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Abstract: - The paper presents the development and application of the VUML Probe profile, an extension of the 
VUML (View-based UML) approach to modeling complex software systems. It focuses on improving 
behavioral modeling by introducing probes for observing and monitoring events. In the introduction, the 
importance of separation of concerns in the management of large software systems is emphasized, with the 
introduction of view-based modeling and the VUML profile. The application context section presents the 
VUML analysis and design process, illustrated by a case study of managing an automotive repair shop. Probes 
are introduced as a modeling concept for event detection and control, with basic categories and methods for 
projection, derivation, and composition. The VUML Probe profile is presented, integrating probe stereotypes 
into the VUML meta-model, with conformance rules to maintain semantic consistency. The application of 
probes in the VUML process is demonstrated, in particular, to ensure the autonomous evolution of model-
views. Abstract probes are defined during the composition phase, and then used in view models. Finally, related 
work and avenues for future research are discussed, including language enhancements, integration with aspect-
oriented modeling, and tool development. In summary, the paper offers a comprehensive framework for 
integrating event observation mechanisms into the VUML approach, aimed at improving the modeling and 
management of complex software systems. 
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1  Introduction 
The critical aspect in dealing with the intricacy of 
large software systems is the concept of "separation 
of concerns". This practice is indispensable to 
maintain manageability throughout the development 
process, the resulting models, and the code. 
Achieving separation of concerns can be executed 
through various methods, but the ultimate objective 
remains consistent: the identification of relatively 
autonomous "components" that can be allocated to 
different participants in the process. These 
components are then designed and constructed 
independently, with the ultimate goal of integrating 
them with minimal effort while ensuring future 
maintainability and adaptability. 

The principal focus of this endeavor is on view-
based modeling, [1], which is a variant of the 
object-oriented modeling approach tailored for the 
examination and design of expansive and intricate 
systems. This approach concentrates on the 
individuals who interact with the system and 
disassembles the specification by their specific 

needs. Consequently, the development of the 
VUML (View-based UML) UML profile was 
initiated, enabling the creation of a unique and 
shareable model that can be accessed based on each 
system actor's perspective. At the core of VUML 
lies the concept of a "multi-view class," comprising 
a foundational class that expresses the structural and 
behavioral characteristics shared among all system 
actors. Additionally, it consists of a set of views, 
each representing attributes pertinent to a particular 
actor. The connection between each view and its 
base is established through a newly stereotyped 
relationship termed "view extension." Dependencies 
among views are defined utilizing another 
stereotyped relationship named "view dependency," 
complemented by constraints articulated in plain 
language or OCL. An instance of a multi-view class 
takes the form of a "multi-view object." 

However, it is important to note that the 
modeling of behavioral facets was not previously 
the main emphasis of the VUML profile's 
development efforts. In the absence of addressing 
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the behavioral aspects of views—how they react to 
invocations and how they collaborate to accomplish 
the behavior of multi-view objects—the VUML 
methodology primarily addresses the structural 
elements linked to view composition and data 
sharing. 

In preceding research, the structural 
composition of models was addressed, [2]. 
Nonetheless, when delving into the composition of 
behavioral models, the issue becomes more 
intricate. A prior work, [3], [4] introduced the 
concept of "event probes" as a pivotal notion for 
addressing this challenge. This work revolved 
around the behavioral specification and composition 
of these object segments. It is widely acknowledged 
that this issue is more closely aligned with aspect 
composition than conventional interface-based 
composition. We illustrate that the novel behavioral 
specification architecture, grounded in event 
observation, yields favorable outcomes concerning 
slice connectivity and support for evolutionary 
design, particularly the addition of slices. 

We introduced a modeling framework centered 
on event observation as the primary method for 
handling first-class object interactions. This was 
primarily achieved through the formalization of 
event concepts and their attributes. Additionally, we 
introduced a novel modeling concept known as a 
"probe," designed for event matching and the 
manipulation of event data. 

