
A New Approach for Multi-View Models’ Composition using Probes

Event

ABDELALI EL BDOURI*, CHAIMAE OUALI-ALAMI, YOUNES LAKHRISSI

SIGER Laboratory,
Sidi Mohamed Ben Abdellah University,

Fez,
MOROCCO

Abstract: - The paper presents the development and application of the VUML Probe profile, an extension of the
VUML (View-based UML) approach to modeling complex software systems. It focuses on improving
behavioral modeling by introducing probes for observing and monitoring events. In the introduction, the
importance of separation of concerns in the management of large software systems is emphasized, with the
introduction of view-based modeling and the VUML profile. The application context section presents the
VUML analysis and design process, illustrated by a case study of managing an automotive repair shop. Probes
are introduced as a modeling concept for event detection and control, with basic categories and methods for
projection, derivation, and composition. The VUML Probe profile is presented, integrating probe stereotypes
into the VUML meta-model, with conformance rules to maintain semantic consistency. The application of
probes in the VUML process is demonstrated, in particular, to ensure the autonomous evolution of model-
views. Abstract probes are defined during the composition phase, and then used in view models. Finally, related
work and avenues for future research are discussed, including language enhancements, integration with aspect-
oriented modeling, and tool development. In summary, the paper offers a comprehensive framework for
integrating event observation mechanisms into the VUML approach, aimed at improving the modeling and
management of complex software systems.

Key-Words: - View based modeling, VUML profile, VUML Probe_profile, event observation, multi-view

states machine, behavior composition.

Received: July 14, 2023. Revised: February 14, 2024. Accepted: March 11, 2024. Published: May 20, 2024.

1 Introduction
The critical aspect in dealing with the intricacy of
large software systems is the concept of "separation
of concerns". This practice is indispensable to
maintain manageability throughout the development
process, the resulting models, and the code.
Achieving separation of concerns can be executed
through various methods, but the ultimate objective
remains consistent: the identification of relatively
autonomous "components" that can be allocated to
different participants in the process. These
components are then designed and constructed
independently, with the ultimate goal of integrating
them with minimal effort while ensuring future
maintainability and adaptability.

The principal focus of this endeavor is on view-
based modeling, [1], which is a variant of the
object-oriented modeling approach tailored for the
examination and design of expansive and intricate
systems. This approach concentrates on the
individuals who interact with the system and
disassembles the specification by their specific

needs. Consequently, the development of the
VUML (View-based UML) UML profile was
initiated, enabling the creation of a unique and
shareable model that can be accessed based on each
system actor's perspective. At the core of VUML
lies the concept of a "multi-view class," comprising
a foundational class that expresses the structural and
behavioral characteristics shared among all system
actors. Additionally, it consists of a set of views,
each representing attributes pertinent to a particular
actor. The connection between each view and its
base is established through a newly stereotyped
relationship termed "view extension." Dependencies
among views are defined utilizing another
stereotyped relationship named "view dependency,"
complemented by constraints articulated in plain
language or OCL. An instance of a multi-view class
takes the form of a "multi-view object."

However, it is important to note that the
modeling of behavioral facets was not previously
the main emphasis of the VUML profile's
development efforts. In the absence of addressing

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.19

Abdelali El Bdouri,
Chaimae Ouali-Alami, Younes Lakhrissi

E-ISSN: 2224-2678 164 Volume 23, 2024

the behavioral aspects of views—how they react to
invocations and how they collaborate to accomplish
the behavior of multi-view objects—the VUML
methodology primarily addresses the structural
elements linked to view composition and data
sharing.

In preceding research, the structural
composition of models was addressed, [2].
Nonetheless, when delving into the composition of
behavioral models, the issue becomes more
intricate. A prior work, [3], [4] introduced the
concept of "event probes" as a pivotal notion for
addressing this challenge. This work revolved
around the behavioral specification and composition
of these object segments. It is widely acknowledged
that this issue is more closely aligned with aspect
composition than conventional interface-based
composition. We illustrate that the novel behavioral
specification architecture, grounded in event
observation, yields favorable outcomes concerning
slice connectivity and support for evolutionary
design, particularly the addition of slices.

We introduced a modeling framework centered
on event observation as the primary method for
handling first-class object interactions. This was
primarily achieved through the formalization of
event concepts and their attributes. Additionally, we
introduced a novel modeling concept known as a
"probe," designed for event matching and the
manipulation of event data.

The primary focus of this study is to provide
further clarity on the aforementioned topics. We
have developed new techniques, including the
projection, derivation, and composition of probes, to
enhance the precision of probe-related concepts.
Our proposal is structured as a profile named the
"VUML Probe profile."

