References:
[1] J. I. Sanca Mendoza, “Informe por servicios
profesionales: ‘Manejo del cultivo de
albahaca (ocimum basilicum) Var. Genovessa
para la planta procesadora agroindustrial La
Joya S.A.C. - Arequipa,’” Universidad
Nacional de San Agustín de Arequipa, 2018.
[2] PromPerú, “Departamento de Inteligencia de
Mercados - PromPerú,” 2019. Accessed: Jan.
23, 2023. [Online]. Available:
http://bit.ly/2pqMcUa
[3] L. T. Krasny, (2002). “USDA’s National
Organic Program: The Final Rule”. In Food
and Drug Law Institute FDLI Update.
Available:
https://heinonline.org/HOL/LandingPage?han
dle=hein.journals/fdliup2002&div=12&id=&p
age=
[4] R. Moreira, L. F. Rodrigues Moreira, P. L. A.
Munhoz, E. A. Lopes, and R. A. A. Ruas,
“AgroLens: A low-cost and green-friendly
Smart Farm Architecture to support real-time
leaf disease diagnostics,” Internet of Things,
vol. 19, p. 100570, Aug. 2022, doi:
10.1016/J.IOT.2022.100570.
[5] S. Kallapur, M. Hegde, A. D. Sanil, R. Pai,
and S. NS, “Identification of aromatic
coconuts using image processing and machine
learning techniques,” Glob. Transitions Proc.,
vol. 2, no. 2, pp. 441-447, Nov. 2021, doi:
10.1016/J.GLTP.2021.08.037.
[6] B. Jia et al., “Essential processing methods of
hyperspectral images of agricultural and food
products,” Chemom. Intell. Lab. Syst., vol.
198, p. 103936, Mar. 2020,
doi: 10.1016/J.CHEMOLAB.2020.103936.
[7] I. A. Quiroz and G. H. Alférez, “Image
recognition of Legacy blueberries in a Chilean
smart farm through deep learning,” Comput.
Electron. Agric., vol. 168, p. 105044, Jan.
2020, doi: 10.1016/J.COMPAG.2019.105044.
[8] R. Yauri and R. Espino, “Edge device for
movement pattern classification using neural
network algorithms,” Indones. J. Electr. Eng.
Comput. Sci., vol. 30, no. 1, p. 229, 2023,
doi: 10.11591/ijeecs.v30.i1.pp229-236.
[9] J. Schwarz, E. Mathijs, and M. Maertens, “A
dynamic view on agricultural trade patterns
and virtual water flows in Peru,” Sci. Total
Environ., vol. 683, pp. 719–728, Sep. 2019,
doi: 10.1016/J.SCITOTENV.2019.05.118.
[10] Y. Wang, G. Yan, Q. Meng, T. Yao, J. Han,
and B. Zhang, “DSE-YOLO: Detail semantics
enhancement YOLO for multi-stage
strawberry detection,” Comput. Electron.
Agric., vol. 198, p. 107057, Jul. 2022,
doi: 10.1016/J.COMPAG.2022.107057.
[11] R. Punithavathi et al., “Computer Vision and
Deep Learning-enabled Weed Detection
Model for Precision Agriculture,” Comput.
Syst. Sci. Eng., vol. 44, no. 3, pp. 2759-2774,
2023,
doi: 10.32604/CSSE.2023.027647.
[12] A. Wang, T. Peng, H. Cao, Y. Xu, X. Wei,
and B. Cui, “TIA-YOLOv5: An improved
YOLOv5 network for real-time detection of
crop and weed in the field,” Front. Plant Sci.,
vol. 13, Dec. 2022,
doi: 10.3389/FPLS.2022.1091655.
[13] Q. Wang, M. Cheng, S. Huang, Z. Cai, J.
Zhang, and H. Yuan, “A deep learning
approach incorporating YOLO v5 and
attention mechanisms for field real-time
detection of the invasive weed Solanum
rostratum Dunal seedlings,” Comput.
Electron. Agric., vol. 199, Aug. 2022,
doi: 10.1016/J.COMPAG.2022.107194.
[14] T. Talaviya, D. Shah, N. Patel, H. Yagnik, and
M. Shah, “Implementation of artificial
intelligence in agriculture for optimisation of
irrigation and application of pesticides and
herbicides,” Artif. Intell. Agric., vol. 4, p. 58-
73, Jan. 2020,
doi: 10.1016/J.AIIA.2020.04.002.
[15] N. Genze, R. Ajekwe, Z. Güreli, F.
Haselbeck, M. Grieb, and D. G. Grimm,
“Deep learning-based early weed
segmentation using motion blurred UAV
images of sorghum fields,” Comput. Electron.
Agric., vol. 202, Nov. 2022, doi:
10.1016/J.COMPAG.2022.107388.
[16] O. Debnath and H. N. Saha, “An IoT-based
intelligent farming using CNN for early
disease detection in rice paddy,”
Microprocess. Microsyst., vol. 94, p. 104631,
Oct. 2022,
doi: 10.1016/J.MICPRO.2022.104631.
[17] N. Aherwadi, U. Mittal, J. Singla, N. Z.
Jhanjhi, A. Yassine, and M. S. Hossain,
“Prediction of Fruit Maturity, Quality, and Its
Life Using Deep Learning Algorithms,”
Electron., vol. 11, no. 24, Dec. 2022,
doi: 10.3390/ELECTRONICS11244100.
[18] A. A. Albraikan, M. Aljebreen, J. S.
Alzahrani, M. Othman, G. P. Mohammed, and
M. Ibrahim Alsaid, “Modified Barnacles
Mating Optimization with Deep Learning
Based Weed Detection Model for Smart
Agriculture,” Appl. Sci., vol. 12, no. 24, Dec.
2022,
WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2023.22.64
Ricardo Yauri, Bryan Guzman,
Alan Hinostroza, Vanessa Gamero