The primary focus of this study is to provide 
further clarity on the aforementioned topics. We 
have developed new techniques, including the 
projection, derivation, and composition of probes, to 
enhance the precision of probe-related concepts. 
Our proposal is structured as a profile named the 
"VUML Probe profile." 

The article is organized as follows: In Section 2, 
we establish the backdrop for our research, focusing 
on view-based modeling exemplified by the VUML 
profile. Additionally, we provide an illustrative 
example of its practical application. Section 3 delves 
into the fundamental concepts of our proposition, 
specifically examining probes and associated 
notions. Section 4 is devoted to introducing the 
VUML Probe Profile, while Section 5 investigates 
its implementation through a case study. In Section 
6, we conclude the paper by juxtaposing our 
solution with current strategies, formulating 
conclusions, and outlining potential directions for 
future research. 
 

 

2 Application Context: View-Based 

 Modeling 
According to various perspectives, the creation of 
the VUML profile, [5], aimed to address the 
requirements of modeling complex information 
systems using UML. Each perspective in the system 
reflects an actor's needs and privileges. These 
viewpoints can be viewed as practical, user-centric 
facets. A view is the result of generalizing a 
perspective across the entire system and applying it 
to an entity, typically a class. 

The key idea in the VUML language revolves 
around the "multiview class." This class comprises a 
foundational class shared among all actors and a 
series of view classes, each tailored to a specific 
perspective and extending the foundational class. 
This construction of a multiview class facilitates 
accurate control of access permissions and the 
separation of concerns at the class level. To 
articulate the semantics of VUML, a meta-model, 
accompanied by constraint rules articulated in OCL, 
is employed. 
 

2.1 The VUML Profile 
VUML adopts a viewpoint modeling approach, also 
known as a viewpoint decomposition method, to 
organize and structure software system models. This 
approach recognizes that different actors involved in 
the development and use of a system have different 
perspectives on it. In this way, the system can be 
viewed from different angles, each highlighting 
specific aspects relevant to a particular interest 
group. 
 
Here's how this method is applied in VUML: 
 Identifying viewpoints: First, stakeholders 

identify the different viewpoints relevant to the 
system. These may include end-users, 
developers, testers, project managers, and so on. 
Each point of view highlights the aspects of the 
system that are important to the group 
concerned. 

 System decomposition: Once the viewpoints 
have been identified, the system is decomposed 
into subsystems or logical components 
corresponding to each viewpoint. Each 
subsystem represents a part of the system that is 
relevant to a specific point of view. 

 Viewpoint modeling: For each viewpoint, 
VUML models are created to represent the 
specific aspects of the system that are relevant. 
For example, a user viewpoint can be 
represented by use case diagrams describing the 
interactions between the system and its users, 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.19

Abdelali El Bdouri, 
Chaimae Ouali-Alami, Younes Lakhrissi

E-ISSN: 2224-2678 165 Volume 23, 2024



while a design viewpoint can be represented by 
class diagrams describing the internal structure 
of the system. 

 Viewpoint integration: Once the models for 
each viewpoint have been created, they are 
integrated to form a coherent overview of the 
system. This ensures that all aspects of the 
system are taken into account and that the needs 
and objectives of all stakeholders are met. 

 
By using this point-of-view decomposition 

approach, VUML enables development teams to 
better understand system needs and requirements, 
taking into account the different perspectives of 
stakeholders. This facilitates communication, 
collaboration, and decision-making, all of which 
contribute to the success of the software project. 
 

2.2 The VUML Analysis and Design Process 
VUML aims to simplify the design complexity of 
software systems by leveraging fragmentation 
aligned with the system actors' needs and access 
rights. It achieves this by advocating for a method 
that facilitates model development at various levels 
of abstraction. This horizontal separation of 
concerns complements the vertical approach of 
MDA, [6]. 
 