The article is organized as follows: In Section 2,
we establish the backdrop for our research, focusing
on view-based modeling exemplified by the VUML
profile. Additionally, we provide an illustrative
example of its practical application. Section 3 delves
into the fundamental concepts of our proposition,
specifically examining probes and associated
notions. Section 4 is devoted to introducing the
VUML Probe Profile, while Section 5 investigates
its implementation through a case study. In Section
6, we conclude the paper by juxtaposing our
solution with current strategies, formulating
conclusions, and outlining potential directions for
future research.

2 Application Context: View-Based

 Modeling
According to various perspectives, the creation of
the VUML profile, [5], aimed to address the
requirements of modeling complex information
systems using UML. Each perspective in the system
reflects an actor's needs and privileges. These
viewpoints can be viewed as practical, user-centric
facets. A view is the result of generalizing a
perspective across the entire system and applying it
to an entity, typically a class.

The key idea in the VUML language revolves
around the "multiview class." This class comprises a
foundational class shared among all actors and a
series of view classes, each tailored to a specific
perspective and extending the foundational class.
This construction of a multiview class facilitates
accurate control of access permissions and the
separation of concerns at the class level. To
articulate the semantics of VUML, a meta-model,
accompanied by constraint rules articulated in OCL,
is employed.

2.1 The VUML Profile
VUML adopts a viewpoint modeling approach, also
known as a viewpoint decomposition method, to
organize and structure software system models. This
approach recognizes that different actors involved in
the development and use of a system have different
perspectives on it. In this way, the system can be
viewed from different angles, each highlighting
specific aspects relevant to a particular interest
group.

Here's how this method is applied in VUML:
 Identifying viewpoints: First, stakeholders

identify the different viewpoints relevant to the
system. These may include end-users,
developers, testers, project managers, and so on.
Each point of view highlights the aspects of the
system that are important to the group
concerned.

 System decomposition: Once the viewpoints
have been identified, the system is decomposed
into subsystems or logical components
corresponding to each viewpoint. Each
subsystem represents a part of the system that is
relevant to a specific point of view.

 Viewpoint modeling: For each viewpoint,
VUML models are created to represent the
specific aspects of the system that are relevant.
For example, a user viewpoint can be
represented by use case diagrams describing the
interactions between the system and its users,

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.19

Abdelali El Bdouri,
Chaimae Ouali-Alami, Younes Lakhrissi

E-ISSN: 2224-2678 165 Volume 23, 2024

while a design viewpoint can be represented by
class diagrams describing the internal structure
of the system.

 Viewpoint integration: Once the models for
each viewpoint have been created, they are
integrated to form a coherent overview of the
system. This ensures that all aspects of the
system are taken into account and that the needs
and objectives of all stakeholders are met.

By using this point-of-view decomposition

approach, VUML enables development teams to
better understand system needs and requirements,
taking into account the different perspectives of
stakeholders. This facilitates communication,
collaboration, and decision-making, all of which
contribute to the success of the software project.

2.2 The VUML Analysis and Design Process
VUML aims to simplify the design complexity of
software systems by leveraging fragmentation
aligned with the system actors' needs and access
rights. It achieves this by advocating for a method
that facilitates model development at various levels
of abstraction. This horizontal separation of
concerns complements the vertical approach of
MDA, [6].

Fig. 1: Overall VUML process, [5]

The VUML design process consists of three
main phases, each comprising several steps (refer to
Figure 1). The initial step involves identifying the
actors' needs, with the primary goal being the
development of a requirements model, typically
represented as a UML use case diagram. In the
decentralized second phase of the process, various
PIM models, [7] are generated, each representing a
distinct viewpoint. In this stage, a set of UML

models is produced, comprising class diagrams,
state machines, sequence diagrams, and additional
elements. The final step entails a composition
operation, where autonomously developed design
models are merged to form a comprehensive VUML
design model.

2.3 Case Analysis
To illustrate our approach, we will use a case study
involving the management of an auto repair shop, as
depicted in Figure 2. This case study involves a
complex information system with multiple actors,
including a manager, technicians, clients, and more.
It serves as an example to showcase how the VUML
approach described earlier is applied in practice.
The study primarily focuses on specifying object
behavior in the second phase and then combining
these behaviors in the fusion phase, which is the
third phase of the process.

For simplicity, we will limit our examination to
the following actors and their associated activities:
▪ The customer or automobile owner (Client):

The system's functionality should allow
customers to access information about their
cars, track their vehicles' repair progress, and
review repair and expert reports.

▪ The mechanic (Mechanic): Mechanics should be
able to review the history of failures, make
amendments, and record expert and repair
reports, as well as log information about the
parts that have been repaired.

