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Abstract:  - Nontrivial period annuli in the second order ordinary differential equation are continua of periodic 
trajectories that contain inside more than one critical point. They can appear in conservative equations, which 
are known to have no attractors. Nevertheless, according to some authors, their behavior may be done chaotic 
by adding a periodic external force. Is the period of the external force correlated with periods of solutions in 
period annuli? Is the chaotic behavior of a solution dependent on the initial value and, in turn, on a certain 
periodic annulus? These, and related questions are studied in the article.  
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1   Introduction  
The second order ordinary differential equations of 
the Newtonian form 𝑥′′ + 𝑔(𝑥) = 0  can have 
multiple period annuli. Period annuli are 
understood as continua of periodic solutions. The 
trivial example is a central region in a phase plane, 
associated with a critical point of the center type. 
The harmonic equation 𝑥′′ + 𝜔2 𝑥 = 0  is an 
evident example. But there may be regions filled 
with closed trajectories and surrounding more than 
one critical point. An example of this can be 
provided by the equation (1) with the phase plane 
as in Figure 1. Imagine that g(x) is an odd degree 
polynomial and the primitive G(x) has graph 
resembling the mountain range like in Figure 2. If 

there is a pair of mountains containing other (lower) 
mountains between them, then the period annuli 
appear. The periodic trajectories in these annuli 
have an interesting property. The periods of 
trajectories, locating close to the borders of a 
period annulus, are very long (tending to infinity) 
and the graph representing periods, has U-shape. A 
solution with a minimal period exists in any such 
period annulus. It is known that some of Duffing-
type equations when excited by adding a periodic 
term on the right side of the equation can exhibit 
chaotic behavior. An autonomous Duffing type 
equation is the second order one, and it cannot be 
chaotic due to the Poincaré-Bendixson theory. 
However, there is no contradiction. The Duffing 
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equation with an external force on the right side 
can be written in an equivalent form as a system of 
three ordinary differential equations. Such systems 
can be chaotic. The classical examples are the 
Lorenz and Rössler attractors. Examples and 
general information can be found in textbooks on 
differential equations, [1], [2], [3], [4], [5]. Do 
equations of the form 𝑥′′ + 𝑔(𝑥) = 0 with multiple 
period annuli possess the same property? We wish 
to gather information on this subject in this article.  

For this, we recall the article by the authors 
with some examples. Consider first the equation: 
𝑥′′ − (𝑥 + 4)(𝑥 + 2.5)(𝑥 + 1.5)𝑥(𝑥 − 2)(𝑥 − 3.6)(𝑥 − 5) = 0 (1) 

 
This equation has period annuli described in Figure 
1. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Period annuli in equation (1). The borders 
are in green and red 
 
This equation was investigated in the work, [6]. 
Introduce the notation: 
𝑔(𝑥) = −(𝑥 + 4)(𝑥 + 2.5)(𝑥 + 1.5)𝑥(𝑥 − 2)(𝑥 − 3.6)(𝑥 − 5) (2) 

 
and add a function f(t) on the right, so the equation 
becomes: 
 𝑥′′ + 𝑔(𝑥) = 𝑓(𝑡) (3) 

 
The right side can be interpreted as an external 
force, which can be periodic, 𝑓(𝑡) = ℎ cos 𝜔𝑡. 
 
Write this equation as the system: 

{
𝑥′ = 𝑦                       

𝑦′ = −𝑔(𝑥) + 𝑓(𝑧)

𝑧′ = 𝜔                       

 (4) 

 
It is known that equations of the form (3) can 

exhibit chaotic behavior (Duffing equation, for 

instance). Our aim in this paper is to show, that the 
second order equations of the form (3) can be 
chaotic, provided that the shortened equation has 
period annuli. 
𝑥′′ + 𝑔(𝑥) = 0 (5) 

 
Remark, [7], [8]. A central region is the largest 
connected region covered with cycles surrounding 
the center. A period annulus is a connected region 
covered with concentric cycles. A period annulus 
associated with a central region is called a trivial 
period annulus. It contains a single critical point of 
the type center. Period annuli containing more than 
one critical point will be called nontrivial period 
annuli. The phase portrait depicted in Figure 1 
contains exactly three trivial period annuli and two 
nontrivial  period annuli. 

We mention the following result, which allows 
easily constructing examples of equations with 
multiple period annuli, [6]. 