 
Fig. 1: Overall VUML process, [5] 
 

The VUML design process consists of three 
main phases, each comprising several steps (refer to 
Figure 1). The initial step involves identifying the 
actors' needs, with the primary goal being the 
development of a requirements model, typically 
represented as a UML use case diagram. In the 
decentralized second phase of the process, various 
PIM models, [7] are generated, each representing a 
distinct viewpoint. In this stage, a set of UML 

models is produced, comprising class diagrams, 
state machines, sequence diagrams, and additional 
elements. The final step entails a composition 
operation, where autonomously developed design 
models are merged to form a comprehensive VUML 
design model. 
 
2.3 Case Analysis 
To illustrate our approach, we will use a case study 
involving the management of an auto repair shop, as 
depicted in Figure 2. This case study involves a 
complex information system with multiple actors, 
including a manager, technicians, clients, and more. 
It serves as an example to showcase how the VUML 
approach described earlier is applied in practice. 
The study primarily focuses on specifying object 
behavior in the second phase and then combining 
these behaviors in the fusion phase, which is the 
third phase of the process. 

For simplicity, we will limit our examination to 
the following actors and their associated activities: 
▪ The customer or automobile owner (Client): 

The system's functionality should allow 
customers to access information about their 
cars, track their vehicles' repair progress, and 
review repair and expert reports. 

▪ The mechanic (Mechanic): Mechanics should be 
able to review the history of failures, make 
amendments, and record expert and repair 
reports, as well as log information about the 
parts that have been repaired. 

 
Fig. 2: Segment from the VUML class diagram: the 
multi-view class "Car" 
 

The result of merging various structural models 
that were previously distinct is a VUML model that 
incorporates multiview classes. These classes are 
formed by combining homonymous classes created 
independently. An excerpt of a VUML class 
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diagram depicting the multiview class "Car" is 
provided in Figure 2. This class includes a "base" 
section, stereotyped as such, accessible to all actors. 
Additionally, it contains "views," stereotyped as 
"view," representing parts specific to each actor 
(Client, Manager, Mechanic). 
 
 
3  Probes 
A probe is a modeling construct used to detect and 
control events that are important for achieving a 
specific objective. We utilize probes in particular to 
simulate implicit interaction between objects. The 
existing modeling elements, particularly in UML, 
cannot be used to concretize the goals of the probe 
event notion. We lay out the foundational ideas for 
comprehending our proposal in this part. 

We have determined groupings of probes that 
correspond to the typical execution-related event 
types. We may hone these basic sorts of probes to 
describe a specific behavior using the notion of 
projection. We outline the probe derivation process, 
which enables the creation of new probe classes 
with supplementary properties while consistently 
observing the same event type as the parent class. 
We offer a second, more difficult notion that makes 
use of the composition mechanism to customize a 
class of probes. Composite classes can 
simultaneously observe various events. 
 
3.1 Basic probe categories: Probe Library 
After a thorough examination of various events 
occurring during system usage (as illustrated in 
Figure 3), we have identified three primary 
categories of fundamental probes. By MDA 
terminology, these basic probe types are situated at 
the M1 modeling level, [8]. 

These basic probes are defined within a 
ProbeLibrary, providing system designers with the 
option to employ them as preconfigured classes in 
their models. By instantiating each library type, 
concrete probes can be created. As mentioned 
earlier, these probe types can be tailored to specific 
contexts through principles such as projection, 
derivation, and composition. 

Distinguishing these probes is their capability to 
manage data either at the model level (M1 level) or 
the meta-model level (M2 level). For example, the 
class type designates its membership class, an 
element at the M2 level, while the ObjectProbe type 
oversees the observed Object type, an object at the 
M1 level. Achieving this requires employing a 
language that facilitates reflexivity. 

 

 
Fig. 3: Basic probe categories: ProbeLibrary 
 
3.2 Declaration and Instantiation of Probes 
Probes are declared independently of system 
entities, following a similar process to traditional 
class declarations. Once the structure of a probe 
class is defined, developers can instantiate these 
probe classes and incorporate them into their design 
models. As depicted in Figure 4(a), we present an 
example of the SignalSendProbe class instantiation. 
To monitor signal transmissions, the model 
instantiates the probe repairOkObs. The probe 
becomes active for any signal transmission within 
the system when a constraint is specified in the filter 
attribute. Otherwise, the probe will choose events 
conforming to the constraint filter, as detailed in the 
subsequent section on projection. 
 