Fig. 2: Segment from the VUML class diagram: the
multi-view class "Car"

The result of merging various structural models
that were previously distinct is a VUML model that
incorporates multiview classes. These classes are
formed by combining homonymous classes created
independently. An excerpt of a VUML class

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.19

Abdelali El Bdouri,
Chaimae Ouali-Alami, Younes Lakhrissi

E-ISSN: 2224-2678 166 Volume 23, 2024

diagram depicting the multiview class "Car" is
provided in Figure 2. This class includes a "base"
section, stereotyped as such, accessible to all actors.
Additionally, it contains "views," stereotyped as
"view," representing parts specific to each actor
(Client, Manager, Mechanic).

3 Probes
A probe is a modeling construct used to detect and
control events that are important for achieving a
specific objective. We utilize probes in particular to
simulate implicit interaction between objects. The
existing modeling elements, particularly in UML,
cannot be used to concretize the goals of the probe
event notion. We lay out the foundational ideas for
comprehending our proposal in this part.

We have determined groupings of probes that
correspond to the typical execution-related event
types. We may hone these basic sorts of probes to
describe a specific behavior using the notion of
projection. We outline the probe derivation process,
which enables the creation of new probe classes
with supplementary properties while consistently
observing the same event type as the parent class.
We offer a second, more difficult notion that makes
use of the composition mechanism to customize a
class of probes. Composite classes can
simultaneously observe various events.

3.1 Basic probe categories: Probe Library
After a thorough examination of various events
occurring during system usage (as illustrated in
Figure 3), we have identified three primary
categories of fundamental probes. By MDA
terminology, these basic probe types are situated at
the M1 modeling level, [8].

These basic probes are defined within a
ProbeLibrary, providing system designers with the
option to employ them as preconfigured classes in
their models. By instantiating each library type,
concrete probes can be created. As mentioned
earlier, these probe types can be tailored to specific
contexts through principles such as projection,
derivation, and composition.

Distinguishing these probes is their capability to
manage data either at the model level (M1 level) or
the meta-model level (M2 level). For example, the
class type designates its membership class, an
element at the M2 level, while the ObjectProbe type
oversees the observed Object type, an object at the
M1 level. Achieving this requires employing a
language that facilitates reflexivity.

Fig. 3: Basic probe categories: ProbeLibrary

3.2 Declaration and Instantiation of Probes
Probes are declared independently of system
entities, following a similar process to traditional
class declarations. Once the structure of a probe
class is defined, developers can instantiate these
probe classes and incorporate them into their design
models. As depicted in Figure 4(a), we present an
example of the SignalSendProbe class instantiation.
To monitor signal transmissions, the model
instantiates the probe repairOkObs. The probe
becomes active for any signal transmission within
the system when a constraint is specified in the filter
attribute. Otherwise, the probe will choose events
conforming to the constraint filter, as detailed in the
subsequent section on projection.

Fig. 4: (a) An instance illustration of a probe (b)
Exemplary filter

3.3 Utilizing Probes in UML
In the following example, we illustrate the
application of the probe approach in UML
development. Let's assume we have a class named
"MyClass," which intends to utilize the probe
concept to monitor when the agency manager sends

 repairOkObs.filter = " Context repairOkObs : SignalSendProbe inv :

 self.observedSignal.oclIsTypeOf(carRepaired)
 and self.sender.oclIsTypeOf(Mechanic)
 and self.receiver.oclIsTypeOf(Manager)

 "

(a)

(b)

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.19

Abdelali El Bdouri,
Chaimae Ouali-Alami, Younes Lakhrissi

E-ISSN: 2224-2678 167 Volume 23, 2024

the "startRepair" signals. To implement this
observation, we proceed with the following steps:

1. Instantiate the probe class associated with
the observed event type, specifically the
"SignalSendProbe" type. The resulting
instance is labeled as "startRepObs." This is
accomplished by defining an
"InstanceSpecification" UML element and
assigning the stereotype "probe" to it.

2. Define the constraints that need to be
evaluated at the observation moment to
specify the probe filter. In our case, we have
two constraints applied to the
"observedSignal" and "sender" properties.

3. Declare a reference to the instantiated probe
by introducing a UML "Reception" within
the class and subsequently annotating it as
«probeUse».

4. Incorporate the probe instance within the
behavioral description of the class,
particularly within the state machine
compatible with the class.

A summary of the "startRepObs" probe used to

describe the behaviors of "MyClass" can be found in
Figure 5. The definition of the "startRepObs" probe
is presented in Figure 5-top, while Figure 5-low
illustrates how the state machine associated with the
"MyClass" class references and utilizes this probe.