Assume that g(x) is a polynomial with simple 
zeros. The primitive G(x)= ∫ 𝑔(𝑥)𝑑𝑥

𝑡

0
 may have 

multiple maxima. It is easy to observe that the 
equivalent system x'=y, y'=g(x) has centers at the 
point (mi,0) and saddle points at (Mj,0), where mi 
and Mj are points of local minima and maxima 
respectively. In that case centers and saddles 
alternate. The following assertion is true. 
Theorem. Let M1 and M2  (M1<M2) be non-

neighboring points of maxima for the primitive 

G(x). Suppose that G(x)<min{G(M1); G(M2)} for 

any x(M1, M2).  
To illustrate this, the primitive G(x) of the 

function g(x) in (2) is depicted in Figure 2. There 
are four maxima. The first and the third maxima 
generate a nontrivial period annulus, which, in turn, 
is included in a greater one, generated by two side 
maxima. 
 
 
 
 
 
 
 
 
 
Fig. 2: Primitive G(x) of the function g(x), defined 
in (2). Each maximum point corresponds to a 
critical point of the type center 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.17 Svetlana Atslega, Olga Kozlovska, Felix Sadyrbaev

E-ISSN: 2224-2678 150 Volume 23, 2024



 

2   Chaotic Behavior 
Chaotic behavior in dynamical systems is studied 
extensively. There are multiple definitions and 
criteria for chaos. One of the essential signs of 
chaotic behavior is the sensitive dependence of 
solutions on the initial data. To detect sensitive 
dependence, computational tools are widely used. 
Let us mention the mathematical apparatus, based 
on the Lyapunov exponents. The Lyapunov 
exponents reflect the evolution of the difference 
between two initially close solutions of a 
dynamical system. These differences for the three-
dimensional systems, projected on the coordinate 
axis, result in three Lyapunov curves. If at least one 
of these curves is positive, this is a sign of sensitive 
dependence.   

More on chaotic behavior in systems of 
ordinary differential equations and Lyapunov 
exponents can be learned from the book, [9] and 
the article [10], as well as from many other relevant 
sources. The chaotic behavior of trajectories may 
be observed near attractors. An extract from Table 
1.1 in the book, [9], (Table S in a current text) 
shows the relation between types of attractors and 
the Lyapunov exponents. 

 
Table S. 

λ1 λ 2 λ 3 Attractor Dimension Dynamic 

   Equilibrium 0 Static 
0   Limit cycle 1 Periodic 
+ 0  Strange 2 or 3 Chaotic 

 
Numbers 𝜆𝑖 , 𝑖 = 1,2 , indicate locations of the 
Lyapunov curves as positive (+), lying on the 
horizontal zero-axis, and negative (). In the same 
book, [9], the equation:  
𝑥′′ + sin 𝑥 = sin 𝑡 (6) 

 
was considered, which was called conservative 
meaning that it does not contain a damping term. 
This equation was shown to have chaotic behavior 
(chaotic sea with islands of periodicity). We will do 
the same for equations with period annuli. An extra 
question we wish to address is how the chaotic 
behavior depends on the initial conditions and the 
structure and number of period annuli. 
 
 
 

3   Results 
Example 1. 

Consider equation:  
𝑥′′ + 𝑔(𝑥) = ℎ cos 𝜔𝑡,    (7) 

 
where  𝑔(𝑥) is given:  

𝑔(𝑥) = −(𝑥 + 2.4)(𝑥 + 1.8)(𝑥 + 1)𝑥(𝑥 −

0.8)(𝑥 − 1.7)(𝑥 − 2.4),      (8) 
 

ℎ is a parameter,  𝜔 is a coefficient, ℎ, 𝑘 > 0.  The 
primitive G(x) is depicted in Figure 3 and the phase 
plane is shown in Figure 4. This equation (7) is 
equivalent to the system: 

{
𝑥′ = 𝑦                          

 𝑦′ = −𝑔(𝑥) + ℎ cos 𝑧

𝑧′ = 𝜔.                          

 (9) 

 
We will examine system (9) and show that it can be 
chaotic. 
 
Consider system (9), provided ℎ = 1 , 𝜔 = 3.2 , 
(𝑥(0), 𝑦(0), 𝑧(0)) = (1, 0, 0.4) . Recall that in a 
scalar form, the equation (7) with zero right side 
has three trivial period annuli, and two nontrivial 
ones. 
 