 
Fig. 4: (a) An instance illustration of a probe (b) 
Exemplary filter 
 
3.3 Utilizing Probes in UML 
In the following example, we illustrate the 
application of the probe approach in UML 
development. Let's assume we have a class named 
"MyClass," which intends to utilize the probe 
concept to monitor when the agency manager sends 

   repairOkObs.filter = " Context repairOkObs : SignalSendProbe inv : 

      self.observedSignal.oclIsTypeOf(carRepaired)   
                and  self.sender.oclIsTypeOf(Mechanic)   
                 and self.receiver.oclIsTypeOf(Manager)  

       "  

 
(a) 

(b) 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.19

Abdelali El Bdouri, 
Chaimae Ouali-Alami, Younes Lakhrissi

E-ISSN: 2224-2678 167 Volume 23, 2024



the "startRepair" signals. To implement this 
observation, we proceed with the following steps: 

1. Instantiate the probe class associated with 
the observed event type, specifically the 
"SignalSendProbe" type. The resulting 
instance is labeled as "startRepObs." This is 
accomplished by defining an 
"InstanceSpecification" UML element and 
assigning the stereotype "probe" to it. 

2. Define the constraints that need to be 
evaluated at the observation moment to 
specify the probe filter. In our case, we have 
two constraints applied to the 
"observedSignal" and "sender" properties. 

3. Declare a reference to the instantiated probe 
by introducing a UML "Reception" within 
the class and subsequently annotating it as 
«probeUse». 

4. Incorporate the probe instance within the 
behavioral description of the class, 
particularly within the state machine 
compatible with the class. 

 
A summary of the "startRepObs" probe used to 

describe the behaviors of "MyClass" can be found in 
Figure 5. The definition of the "startRepObs" probe 
is presented in Figure 5-top, while Figure 5-low 
illustrates how the state machine associated with the 
"MyClass" class references and utilizes this probe. 

 

 
Fig. 5: Utilizing probes in UML development 
 
3.4 Probes Projection 
Each type of probe is assigned to a specific category 
of event, causing the probe to be triggered whenever 
an event of that particular type occurs within the 
system. However, the use of the "filter" attribute is 
not obligatory since there are instances where events 
need to be filtered based on contextual information. 
To apply additional constraints for such cases, these 
limitations must be defined and met when the probe 
is activated. 
 

The projection process allows for the imposition 
of additional criteria on probe activation. It involves 
adding prerequisites that events must adhere to in 
order to match the probe type, thus establishing the 
context for observation. This is achieved through the 
"filter" attribute, which enables the expression of 
Boolean data and metadata conditions of observed 
events in a character string. These constraints are 
expressed using the OCL programming language. 

Figure 4(b) illustrates the projection of the 
SignalSendProbe probe. The filter depicted in this 
figure amalgamates three OCL constraints that will 
be validated against events of the signal 
transmission type. The initial constraint mandates 
that the observed signal pertains to the 
"carRepaired" type, the second necessitates the 
transmitting object to be of type "Mecanicien," and 
the third specifies that the receiving object must be 
of type "Manager." 

The probe is activated solely when an event's 
parameters satisfy the filter conditions. Upon 
activation, all attributes of the probe are 
automatically updated to reflect the event's 
parameters, and the transitions that follow the 
probe's activation become executable within the 
state machines used by the objects employing the 
probe. This process is triggered automatically when 
the operation is activated. 
 
3.5 Probe Derivation 
The previously defined probe classes within the 
ProbeLibrary encompass the metadata of the 
observed event type. Developers have the flexibility 
to declare an additional attribute to store 
supplementary data concerning the system's status 
and the activation time of the probe. This 
customization is contingent upon identifying the 
specific probe under consideration. 