Fig. 5: Utilizing probes in UML development

3.4 Probes Projection
Each type of probe is assigned to a specific category
of event, causing the probe to be triggered whenever
an event of that particular type occurs within the
system. However, the use of the "filter" attribute is
not obligatory since there are instances where events
need to be filtered based on contextual information.
To apply additional constraints for such cases, these
limitations must be defined and met when the probe
is activated.

The projection process allows for the imposition
of additional criteria on probe activation. It involves
adding prerequisites that events must adhere to in
order to match the probe type, thus establishing the
context for observation. This is achieved through the
"filter" attribute, which enables the expression of
Boolean data and metadata conditions of observed
events in a character string. These constraints are
expressed using the OCL programming language.

Figure 4(b) illustrates the projection of the
SignalSendProbe probe. The filter depicted in this
figure amalgamates three OCL constraints that will
be validated against events of the signal
transmission type. The initial constraint mandates
that the observed signal pertains to the
"carRepaired" type, the second necessitates the
transmitting object to be of type "Mecanicien," and
the third specifies that the receiving object must be
of type "Manager."

The probe is activated solely when an event's
parameters satisfy the filter conditions. Upon
activation, all attributes of the probe are
automatically updated to reflect the event's
parameters, and the transitions that follow the
probe's activation become executable within the
state machines used by the objects employing the
probe. This process is triggered automatically when
the operation is activated.

3.5 Probe Derivation
The previously defined probe classes within the
ProbeLibrary encompass the metadata of the
observed event type. Developers have the flexibility
to declare an additional attribute to store
supplementary data concerning the system's status
and the activation time of the probe. This
customization is contingent upon identifying the
specific probe under consideration.

Consider a SignalSendProbe, which is designed
to identify the "testOK" signal sent by objects of the
"Car" type. Now, let's introduce a specific instance
of the SignalSendProbe probe, equipped with a filter
tailored for this observation. If we require the
precise moment when the signal was sent at the time
of probe activation, we can enhance this probe with
an additional attribute, such as "date." The class for
the derived probe, known as
"SignalSendProbe_testFunction," is depicted in
Figure 6(a), along with an instance of this class and
its corresponding filter in Figure 6(b).

startRepObs.filter = " Context startRepObs :

SignalSendProbe inv :
self.observedSignal.oclIsTypeOf(startRepair) and
self.sender.oclIsTypeOf(Manager)

 "

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.19

Abdelali El Bdouri,
Chaimae Ouali-Alami, Younes Lakhrissi

E-ISSN: 2224-2678 168 Volume 23, 2024

Fig. 6: Probe derivation: example of testOkProbe

It's worth noting that the "update()" action of the

probe is responsible for refreshing the probe's
properties upon activation. Consequently, to ensure
that the newly introduced attributes, like "date" in
our example, are properly updated, this operation
needs to be redefined in the derived class. The Java
code for the "update()" operation of the
"SignalSendProbe_testFunction" class is presented
in Figure 6(c).

3.6 Combining Basic Probes
We have discussed two methods for modifying
basic probes thus far. The first method is projection,
which employs a filter to customize a probe
according to a specific situation using data and
metadata events (see Section III.D). The second
method is probe derivation, which offers the option
to introduce new attributes for storing additional
data related to the system's state at the moment the
probe is activated (see Section III.E). However, it's
essential to note that these two processes allow
customization for only one type of probe at a time.
These approaches are not suitable for handling
complex probes involving multiple event types. In
this section, we introduce a third mechanism called
probe composition, aiming to simultaneously
monitor various types of occurrences.

To represent the arrangement of probes, we
have chosen to utilize a state machine. This decision
was made for several reasons, including:

Simplifying the designers' work by expressing
composition visually rather than through
mathematical notation.

Representing the timing and sequencing of
system events.

Leveraging the capabilities and resources
provided by a state machine in describing behaviors
in a state/transition format.

Examine a straightforward scenario where we
need to reference the occurrences of "A behavior
followed by B behavior." Suppose two probes, obs1
and obs2, record these behaviors, with obs1
capturing A and obs2 capturing B. The composition
of these two probes, obs1 and obs2, represented as a
state machine, is depicted in Figure 7(a).

 (a) (b)
Fig. 7: Composition probe examples

The state machine illustrating the composition is
presented in Figure 7(b). To keep track of the
number of sequence realizations, a variable named
nbActivation, initially set to 1, is employed in the
same example. In this scenario, the probe is
intended to be triggered after four sequences, which
consist of the "A behavior" followed by the "B
behavior." It's important to note that any scenario
associated with defining the constructed probe can
be inserted between the two states:
"startObservation" and "EndObservation." Once the
"EndObservation" state is exited, the "activate()"
operation is executed, marking the conclusion of the
observed behavior.