 
 
 
 
 
 
 
 
 
Fig.  3: The primitive G(x) of g(x) above 

 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Three nontrivial period annuli in the 
equation x′′ + g(x) = 0, where g(x) is as in (8) 
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Figure 5, Figure 6 and Figure 7 respectively 
reflect the phase portrait, graphs of solutions and 
Lyapunov curves for the perturbed system (9). 

 
 
 
 
 
 
 

 
 
 
 
 
 
Fig. 5: Phase portrait for the system (9), h=1, 
 ω =3.2, (x(0),y(0),z(0)) = (1, 0, 0.4) 
 

 
 
 
 
 
 
 
 

 
 
 
Fig. 6: Solutions of the system (9), h=1, ω =3.2, 
(x(0),y(0),z(0)) = (1, 0, 0.4) 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 7: Lyapunov curves for the system (9), h=1, 
=3.2, (x(0),y(0),z(0)) = (1, 0, 0.4). Lyapunov 
exponents (0.3552, 0, −0.3552) 

 
These data are characteristic of chaotic 

behavior. The following table shows the dynamics 

of Lyapunov numbers under the change of the 
amplitude h.  

 
Table 1. The Lyapunov numbers for the equation 
(7) with =3.2, (x(0),y(0),z(0)) = (1, 0, 0.4) and 

varying h 
ℎ λ1 λ 2 λ 3 

0.2 0.281788 0 -0.281789 
0.4 0.239252 0 -0.239252 
0.6 0.376682 0 -0.376683 
0.8 no data 
1.0 0.355192 0 -0.355192 

 
For all h the sum of three Lyapunov exponents 

is zero. One of the exponents is positive, and that 
refers to chaotic behavior (Table 1). 
 
Example 2. 

One of the simple equations that can have a 
nontrivial period annulus, is equation (5), where 
g(x) is: 
𝑔(𝑥) = (𝑥 + 2)(𝑥 + 1)𝑥(𝑥 − 1)(𝑥 − 2). (10) 
 

The vector field associated with (5) is depicted 
in Figure 8. 
 
 
 
 
 
 
 
 
 
 
Fig. 8: The period annuli (three trivial ones, and 
one nontrivial spreading to infinity) in the equation 
x′′ + g(x) = 0, where g(x) is as in (8) 
 
Consider equation:  
𝑥′′ + 𝑔(𝑥) = ℎ cos 𝜔𝑡  (10) 
 
and the equivalent system : 

{
𝑥′ = 𝑦                            

𝑦′ = −𝑔(𝑥) + ℎ cos 𝑧

𝑧′ = 𝜔.                           

 (11) 

 
A series of computational experiments were 

performed. They yielded that for h=3.9, 𝜔 =0.6 the 
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trajectory that starts at x0=0.62, y0=0.9, z0=0.4, 
exhibits irregular behavior. The Lyapunov 
exponents indicate chaos. This is shown in Figure 
9. The Lyapunov curves and graphs of solutions to 
the system (9) are shown in Figure 10 and Figure 
10a respectively.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.  9:   Phase portrait for the system (11) 
 

The Lyapunov exponents also indicate chaotic 
behavior. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10: Lyapunov exponents for the system (11) 
 
 
 
 
 
 
 
 
 
 
Fig. 10a: Solutions of the system  (11) 

The two, Table 2 and Table 3 show the 
dynamics of the Lyapunov exponents when the 
amplitude h and the coefficient 𝜔  change. 
 

Table 2. The Lyapunov numbers for the equation 
(10) with =0.6, (x(0),y(0),z(0)) = (0.62, 0.9, 0.4) 

and varying h 
ℎ λ1 λ 2 λ 3 

2.8 0.0271906 -0.027196 0 
3.1 0.173493 -0.1735 0 
3.5 0.196616 -0.196622 0 
3.7 0.114328 -0.114336 0 
3.9 0.188477 -0.188485 0 

 

Table 3. The Lyapunov numbers for the equation 
(10) with h=3.9, (x(0),y(0),z(0)) = (0.62, 0.9, 0.4) 

and varying  

𝜔 λ1 λ 2 λ 3 

0.1 0.0739052 -0.0739115 0 
0.2 0.109937 -0.109944 0 
0.4 0.145782 -0.145789 0 
0.6 0.188477 -0.188485 0 
2 0.302086 -0.302113 0 

 
Both Table 2 and Table 3 for various h and  

contain a positive Lyapunov exponent. 
 