Consider a SignalSendProbe, which is designed 
to identify the "testOK" signal sent by objects of the 
"Car" type. Now, let's introduce a specific instance 
of the SignalSendProbe probe, equipped with a filter 
tailored for this observation. If we require the 
precise moment when the signal was sent at the time 
of probe activation, we can enhance this probe with 
an additional attribute, such as "date." The class for 
the derived probe, known as 
"SignalSendProbe_testFunction," is depicted in 
Figure 6(a), along with an instance of this class and 
its corresponding filter in Figure 6(b). 
 
 

  

 

startRepObs.filter = " Context startRepObs :  

SignalSendProbe inv :   
self.observedSignal.oclIsTypeOf(startRepair) and 
self.sender.oclIsTypeOf(Manager)  

     " 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.19

Abdelali El Bdouri, 
Chaimae Ouali-Alami, Younes Lakhrissi

E-ISSN: 2224-2678 168 Volume 23, 2024



 
Fig. 6: Probe derivation: example of testOkProbe 

 
It's worth noting that the "update()" action of the 

probe is responsible for refreshing the probe's 
properties upon activation. Consequently, to ensure 
that the newly introduced attributes, like "date" in 
our example, are properly updated, this operation 
needs to be redefined in the derived class. The Java 
code for the "update()" operation of the 
"SignalSendProbe_testFunction" class is presented 
in Figure 6(c). 
 
3.6 Combining Basic Probes 
We have discussed two methods for modifying 
basic probes thus far. The first method is projection, 
which employs a filter to customize a probe 
according to a specific situation using data and 
metadata events (see Section III.D). The second 
method is probe derivation, which offers the option 
to introduce new attributes for storing additional 
data related to the system's state at the moment the 
probe is activated (see Section III.E). However, it's 
essential to note that these two processes allow 
customization for only one type of probe at a time. 
These approaches are not suitable for handling 
complex probes involving multiple event types. In 
this section, we introduce a third mechanism called 
probe composition, aiming to simultaneously 
monitor various types of occurrences. 

To represent the arrangement of probes, we 
have chosen to utilize a state machine. This decision 
was made for several reasons, including: 
 

Simplifying the designers' work by expressing 
composition visually rather than through 
mathematical notation. 

Representing the timing and sequencing of 
system events. 

Leveraging the capabilities and resources 
provided by a state machine in describing behaviors 
in a state/transition format. 

Examine a straightforward scenario where we 
need to reference the occurrences of "A behavior 
followed by B behavior." Suppose two probes, obs1 
and obs2, record these behaviors, with obs1 
capturing A and obs2 capturing B. The composition 
of these two probes, obs1 and obs2, represented as a 
state machine, is depicted in Figure 7(a). 

 

 
         (a)                                              (b) 
Fig. 7: Composition probe examples 
 

The state machine illustrating the composition is 
presented in Figure 7(b). To keep track of the 
number of sequence realizations, a variable named 
nbActivation, initially set to 1, is employed in the 
same example. In this scenario, the probe is 
intended to be triggered after four sequences, which 
consist of the "A behavior" followed by the "B 
behavior." It's important to note that any scenario 
associated with defining the constructed probe can 
be inserted between the two states: 
"startObservation" and "EndObservation." Once the 
"EndObservation" state is exited, the "activate()" 
operation is executed, marking the conclusion of the 
observed behavior. 
 
 
4  Probe for VUML Profile  
The VUML Probe Profile incorporates various 
stereotypes, namely ProbeClass, Probe, ProbeUse, 
ProbeEvent, and Wait, into the VUML metamodel. 
These stereotypical designations result from the 
mapping process applied to the comprehensive 

 
 

  testOKProbe.filter = "      Context testOKProbe : SignalSendProbe_testFonction inv :  

        self.sender.oclIsTypeOf(Car)  
   and self.observedSignal.name='testOK' 

            " 
  

(a) 

(b) 

 

(c) 
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meta-model detailed in [9]. A summary of the 
abstract syntax associated with the proposed profile 
can be observed in Figure 8. 
 