4 Probe for VUML Profile
The VUML Probe Profile incorporates various
stereotypes, namely ProbeClass, Probe, ProbeUse,
ProbeEvent, and Wait, into the VUML metamodel.
These stereotypical designations result from the
mapping process applied to the comprehensive

 testOKProbe.filter = " Context testOKProbe : SignalSendProbe_testFonction inv :

 self.sender.oclIsTypeOf(Car)
 and self.observedSignal.name='testOK'

 "

(a)

(b)

(c)

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.19

Abdelali El Bdouri,
Chaimae Ouali-Alami, Younes Lakhrissi

E-ISSN: 2224-2678 169 Volume 23, 2024

meta-model detailed in [9]. A summary of the
abstract syntax associated with the proposed profile
can be observed in Figure 8.

Fig. 8: Probe_Profile definition OF stereotypes

 The meta-model for components aims to
create a linkage between the domain
concepts encapsulated by our profile and the
corresponding UML concepts. In this
segment, we introduce the translations we
have selected for the stereotypes associated
with the proposed meta-model elements:

 The UML Class metaclass is expanded with
the stereotype "probeClass." It serves as a
representation of the components of the
probe library type. The tagged value
"isComposite" helps differentiate between
the two probe types (elementary and
composite). The default value "false" is
assigned to newly created items, indicating
the elementary probe class.

 The UML InstanceSpecification metaclass
is enriched with the stereotype "probe." It
identifies objects that are instances of
classes stereotyped with « probeClass ». We
have established OCL constraints to ensure
this, as detailed in the subsequent section.

 The UML Reception metaclass is broadened
with the stereotype "probeUse." In UML, a
reception is a modeling element specifying
the class intending to use a signal. This
metaclass is extended because it closely
aligns with the semantics of ProbeUse. In
terms of syntax, a reference to a probe is
indicated as « probeUse » obs1.

 The UML AnyReceiveEvent metaclass is
improved with the stereotype "probeEvent."

 The UML Trigger metaclass is
complemented with the stereotype "wait."

The syntax "wait(obs)" in a state-machine
transition signifies that the Wait trigger is
awaiting the activation of the probe "obs" to
traverse this transition.

4.1 Compliances Rules
In this section, we offer semantic guidelines
concerning the components within the Probe profile.
Initially, these guidelines are presented in natural
language before being translated into OCL.

 Every InstanceSpecification labeled with
the stereotype "probe" must also possess a
classifier marked with the stereotype
"probeClass."

 A trigger stereotyped as « wait » cannot

used to describe an event.

 Only elements of the type Probe can be

referred to by all elements with the type
Reception and the stereotype "probeUse".

5 Application
Ensuring the autonomy of model-view evolution is a
fundamental principle in the multiview design
approach. However, this principle may be
compromised when there is a substantial

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.19

Abdelali El Bdouri,
Chaimae Ouali-Alami, Younes Lakhrissi

E-ISSN: 2224-2678 170 Volume 23, 2024

interdependence between the behaviors of the
model-views. To address this challenge, we have
proposed an observation approach based on event
probes.

Fig. 9: Using probes in VUML process

For instance, consider the scenario where we
need precise information about when the car repair
process begins while developing the state machine
for the client actor. However, the client model view
lacks direct access to this information, and it
remains unclear which actor is responsible for
initiating the repair process (whether it's the agency
manager, the technician, or the workshop manager).
Furthermore, the specific representation of this
activity is yet to be determined (whether it involves

a signal exchange, a message, or an attribute
change).

The solution involves employing probes to
describe the behaviors of the views independently of
each other, and the principles of behavior
composition during the composition phase are
detailed in the following sections (Section 5.1).

5.1 Abstract Definition of Probes
When examining the state machine that represents
the car within the client view, it becomes imperative
to determine the point at which the car repair
operation commences.
 However, the triggering event for this initiation
remains unidentified, contingent upon another
viewpoint that might not have been explicitly
modeled. This event will only be established during
the composition phase of viewpoints. Consequently,
we introduce an abstract probe termed
"repairStartProbe." Figure 9(a) illustrates the
abstract declaration of this probe, presented as a
direct instance of the Probe class, which serves as
the root class in the ProbeLibrary.

5.2 Employing Probes in View Models
The designated probe is employable in the
behavioral delineation of the client perspective,
particularly within the behavioral specification of
the Car class. To incorporate it, a probe reception
must be established within the Car Client View
class, indicated by the « probeUse » stereotype.
Subsequently, the probe can be employed in the
behavioral specification for this class through its
state machine.

