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 Abstract: - We study a single server queueing system that receives singly arriving customers according to a 

Poisson process. The server offers one of the two types of heterogeneous services. Before the beginning of a 

service, , the customer can choose an exponential service with probability  or a deterministic service with 

probability , where Immediately after a service is completed, the server has a choice of taking a 

vacation with probability δ , or, with probability 1- δ , the server  may continue staying in the system. We further 

assume that  if the server opts to take a vacation, then with probability 1α ,  he may take a vacation  of an 

exponential duration  with mean vacation time 1 / υ (υ > 0)  or with probability 2α he may want to take  a 

deterministic vacation with constant duration  d>0, where 1 2α +α =1. After a vacation is complete, the server 

instantly starts providing service if there is at least one customer in the system or the server remains idle in the 

system till a new customer arrives for service. We find a steady state solution in terms of the generating 

function of the queue length as well as the steady state probabilities for all different states of the system.  
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1    Introduction 
In the majority of queueing systems, the server 

provides the same kind of service to customers and 

the service time follows the same distribution, [1], [2], 

[3]. In addition, as it happens in the majority of the 

vacation queueing systems, the server’s vacation 

follows the same distribution, [4], [5], [6], [7], [8]. In 

the last couple of decades, vacation queues have been 

studied extensively. The work done by all these, and 

many other authors deals with service interruptions 

either due to random system failures or due to 

optional server vacations with many different 

vacation policies. Queueing systems with 

deterministic service or deterministic vacations have 

been studied by many authors including, [9], in which 

the author deals with a queueing system   which 

allows the server to opt for either an exponential 

vacation or for a deterministic vacation. In the present 

paper, we extend the idea in [9] and study a queueing 

system in which the customer has a choice of either 

taking a service with exponential duration or a 

deterministic duration in addition to the server having 

the choice of taking a vacation of an exponential 

length or a deterministic vacation or no vacation after 

each service. Symbolically, we denote our system as 

 queueing system. We find 

steady state generating functions of queue lengths of 

all different states of the system and derive results 

corresponding to various interesting special cases 

including the earlier known results of the systems 

M/M/D/1, M/D/M/1, M/M1 and M/D/1. 

 

 

2    Model Description 
 Customers arrive at the system one by one 

according to a Poisson process with mean arrival 

rate  

 Before his service starts, a customer can opt for 

an exponential service with mean service time 

 with probability  or a deterministic 

service of constant duration ‘k’ with probability 

, where .  

 As soon as a service of a customer is complete, 

the server may decide to go on a vacation with 

probability δ , or may not take a vacation with 

probability .. Next, we assume that if the 

server decides to take a vacation, then with 

probability
1α
, he may take a vacation of random 
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length which follows an exponential distribution 

with mean vacation time  (  or with 

probability 
2 ,α  he may take a deterministic 

vacation with constant duration ‘ d ’. Where 

1 2α +α = 1 . 

 As soon as his vacation is over, the server 

immediately takes up a customer at the head of 

the queue for service, if a customer is waiting in 

the queue. However, if on returning the server 

finds the queue empty, then he still joins the 

system and remains idle until a new customer 

arrives in the system. 

 All stochastic processes involved in the system 

are independent of each other. 

 

 

3    Definitions and Equations 

We assume that   is the steady state probability 

that there are n ( 0) customers in the queue excluding 

one customer in service and the server is providing 

exponential service,  is  the steady state 

probability that there are n ( 0) customers in the 

queue and the server is providing a deterministic 

service,  1

nV  is the steady state probability that there 

are n ( 0) customers in the queue and the server is on 

exponential vacation,  is the steady state 

probability that there are n ( 0) customers in the 

queue and the server is on deterministic vacation. 

Further, let  be 

the steady state probability that there are 

n ( 0) customers in the queue irrespective of whether 

the server is providing any type of service or is on 

any type of vacation.  

Next, we define Q  to be the steady-state probability 

that there is no customer in the system and the server 

is idle.  