 
Fig. 8: Probe_Profile definition OF stereotypes 
  

 The meta-model for components aims to 
create a linkage between the domain 
concepts encapsulated by our profile and the 
corresponding UML concepts. In this 
segment, we introduce the translations we 
have selected for the stereotypes associated 
with the proposed meta-model elements:  

 The UML Class metaclass is expanded with 
the stereotype "probeClass." It serves as a 
representation of the components of the 
probe library type. The tagged value 
"isComposite" helps differentiate between 
the two probe types (elementary and 
composite). The default value "false" is 
assigned to newly created items, indicating 
the elementary probe class. 

 The UML InstanceSpecification metaclass 
is enriched with the stereotype "probe." It 
identifies objects that are instances of 
classes stereotyped with « probeClass ». We 
have established OCL constraints to ensure 
this, as detailed in the subsequent section. 

 The UML Reception metaclass is broadened 
with the stereotype "probeUse." In UML, a 
reception is a modeling element specifying 
the class intending to use a signal. This 
metaclass is extended because it closely 
aligns with the semantics of ProbeUse. In 
terms of syntax, a reference to a probe is 
indicated as « probeUse » obs1. 

 The UML AnyReceiveEvent metaclass is 
improved with the stereotype "probeEvent." 

 The UML Trigger metaclass is 
complemented with the stereotype "wait." 

The syntax "wait(obs)" in a state-machine 
transition signifies that the Wait trigger is 
awaiting the activation of the probe "obs" to 
traverse this transition. 

 
4.1 Compliances Rules  
In this section, we offer semantic guidelines 
concerning the components within the Probe profile. 
Initially, these guidelines are presented in natural 
language before being translated into OCL. 

 Every InstanceSpecification labeled with 
the stereotype "probe" must also possess a 
classifier marked with the stereotype 
"probeClass." 

 
 A trigger stereotyped as « wait » cannot 

used to describe an event. 

 
 Only elements of the type Probe can be 

referred to by all elements with the type 
Reception and the stereotype "probeUse". 

 

 
5  Application  
Ensuring the autonomy of model-view evolution is a 
fundamental principle in the multiview design 
approach. However, this principle may be 
compromised when there is a substantial 
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interdependence between the behaviors of the 
model-views. To address this challenge, we have 
proposed an observation approach based on event 
probes. 
 

 
Fig. 9: Using probes in VUML process 
 

For instance, consider the scenario where we 
need precise information about when the car repair 
process begins while developing the state machine 
for the client actor. However, the client model view 
lacks direct access to this information, and it 
remains unclear which actor is responsible for 
initiating the repair process (whether it's the agency 
manager, the technician, or the workshop manager). 
Furthermore, the specific representation of this 
activity is yet to be determined (whether it involves 

a signal exchange, a message, or an attribute 
change). 

The solution involves employing probes to 
describe the behaviors of the views independently of 
each other, and the principles of behavior 
composition during the composition phase are 
detailed in the following sections (Section 5.1). 
 
5.1 Abstract Definition of Probes  
When examining the state machine that represents 
the car within the client view, it becomes imperative 
to determine the point at which the car repair 
operation commences. 
 However, the triggering event for this initiation 
remains unidentified, contingent upon another 
viewpoint that might not have been explicitly 
modeled. This event will only be established during 
the composition phase of viewpoints. Consequently, 
we introduce an abstract probe termed 
"repairStartProbe." Figure 9(a) illustrates the 
abstract declaration of this probe, presented as a 
direct instance of the Probe class, which serves as 
the root class in the ProbeLibrary. 
 
5.2 Employing Probes in View Models 
The designated probe is employable in the 
behavioral delineation of the client perspective, 
particularly within the behavioral specification of 
the Car class. To incorporate it, a probe reception 
must be established within the Car Client View 
class, indicated by the « probeUse » stereotype. 
Subsequently, the probe can be employed in the 
behavioral specification for this class through its 
state machine. 