In Figure 9(b), one can observe the application
of the "repairStartProbe" probe, instigating the
transition between the "ContractApproved" and
"InRepair" states.

5.3 Defining Abstract Probes during the

 Composition Phase
As mentioned in [9], the behavior composition seeks
to specify the behavior of multi-view reactive
objects after the structural composition is finished.
These multi-view objects are made up of multiple
parts, each of which expresses a view behavior that
was defined during the view modeling stage using a
state machine. Either the definition of abstract
parameters or the concretization of abstract probes
allows for the mapping and synchronization among
view machines.

Figure 9(c) depicts the result of the model
composition process conducted during the
decentralized phase. An exemplar from the Car

 repairStartProbe.filter = " Context repairStartProbe : SignalSendProbe inv :

 self.observedSignal.oclIsTypeOf(repairStarted)
 and self.sender.oclIsTypeOf(Car_Mechanic_View)
 and self.receiver.oclIsTypeOf(Mechanic)

 "

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.19

Abdelali El Bdouri,
Chaimae Ouali-Alami, Younes Lakhrissi

E-ISSN: 2224-2678 171 Volume 23, 2024

class, after structural amalgamation with a solitary
actor (the client), is delineated in Figure 9(c)-top.
The Car is exhaustively delineated by the
foundational class "CarBase," shared uniformly
across all perspectives, along with an assemblage of
perspectives, each explicating the attributes relevant
to a particular actor.

In Figure 9(c)-low, the instantiation of the
"repairStartProbe" probe is illustrated after the
antecedent parameter concretization that was left
unspecified. The "RepairStartProbe" pertains to the
SignalSendProbe category and monitors the
"repairOrder" signal.

6 Related work
This research builds upon the findings presented in a
previous work [6], which introduced the concept of
a probe and its application in specifying behavior
and facilitating communication with other object
slices, accompanied by illustrative examples. The
current study extends these insights by offering
enhanced methodologies for composing and refining
event probes, along with an exploration of their
integration into the VUML profile.

Prior approaches to event observation have been
employed in diverse domains, including formal
verification, software testing, debugging, and
various aspect-driven modeling techniques. To our
knowledge, object-oriented modeling languages
have not been previously explored for event
observation, and there have been no proposals for
modeling languages that incorporate probes, event
types, or related concepts.

In the realm of formal verification, the concept
of event observation was first introduced as a
method for formally specifying attributes in the
Véda verification tool, [10]. This idea was
subsequently extended to tools for verifying
asynchronous concurrent systems, as evidenced in
[11], [12]. While our work draws inspiration from
these earlier efforts, it distinguishes itself by
integrating the concept within a robust modeling
language like UML. This enables the modeling of
event types, including meta-parameters, as well as
refinement and composition processes. Notably, our
approach innovatively positions event observation
as a primary method for modeling object
interactions.

In synchronous models, where specific
requirements for a language or method to model
observation are absent due to the limited occurrence
of event types (primarily data changes), our
approach introduces a novel perspective within the
UML framework. The exploration of decentralized

supervisory control in discrete-event systems, as
seen in works like, [13], has extensively examined
the computational expressiveness of (distributed)
event observation but without associating it with a
particular language for expression.

Within the context of aspect-oriented
programming, methodologies suggesting the
specification of joint points through event
sequences, [14], [15], [16], [17] exist. Our approach
aligns with the Concurrent Event-Built AOP
(CEAOP) computational model, described in [18],
sharing similarities in concepts such as parallel
system components, aspect composition, and event-
based synchronization. Nevertheless, a fundamental
distinction lies in the fact that our approach delves
into the properties of events and introduces the
probe construct, whereas, in CEAOP, events are
treated as plain (uninterpreted) synchronization
labels.

In the domain of distributed event-based
systems (DEBS), specific efforts have been made to
define a language for event detection, as evident in
[19]. The key difference between our approach and
[19] lies like their language, which is textual and not
integrated into a general-purpose modeling language
like UML. Moreover, their focus on large-scale
event stream processing differs significantly from
our scope, necessitating the use of distinct
languages. Other instances of event observation can
be found in fields such as autonomous agents, [20]
and program tracing and debugging, exemplified by
technologies like Sun's D-Trace.

7 Conclusion and Future Research

 Paths
This paper introduces a UML profile that elevates
event observation to the status of a primary object
interaction mechanism while also extending the
existing VUML profile dedicated to view-based
modeling. Our profile provides mechanisms for
composing and refining event probes.