Example 3. 
Consider equation (5) and equation (12)  

𝑥′′ + 𝑔(𝑥) = ℎ cos 𝜔𝑡,     (12) 
 
where 
𝑔(𝑥) = +(𝑥 + 2.4)(𝑥 + 1.8)(𝑥 + 1)𝑥(𝑥 −

0.8)(𝑥 − 1.7)(𝑥 − 2.4). (13) 
 

The vector field for the unperturbed equation 
(12) is described by Figure 11.  

 
 
 
 
 
 
 
 
 

Fig. 11:  The two trivial period annuli and one 
nontrivial in the equation x′′ + g(x) = 0,  where 
g(x) is as in (13) 
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The corresponding system : 

{
𝑥′ = 𝑦                          

 𝑦′ = −𝑔(𝑥) + ℎ cos 𝑧

𝑧′ = 𝜔                          

    (14) 

 
differs from that in Example 1. Let the parameters 
be h=3.9, 𝜔 = 0.6 , (𝑥(0), 𝑦(0), 𝑧(0)) =
(0.62, 0.9, 0.4). The vector field, the  Lyapunov 
curves and the graphs of solutions for the system 
(14) are shown in Figure 12, Figure 13 and Figure 
14 respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12: Phase portrait for the system (14) 
 
 
 
 
 
 
 
 
 
 
Fig. 13: Lyapunov curves for the system (14). The 
Lyapunov exponents are (0.184021, − 0.184494,  
0.) 
 
 
 
 
 
 
 
 
 
 
Fig. 14: Solutions of the system (14) 
 

Example 4. 
Finally, let us consider an example from the 
beginning of the article. 
 
Consider equation (5) and equation (15)  

𝑥′′ + 𝑔(𝑥) = ℎ cos 𝜔𝑡,  (15) 
 
where 

𝑔(𝑥) = −(𝑥 + 4)(𝑥 + 2.5)(𝑥 + 1.5)𝑥(𝑥 − 2)(𝑥

− 3.6)(𝑥 − 5), 
 
which can be written as a system of the  

{
𝑥′ = 𝑦                          

 𝑦′ = −𝑔(𝑥) + ℎ cos 𝑧

𝑧′ = 𝜔                          

 (16) 

 
The amplitude of oscillations in period annuli 

is larger than in the previous examples. To affect 
the solutions in period annuli the amplitude h 
should be large also. Let h=176 , 𝜔 = 2.5 , 
(𝑥(0), 𝑦(0), 𝑧(0)) = (1.5, 5.0, 0.4) . We provide 
below the phase portrait (Figure 15), the  Lyapunov 
exponents (Figure 16) and the graphs of solutions 
(Figure 17)  for the system (16). The solutions 
exhibit irregular behavior. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15: Phase portrait for the system (16) 
 
 
 
 
 

 

 

 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.17 Svetlana Atslega, Olga Kozlovska, Felix Sadyrbaev

E-ISSN: 2224-2678 154 Volume 23, 2024



 

 

 

 

 

 

Fig. 16: Lyapunov curves for the system (16). The 
Lyapunov exponents are (0.667735,−0.678565, 0) 
 
 
 
 
 
 
 
 
 
 
 
Fig. 17: Solutions of the system (16) 
 
 
4   Conclusion  
The second order ordinary differential equations 
with an external force can be chaotic. For this, they 
have to be nonlinear (the necessary condition). The 
nonlinearity should be suitable. The conditions for 
the nonlinearity can be found using computational 
experiments. We tried to detect chaotic behavior in 
periodically exited  equations, which, without 
external forcing, have period annuli. We have 
examined four examples of equations of Newtonian 
form that possess one or several nontrivial period 
annuli. These equations were excited by a periodic 
external force with amplitude h and the period 
2π/. As a rule, for appropriate values of h and  
the chaotic behavior was observed. In Example 4 
the amplitudes of oscillations in period annuli are 
significantly greater than in the previously 
considered examples. Consequently, the parameter 
h in the excited equation is large to induce the 
chaotic behavior. For the criteria for chaotic 
behavior, the graph of the Lyapunov curves and 
Lyapunov exponents was chosen. The positivity of 
the Lyapunov curve was an indicator of chaos in 

the equation. The damping term is not needed for 
obtaining the chaotic behavior. 
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