In Figure 9(b), one can observe the application 
of the "repairStartProbe" probe, instigating the 
transition between the "ContractApproved" and 
"InRepair" states. 
 
5.3 Defining Abstract Probes during the 

 Composition Phase 
As mentioned in [9], the behavior composition seeks 
to specify the behavior of multi-view reactive 
objects after the structural composition is finished. 
These multi-view objects are made up of multiple 
parts, each of which expresses a view behavior that 
was defined during the view modeling stage using a 
state machine. Either the definition of abstract 
parameters or the concretization of abstract probes 
allows for the mapping and synchronization among 
view machines. 

Figure 9(c) depicts the result of the model 
composition process conducted during the 
decentralized phase. An exemplar from the Car 

 

 
   repairStartProbe.filter = " Context repairStartProbe : SignalSendProbe inv : 

      self.observedSignal.oclIsTypeOf(repairStarted)   
                and  self.sender.oclIsTypeOf(Car_Mechanic_View)   
                 and self.receiver.oclIsTypeOf(Mechanic)  

       "  
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class, after structural amalgamation with a solitary 
actor (the client), is delineated in Figure 9(c)-top. 
The Car is exhaustively delineated by the 
foundational class "CarBase," shared uniformly 
across all perspectives, along with an assemblage of 
perspectives, each explicating the attributes relevant 
to a particular actor. 

In Figure 9(c)-low, the instantiation of the 
"repairStartProbe" probe is illustrated after the 
antecedent parameter concretization that was left 
unspecified. The "RepairStartProbe" pertains to the 
SignalSendProbe category and monitors the 
"repairOrder" signal. 
 
 
6  Related work  
This research builds upon the findings presented in a 
previous work [6], which introduced the concept of 
a probe and its application in specifying behavior 
and facilitating communication with other object 
slices, accompanied by illustrative examples. The 
current study extends these insights by offering 
enhanced methodologies for composing and refining 
event probes, along with an exploration of their 
integration into the VUML profile. 

Prior approaches to event observation have been 
employed in diverse domains, including formal 
verification, software testing, debugging, and 
various aspect-driven modeling techniques. To our 
knowledge, object-oriented modeling languages 
have not been previously explored for event 
observation, and there have been no proposals for 
modeling languages that incorporate probes, event 
types, or related concepts. 

In the realm of formal verification, the concept 
of event observation was first introduced as a 
method for formally specifying attributes in the 
Véda verification tool, [10]. This idea was 
subsequently extended to tools for verifying 
asynchronous concurrent systems, as evidenced in 
[11], [12]. While our work draws inspiration from 
these earlier efforts, it distinguishes itself by 
integrating the concept within a robust modeling 
language like UML. This enables the modeling of 
event types, including meta-parameters, as well as 
refinement and composition processes. Notably, our 
approach innovatively positions event observation 
as a primary method for modeling object 
interactions. 

In synchronous models, where specific 
requirements for a language or method to model 
observation are absent due to the limited occurrence 
of event types (primarily data changes), our 
approach introduces a novel perspective within the 
UML framework. The exploration of decentralized 

supervisory control in discrete-event systems, as 
seen in works like, [13], has extensively examined 
the computational expressiveness of (distributed) 
event observation but without associating it with a 
particular language for expression. 

Within the context of aspect-oriented 
programming, methodologies suggesting the 
specification of joint points through event 
sequences, [14], [15], [16], [17] exist. Our approach 
aligns with the Concurrent Event-Built AOP 
(CEAOP) computational model, described in [18], 
sharing similarities in concepts such as parallel 
system components, aspect composition, and event-
based synchronization. Nevertheless, a fundamental 
distinction lies in the fact that our approach delves 
into the properties of events and introduces the 
probe construct, whereas, in CEAOP, events are 
treated as plain (uninterpreted) synchronization 
labels. 