In this proposal, we have opted for an approach
based on adding new, specific mechanisms to
VUML for modeling and composing view-object
behaviors. To this end, we have introduced the
notion of event probes to specify implicit
communications between view objects through
event observations. This makes it possible to
decouple specifications that are a priori strongly
interconnected, design them separately, and then
integrate them without having to modify them. To
achieve our goal, we first defined the concept of an
event probe, identified the different types of probes

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.19

Abdelali El Bdouri,
Chaimae Ouali-Alami, Younes Lakhrissi

E-ISSN: 2224-2678 172 Volume 23, 2024

with their associated parameters, [4], and then
defined a set of concepts for enriching and
manipulating probes.

System part, [21], modeling with VUML offers
advantages for complex systems, but has two main
limitations:
 Views need to be developed with an eye to the

dependencies between them. Coupling between
views is crucial, as each view requires external
information, which can make the view-based
design difficult to implement. Development
coordination is needed to share the information
required to integrate views.

 Model merging is complex and often requires
human intervention, despite attempts at
automation.

In conclusion, although the two approaches to

model composition - UML-based composition, [22]
and the event probe approach - aim to provide an
efficient and accurate representation of complex
systems, they differ in their approach and focus.

The UML-based approach focuses on static
system modeling using diagrams and relationships
defined in UML. This enables a detailed
representation of the system's structure and behavior
through a variety of views. However, it can suffer
from the complexity of managing dependencies
between views, which can make development
coordination difficult.

On the other hand, the event probe approach
focuses on dynamically monitoring interactions
between system components by capturing and
analyzing events. This provides an in-depth
understanding of the system's real-time behavior but
can be more difficult to model exhaustively and
integrate into a global representation.

Future work. Numerous avenues for future
research remain open, encompassing tools,
methodologies, and language enhancements. On the
language front, one potential avenue involves
simplifying the distinct specification of viewpoints
based on abstract probes. These abstract probes
could potentially be treated as template parameters,
and more advanced UML methods, [23], such as
templates, might be leveraged for this purpose. By
instantiating templates with concrete probes, we
could facilitate view integration.

View-based modeling and aspect-oriented
modeling (AOM) share certain similarities, as
previously mentioned. However, the solution
outlined in this paper may not be entirely suitable
for AOM, primarily because aspect specifications
sometimes require intrusive actions, such as limiting

or modifying the behavior of the base model to
which an aspect is applied. The mechanisms
presented in this paper may not fully accommodate
such requirements. Therefore, our future work will
revolve around expanding the current concept into a
comprehensive AOM language.

Another promising direction for future research
involves the incorporation of high-level inter-object
behavior specifications into VUML. Currently, the
profile predominantly focuses on state machines and
techniques for specifying intra-object behavior.
Expanding the scope to encompass inter-object
behavior specifications represents a significant area
of interest.

Lastly, it's important to note that the prototyping
tool described in [11], should be regarded as a
proof-of-concept on the front of the tool. To
establish the scalability of our approach for realistic
models, it becomes necessary to extend this tool into
a fully functional code generator. Furthermore,
integrating this tool into a unified platform, along
with various other tools developed around VUML
(such as [5]), is a critical step forward in our
research agenda.

References:

[1] Bruneliere, H., Burger, E., Cabot, J., &
Wimmer, M. (2019). A feature-based survey
of model view approaches. Software &

Systems Modeling, 18(3), 1931-1952.
[2] El Marzouki, N. (2021). Composition of

models in multi-modeling approaches based

on Model-Driven Engineering (Composition
des modèles dans les approches de multi-
modélisation basée sur l’Ingénierie Dirigée
par les Modèles (Doctoral dissertation)),
Universite sidi mohammed ben abdellah.

[3] Ouali-Alami, C., El Bdouri, A., and Lakhrissi,
Y. (2023). Proposition of the Probe-Event
Approach for View-Based Modeling, 20, 206-
219,
https://doi.org/10.37394/23209.2023.20.24

[4] Li, C. S., Darema, F., & Chang, V. (2018).
Distributed behavior model orchestration in
cognitive internet of things solution.
Enterprise Information Systems, 12(4), 414-
434.

[5] Anwar, A., Ebersold, S., Coulette, B., Nassar,
M., & Kriouile, A. (2010). A Rule-Driven
Approach for composing Viewpoint-oriented
Models. J. Object Technol., 9(2), 89-114.

[6] El Hamlaoui, M., Ebersold, S., Bennani, S.,
Anwar, A., Dkaki, T., Nassar, M., & Coulette,
B. (2021). A Model-Driven Approach to align

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.19

Abdelali El Bdouri,
Chaimae Ouali-Alami, Younes Lakhrissi

E-ISSN: 2224-2678 173 Volume 23, 2024

Heterogeneous Models of a Complex System.
The Journal of Object Technology, 20(2), 1-
24.

