
[4] Yu, R., Yang, Y., Yang, L., Han, G., & Move,
O. A. (2016). RAQ-A Random Forest
Approach for Predicting Air Quality in Urban
Sensing Systems. Sensors (Basel,
Switzerland), 16(1), 86.
https://doi.org/10.3390/s16010086
[5] Yuanlin Gu, Baihua Li, Qinggang Meng,
Hybrid interpretable predictive machine
learning model for air pollution prediction,
Neurocomputing, Volume 468, 2022, Pages
123-136, ISSN 0925-2312,
https://doi.org/10.1016/j.neucom.2021.09.051
[6] W.-I. Lai, Y.-Y. Chen, and J.-H. Sun,
“Ensemble Machine Learning Model for
Accurate Air Pollution Detection Using
Commercial Gas Sensors,” Sensors, vol. 22,
no. 12, p. 4393, Jun. 2022, doi:
10.3390/s22124393. Available:
http://dx.doi.org/10.3390/s22124393
[7] Shivang Agarwal, Sumit Sharma, Suresh R.,
Md H. Rahman, Stijn Vranckx, Bino Maiheu,
Lisa Blyth, Stijn Janssen, Prashant Gargava,
V.K. Shukla, Sakshi Batra, Air quality
forecasting using artificial neural networks
with real time dynamic error correction in
highly polluted regions, Science of The Total
Environment, Volume 735, 2020, 139454,
ISSN 0048-9697,
https://doi.org/10.1016/j.scitotenv.2020.13945
4
[8] Mengyuan Zhu, Jiawei Wang, Xiao Yang, Yu
Zhang, Linyu Zhang, Hongqiang Ren, Bing
Wu, Lin Ye, A review of the application of
machine learning in water quality evaluation,
Eco-Environment & Health, Volume 1, Issue
2, 2022, Pages 107-116, ISSN 2772-9850,
https://doi.org/10.1016/j.eehl.2022.06.001.
[9] Kempelis, A., Romanovs, A. & Patlins, A.
2021, "Implementation of Machine Learning
based Approach in IoT Network Prototype",
Proceedings of the 9th IEEE Workshop on
Advances in Information, Electronic and
Electrical Engineering, AIEEE 2021.
[10] Yue Hu, Xiaoxia Chen, Hanzhong Xia, A
hybrid prediction model of air quality for
sparse station based on spatio-temporal
feature extraction, Atmospheric Pollution
Research, Volume 14, Issue 6, 2023, 101765,
ISSN 1309-1042,
https://doi.org/10.1016/j.apr.2023.101765.
[11] W.C. Leong, R.O. Kelani, Z. Ahmad,
Prediction of air pollution index (API) using
support vector machine (SVM), Journal of
Environmental Chemical Engineering,
Volume 8, Issue 3, 2020, 103208, ISSN 2213-
3437,
https://doi.org/10.1016/j.jece.2019.103208.
[12] Chen, Yingyi & Song, Lihua & Liu, Yeqi &
Yang, Ling & Li, Daoliang. (2020). A Review
of the Artificial Neural Network Models for
Water Quality Prediction. Applied Sciences.
10. 5776. 10.3390/app10175776.
[13] Nilesh N. Maltare, Safvan Vahora, Air
Quality Index prediction using machine
learning for Ahmedabad city, Digital
Chemical Engineering, Volume 7, 2023,
100093, ISSN 2772-5081,
https://doi.org/10.1016/j.dche.2023.100093.
[14] Yang, H., Zhao, J. & Li, G. A new hybrid
prediction model of PM2.5 concentration
based on secondary decomposition and
optimized extreme learning machine. Environ
Sci Pollut Res 29, 67214–67241 (2022).
https://doi.org/10.1007/s11356-022-20375-y.
[15] B. D. Parameshachari, G. M. Siddesh, V.
Sridhar, M. Latha, K. N. A. Sattar and G.
Manjula., "Prediction and Analysis of Air
Quality Index using Machine Learning
Algorithms," 2022 IEEE International
Conference on Data Science and Information
System (ICDSIS), Hassan, India, 2022, pp. 1-
5, doi: 10.1109/ICDSIS55133.2022.9915802.
[16] Narigina, M., Osadcijs, E., & Romanovs, A.
(2022). Analysis of Medical Data Processing
Technologies. In 63rd International Scientific
Conference on Information Technology and
Management Science of Riga Technical
University (ITMS) (pp. 1-6). Riga, Latvia:
IEEE. doi:
10.1109/ITMS56974.2022.9937120.
[17] Liu, X., Lin, Z., & Feng, Z. (2021). Short-
term offshore wind speed forecast by seasonal
ARIMA - A comparison against GRU and
LSTM. Energy, 227, 120492.
doi.org/10.1016/j.energy.2021.120492.
[18] Mehmood, K., Bao, Y., Saifullah, Cheng, W.,
Khan, M. A., Siddique, N., Abrar, M. M.,
Soban, A., Fahad, S., & Naidu, R. (2021).
Predicting the quality of air with machine
learning approaches: Current research
priorities and future perspectives. Journal of
Environmental Management.
doi.org/10.1016/j.jclepro.2022.134656.
[19] Buslim, N., Rahmatullah I. L., Setyawan B.
A. and Alamsyah A., "Comparing Bitcoin's
Prediction Model Using GRU, RNN, and
LSTM by Hyperparameter Optimization Grid
Search and Random Search," 2021 9th
International Conference on Cyber and IT
Service Management (CITSM), Bengkulu,
WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2023.22.55
Marta Narigina, Arturs Kempelis, Andrejs Romanovs