In the domain of distributed event-based 
systems (DEBS), specific efforts have been made to 
define a language for event detection, as evident in 
[19]. The key difference between our approach and 
[19] lies like their language, which is textual and not 
integrated into a general-purpose modeling language 
like UML. Moreover, their focus on large-scale 
event stream processing differs significantly from 
our scope, necessitating the use of distinct 
languages. Other instances of event observation can 
be found in fields such as autonomous agents, [20] 
and program tracing and debugging, exemplified by 
technologies like Sun's D-Trace.  
 
 
7 Conclusion and Future Research 

 Paths   
This paper introduces a UML profile that elevates 
event observation to the status of a primary object 
interaction mechanism while also extending the 
existing VUML profile dedicated to view-based 
modeling. Our profile provides mechanisms for 
composing and refining event probes. 

In this proposal, we have opted for an approach 
based on adding new, specific mechanisms to 
VUML for modeling and composing view-object 
behaviors. To this end, we have introduced the 
notion of event probes to specify implicit 
communications between view objects through 
event observations. This makes it possible to 
decouple specifications that are a priori strongly 
interconnected, design them separately, and then 
integrate them without having to modify them. To 
achieve our goal, we first defined the concept of an 
event probe, identified the different types of probes 
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with their associated parameters, [4], and then 
defined a set of concepts for enriching and 
manipulating probes. 

System part, [21], modeling with VUML offers 
advantages for complex systems, but has two main 
limitations: 
 Views need to be developed with an eye to the 

dependencies between them. Coupling between 
views is crucial, as each view requires external 
information, which can make the view-based 
design difficult to implement. Development 
coordination is needed to share the information 
required to integrate views. 

 Model merging is complex and often requires 
human intervention, despite attempts at 
automation. 

 
In conclusion, although the two approaches to 

model composition - UML-based composition, [22] 
and the event probe approach - aim to provide an 
efficient and accurate representation of complex 
systems, they differ in their approach and focus. 

The UML-based approach focuses on static 
system modeling using diagrams and relationships 
defined in UML. This enables a detailed 
representation of the system's structure and behavior 
through a variety of views. However, it can suffer 
from the complexity of managing dependencies 
between views, which can make development 
coordination difficult. 

On the other hand, the event probe approach 
focuses on dynamically monitoring interactions 
between system components by capturing and 
analyzing events. This provides an in-depth 
understanding of the system's real-time behavior but 
can be more difficult to model exhaustively and 
integrate into a global representation. 
 
Future work. Numerous avenues for future 
research remain open, encompassing tools, 
methodologies, and language enhancements. On the 
language front, one potential avenue involves 
simplifying the distinct specification of viewpoints 
based on abstract probes. These abstract probes 
could potentially be treated as template parameters, 
and more advanced UML methods, [23], such as 
templates, might be leveraged for this purpose. By 
instantiating templates with concrete probes, we 
could facilitate view integration. 

View-based modeling and aspect-oriented 
modeling (AOM) share certain similarities, as 
previously mentioned. However, the solution 
outlined in this paper may not be entirely suitable 
for AOM, primarily because aspect specifications 
sometimes require intrusive actions, such as limiting 

or modifying the behavior of the base model to 
which an aspect is applied. The mechanisms 
presented in this paper may not fully accommodate 
such requirements. Therefore, our future work will 
revolve around expanding the current concept into a 
comprehensive AOM language. 

Another promising direction for future research 
involves the incorporation of high-level inter-object 
behavior specifications into VUML. Currently, the 
profile predominantly focuses on state machines and 
techniques for specifying intra-object behavior. 
Expanding the scope to encompass inter-object 
behavior specifications represents a significant area 
of interest. 

Lastly, it's important to note that the prototyping 
tool described in [11], should be regarded as a 
proof-of-concept on the front of the tool. To 
establish the scalability of our approach for realistic 
models, it becomes necessary to extend this tool into 
a fully functional code generator. Furthermore, 
integrating this tool into a unified platform, along 
with various other tools developed around VUML 
(such as [5]), is a critical step forward in our 
research agenda. 
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