[7] Essebaa, I., & Chantit, S. (2017). QVT
transformation rules to get PIM model from
CIM model. In Europe and MENA

Cooperation Advances in Information and

Communication Technologies (pp. 195-207).
Springer, Cham. https://doi.org/10.1007/978-
3-319-46568-5_20

[8] Kim, W. Y., Son, H. S., Park, Y. B., Park, B.
H., Carlson, C. R., & Kim, R. Y. C. (2008).
Automatic MDA (model driven architecture)
transformations for heterogeneous embedded
systems. Proceedings of the 2008

International Conference on Software

Engineering Research and Practice, SERP

2008, pp.409 – 414. Las Vegas, Nevada, USA
[9] Lakhrissi, Y. (2010). Integrating behavioral

modeling into point-of-view design
(Intégration de la modélisation
comportementale dans la conception par
points de vue (Doctoral dissertation)),
Universite Toulouse le Mirail-Toulouse II.

[10] Renuka, G., 2023. Monitoring the state of
materials in verification environment for IP
architectures using python-based verification
mechanism. Materials Today: Proceedings,
81, Part 2, pp.761-770,
https://doi.org/10.1016/j.matpr.2021.04.233.

[11] Lalanne, F., Maag, S., De Oca, E. M., Cavalli,
A., Mallouli, W., & Gonguet, A. (2009,
November). An automated passive testing
approach for the IMS PoC service. In 2009

IEEE/ACM International Conference on

Automated Software Engineering (pp. 535-
539). IEEE. Auckland, New Zealand,
https://doi.org/ 10.1109/ASE.2009.33.

[12] Ahmad, M., Belloir, N., & Bruel, J. M.
(2015). Modeling and verification of
functional and non-functional requirements of
ambient self-adaptive systems. Journal of

Systems and Software, 107, 50-70,
https://doi.org/10.1016/j.jss.2015.05.028.

[13] Pham, M. T., & Seow, K. T. (2011). Discrete-
event coordination design for distributed
agents. IEEE Transactions on Automation

Science and Engineering, 9(1), 70-82.
[14] Hannousse, A. (2019). Dealing with

crosscutting and dynamic features in
component software using aspect-orientation:
requirements and experiences. IET Software,
13(5), 434-446.

[15] Van Ham, J. M. (2015). Seamless concurrent

programming of objects, aspects and events

(Doctoral dissertation), Ecole des Mines de
Nantes.

[16] Asteasuain, F., & Braberman, V. (2017).
Declaratively building behavior by means of
scenario clauses. Requirements Engineering,
22(2), 239-274.

[17] Wong, P. Y., Bubel, R., de Boer, F. S.,
Gómez-Zamalloa, M., De Gouw, S., Hähnle,
R., & Sindhu, M. A. (2015). Testing abstract
behavioral specifications. International

Journal on Software Tools for Technology

Transfer, 17(1), 107-119.
[18] Jaylet, T., Coustillet, T., Jornod, F.,

Margaritte-Jeannin, P. and Audouze, K.,
2023. AOP-helpFinder 2.0: Integration of an
event-event searches module. Environment

International, 177, p.108017,
https://doi.org/10.1016/j.envint.2023.108017.

[19] Chen, X., & Li, Q. (2020). Event modeling
and mining: a long journey toward
explainable events. The VLDB Journal, 29(1),
459-482.

[20] Horman, Yoav, and Gal A. Kaminka.
"Improving Sequence Learning for Modeling
Other Agents." Proceedings of the AAMAS

2004 Workshop on Learning and Evolution in

Agent-Based Systems. 2004. Tulsa, Oklahoma,
USA.

[21] Kühne, T. (2022). Multi-dimensional multi-
level modeling. Software and Systems

Modeling, 21(2), 543-559.
[22] Shirole, M., & Kumar, R. (2013). UML

behavioral model-based test case generation: a
survey. ACM SIGSOFT Software Engineering

Notes, 38(4), 1-13.
[23] Besnard, V., Teodorov, C., Jouault, F., Brun,

M., & Dhaussy, P. (2021). Unified
verification and monitoring of executable
UML specifications. Software and Systems

Modeling, 20(6), 1825-1855.

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.19

Abdelali El Bdouri,
Chaimae Ouali-Alami, Younes Lakhrissi

E-ISSN: 2224-2678 174 Volume 23, 2024

https://doi.org/10.1016/j.matpr.2021.04.233
https://doi.org/10.1016/j.jss.2015.05.028
https://doi.org/10.1016/j.envint.2023.108017

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflicts of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.19

Abdelali El Bdouri,
Chaimae Ouali-Alami, Younes Lakhrissi

E-ISSN: 2224-2678 175 Volume 23, 2024

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

