References:
[1] Canudas de Wit C., Siciliano B., Bastin G.:
Theory of robot control, Springer, 1997.
[2] Fierro R., Lewis F.L.: Control of a
nonholonomic mobile robot using neural
networks, IEEE Trans. Neural Networks, 589-
600, 1998.
[3] Gao X., Yan L., Gerada C.: Modeling and
Analysis in Trajectory Tracking Control for
Wheeled Mobile Robots with Wheel
Skidding and Slipping: Disturbance Rejection
Perspective, Actuators, 10(9),222, 2021,
https://doi.org/ 10.3390/act10090222
[4] Hendzel Z.: An adaptive critic neural network
for motion control of a wheeled mobile robot,
Nonlinear Dynamic, DOI 10.1007/s11071-
007-9234-1, Springer Verlag, 2007.
[5] Hendzel Z., Trojnacki M.: Neural Network
Identifier of a Four-Wheeled Mobile Robot
Subject to Wheel Slip, Journal of
Automation, Mobile Robotics & Intelligent
Systems - JAMRIS, Volume 8, N° 4, 24 - 30,
2014.
[6] Hendzel Z., Trojnacki M.: Neural Network
Control of a Four-Wheeled Mobile Robot
Subject to Wheel Slip, Advances in Intelligent
Systems and Computing, Vol. 317,
Awrejcewicz et al, Eds., Mechatronics: Ideas
for Industrial Applications, Springer, 187-
201,2015.
[7] Jiang ZP, Nijmeijew H.: Tracking control of
mobile robots: a case study in backstepping,
Automatica, 1393-1399, 1997.
[8] Jung S., Hsia T.C., Explicit lateral force
control of an autonomous mobile robot with
slip, IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, IROS, 2005, 388 – 393, 2005.
[9] Keymasi A. K., Jalalnezhad M.: Robust
forward\backward control of wheeled mobile
robots, ISA Transactions, Volume 115, 32-
45,September, 2021, https://
doi.org/10.1016/j.isatra. 2021.01.016
[10] Kosko B.: Neural Network and Fuzzy
Systems. Englewood Cliffs, NJ, Prentice-Hall,
1992.
[11] Li L.,Wang F.Y., Integrated longitudinal and
lateral tire/road friction modeling and
monitoring for vehicle motion control, IEEE
Trans. on Intelligent Transportation Sys,
Vol.7, No.1, 1-19, 2006.
[12] Lin W.-S., Chang L.-H., Yang P.-C., Adaptive
critic anti-slip control of wheeled autonomous
robot, Control Theory & Applications, IET,
Vol. 1, Issue 1, 51 – 57, 2007.
[13] Lucet, E., Grand, Ch., Bidaud, P.: Sliding-
Mode Velocity and Yaw Control of a 4WD
Skid-Steering Mobile Robot. In: Brain, Body
and Machine, 247–258, Springer, 2010.
[14] Lewis F. L., Campos J., Selmic R.: Neuro-
Fuzzy Control of Industrial Systems with
Actuator Nonlinearities Siam, Society for
Industrial and Applied Mathematics,
Philadelphia, 2002.
[15] Maalouf, E., Saad, M., Saliah, H.: A Higher
Level Path Tracking Controller for a Four-
Wheel Differentially Steered Mobile Robot.
Robotics and Autonomous Systems, 54(1), 23–
33, 2006.
[16] Palm R.., Driankov D., Hellendoorn H.:
Model Based Fuzzy Control, New York:
Springer-Verlag, 1996.
[17] Sanner R. M. and Slotine J. E.: Gaussian
networks for direct adaptive control, IEEE
Trans. Neural Networks, vol. 3, 837–863,
Dec. 1992.
[18] Sidek N.: Dynamic modeling and control of
nonholonomic wheeled mobile robot
subjected to wheel slip, PH.D. thesis,
Vanderbilt University, USA, 2008.
[19] Spooner J. T. and Passino K. M.: Stable
adaptive control using fuzzy systems and
neural networks, IEEE Trans. Fuzzy Syst., vol.
4, 339–359, June 1996.
[20] Su C. Y., Stepanenko Y., and Leung T. P.:
Combined adaptive and variable structure
control for constrained robots, Automatica,
vol. 31, 483–488, 1995.
[21] Sugeno M.: On stability of fuzzy systems
expressed by fuzzy rules with singleton
consequents, IEEE Trans. Fuzzy Syst., vol. 7,
201–224, Apr. 1999.
[22] Takagi T. and Sugeono M.: Fuzzy
identification of systems and its applications
to modeling and control, IEEE Trans. Syst.,
Man, Cybern., vol. SMC-15, 116–132, 1985.
[23] Tian Y., Sarkar N.: Control of a mobile robot
subject to wheel slip, J. Intell. Robot Syst.,
DOI 10.1007/s10846-013-9871-1.
[24] Trojnacki M.: Dynamics modeling of wheeled
mobile robots, OW PIAP, Warsaw, (in
Polish), 2013.
[25] Trojnacki M., Hendzel Z., Dąbek P.,
Kacprzyk J.: Trajectory Tracking Control of a
Four-Wheeled Mobile Robot with Yaw Rate
Linear Controller, Springer, Advances in
Intelligent Systems and Computing, 507 - 521,
2014.
WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2023.22.61
Zenon Hendzel, Maciej Trojnacki