147, 9.54519, 9.68422, 

9.59043, 9.78946, 9.84606, 9.84866, 9.76339, 

9.80630, 10.00000] 

 

Mean normalization 

[10.54096, 9.62286, 9.64272, 9.54096, 9.84664, 

9.64042, 10.07803, 10.20249, 10.20821, 10.02071, 

10.11506, 10.54096] 

 

Min-max normalization  

[10.00000, 9.08190, 9.10176, 9.00000, 9.30568, 

9.09946, 9.53707, 9.66153, 9.66725, 9.47975, 

9.57410, 10.00000] 

 

Softmax function 

[9.91678, 9.91659, 9.91659, 9.91657, 9.91663, 

9.91659, 9.91668, 9.91671, 9.91671, 9.91667, 

9.91669, 9.91678] 

 

 at 100-w as weight adjustment 

Z-score normalization 

[101.55996, 98.91243, 98.96971, 98.67626, 

99.55776, 98.96309, 100.22502, 100.58391, 

100.60041, 100.05971, 100.33179, 101.55996] 

 

 at 1-10w as weight adjustment 

ReLU function 

[1.00000, 0.97658, 0.97708, 0.97449, 0.98229, 

0.97702, 0.98819, 0.99136, 0.99151, 0.98673, 

0.98913, 1.00000] 

 

 The minimum values from each SD vector 

profile are in bold, while the maximum values are 

underlined. From all SD vector profiles, the 

minimum value from the normalization techniques 

gave maximum weight for all SD vector profiles. 

The different values among weights should be low. 

The Euclidean norm, Mean, and Min-max 

normalizations gave high accuracy at 10-w as 

weights. It means that the weight values should be 

around 10. The Euclidean norm showed the least 

standard variation at 0.158 compared to the Mean 

and Min-max normalizations at 0.347. Therefore, 

the standard deviation affects the performance of the 

technique. From the results, standard deviations of 

Mean and Min-max normalizations are the same, 

and the accuracy is identical at 10-w weight 

adjustment. The results also showed that the 

SoftMax function is unsuitable for the keystroke 

vector dissimilarity technique because the weights 

are almost identical. It means that the importance of 

each value is similar and cannot finally solve the 

Euclidean distance problem. The z-score 

normalization gave the highest standard deviation 

(1.0) at 100-w as weights, but the accuracy was less 

than that of the Mean and Min-max normalizations. 

The ReLU function is not a good technique since 

the values of the SD vector are all positive, and the 

output from the ReLU function is the same as the 

SD vector. 

 

 

5 Conclusion 
This study examines normalization techniques, 

activation functions, and weight adjustments for the 

keystroke vector dissimilarity technique proposed in 

[1]. The study aims to enhance the accuracy of the 

technique to improve the authentication process. 

The normalization techniques and activation 

functions include Euclidean norm, Mean 

normalization, Min-max normalization, Z-score 

normalization, SoftMax function, and ReLU 

function. Weight adjustments were varied during the 

experiments. The results indicate that Mean 

normalization and Min-max normalization with 10-

w as a weight gave the same highest result, 

achieving 96.97% accuracy and 3.03% error, 

outperforming the previous work in [1], which 

achieved 96.67% accuracy and 3.33% error. 

 The analysis steps can be applied to other 

keystroke dynamic datasets for future research to 

enhance accuracy. In addition, the verification 

process for keystroke vector dissimilarity can be 

modified to employ machine learning techniques 

rather than the Six Sigma technique. 
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