We further assume that  is the probability of r  

arrivals during the period of deterministic service 

time k and therefore,  

    

     (1)

  

Next, we assume that  is the probability of r  

arrivals during the period of deterministic 

vacation d and therefore,   

    

      (2) 

 

Now, we define the following Probability Generating 

Functions (PGFs): 

        (3) 

 

                  (4) 

 

    (5) 

 

        (6)   

     

 

         =  

            ,    (7)   

 

      

  .  

                             (8) 

 

 

4   Equations Governing the System 
We use probability reasoning to obtain the following 

steady-state equations: 
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+ 

                           ,        (13) 

 

 

               (14) 

 

+ 

,           (15) 

 

 

Q =  

.                (16) 

 

 

5    Steady State Solution 
Use of the standard generating function approach, 

equations (9), (10) give. 

 
         =  

+ +                

                                                                   (17) 

 

Similar operations on (11) and (12) yield 

 +  

           +          

       (18) 

 

Next, from equations (13) and (14) we obtain. 

  

       
       (19) 

And from (15), we get. 

 
                                   (20) 

 

Next, we make use of equations (19) and (20) into 

equations (17) and (18), simplify and get. 

 
 

 

 
 

+          (21) 

   

 

        +  

        +  

        +  

         +        (22) 

 

Now, we re-write equations (21) and (22) as:  

 

 

_  

                             =          (23) 

 

 

 

 
                               

                      (24)   

 

Re-writing equations (23) and (24) in matrix form as: 

  = , 

       

       (25) 

Where: 

 

  

 
 

 
         

         ,  
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       ,  

 

Solving (25) simultaneously for  and 

, we obtain:    

 

   ,  

 
    (26) 

 .     

           (27) 

      

Next, we use (26) and (27) into (19), (20), simplify and 

obtain: 

 ,     (28) 

 

 

 ,     (29) 

 

Where: 

, 

 

, 

 

. 

 

Now, at z=1, the generating functions found above 

yield:  

     

      (30) 

 

    

     (31) 

 

  

    (32) 

  

 

    

      (33) 

 

It may be noted that Q is the only unknown which 

remains to be determined. For this purpose, we will use 

the following normalizing condition: 

 

 
.        (34) 

 

On simplifying, (5.18) yields: 

 

         (35) 

 

If we use the value of Q from (35) into the results 

(30) to (33) we would be able to determine all the 

above steady state probabilities in explicit form. Also, 

using the value of Q from (35) into the main results 

(26) to (29), all the steady state probability generating 

functions of the queue length are found in explicit 

form. 

 

 

6    Some Special Cases 
 

6.1    Queue 

We substitute ,  in the system state 

probabilities found above in (30) to (33) and (35). 

Therefore, we obtain:  

  (36) 
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   (37) 

 

  (38) 

 

  (39)

  

      (40) 

 

6.2   Queue  

Substituting  and  in the system state 

probabilities, we obtain:  

    (41) 

 

    (42) 

 

  (43) 

 

  (44) 

                      

        (45)

       

6.3  M  Queue 

Putting   in the system state probabilities, we get: 

   (46) 

 

 

   (47) 

 

          (48) 

 

     (49) 

  

          (50) 

 

6.4   Queue: Only 

Exponential Service with Both Types of 

Vacation 

Letting  and   in the system state 

probabilities found above, we get: 

    (51) 

 

      (52) 

 

   (53) 
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   (54) 

 

    (55) 

 

6.5  Queue: Only Deterministic 

Service with Both Types of Vacation  

We substitute   and   in the main results 

obtained above and obtain. 

     (56) 

 

    (57) 

 

      (58) 

 

    (59) 

 

      (60) 

 

6.6  Queue: Only Exponential 

Service with No Server Vacation  

We substitute ,    and   to obtain. 

      (61) 

 

      (62) 
 

     (63) 

 

     (64) 

 

        (65) 

                        

6.7  Queue: Only Deterministic Service 

with No Vacation 

Putting   ,  and    in the above 

results we get: 

      (66) 

 

      (67) 

 

      (68) 

 

     (69) 

 

      (70) 

 
The results derived in special cases 6 and 7 are 

known results in queueing theory literature.  
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