[2] Wang X., Zou X., Modeling the fear effect in
predator-prey interactions with adaptive avoid-
ance of predators, Bulletin of Mathematical Bi-
ology, Vol. 79, No.6, pp. 1325-1359, 2017.
[3] Xiao Z. W., Li Z., Stability analysis of a mutual
interference predator-prey model with the fear ef-
fect, Journal of Applied Science and Engineer-
ing, Vol.22, No.2, pp. 205-211, 2019.
[4] Kundu K., Pal S. and Samanta S., Impact of
fear effect in a discrete-time predator-prey sys-
tem, Bull. Calcuta Math. Soc, Vol.110, No.3, pp.
245-264, 2019.
[5] Das A., Samanta G. P., Modeling the fear effect
on a stochastic prey-predator system with addi-
tional food for the predator, Journal of Physics
A: Mathematical and Theoretical, 2018, Vol.51,
No.46, Article ID: 465601, 2018.
[6] Zhang H., Cai Y., Fu S., et al, Impact of the fear
effect in a prey-predator model incorporating a
prey refuge, Applied Mathematics and Computa-
tion, Vol.356, No.3, pp. 328-337, 2019.
[7] Panday P., Pal N., Samanta S., et al, Stability and
bifurcation analysis of a three-species food chain
model with fear, International Journal of Bifur-
cation and Chaos, Vol. 28, No.01, Article ID:
1850009, 2018.
[8] Mondal S., Maiti A., Samanta G. P., Effects of
fear and additional food in a delayed predator-
prey model, Biophysical Reviews and Letters,
Vol. 13, No.04, pp. 157-177, 2018.
[9] Pal S., Majhi S., Mandal S., et al, Role of
fear in a predator-prey model with Beddington-
DeAngelis functional response, Zeitschrift fur
Naturforschung A, Vol.74, No.7, pp. 581-595,
2019.
[10] Upadhyay R. K., Mishra S., Population dy-
namic consequences of fearful prey in a spa-
tiotemporal predator-prey system, Mathematical
Biosciences and Engineering, Vol.16, No.1, pp.
338-372, 2018.
[11] Sasmal S. K., Population dynamics with multi-
ple Allee effects induced by fear factors-A math-
ematical study on prey-predator interactions, Ap-
plied Mathematical Modelling, Vol.64, No.1, pp.
1-14, 2018.
[12] Chen F., Ma Z., Zhang H., Global asymptotical
stability of the positive equilibrium of the Lotka-
Volterra prey-predator model incorporating a con-
stant number of prey refuges, Nonlinear Analysis:
Real World Applications, Vol. 13, No.6, pp. 2790-
2793, 2012.
[13] Chen F., Wu Y., Ma Z., Stability property for
the predator-free equilibrium point of predator-
prey systems with a class of functional response
and prey refuges, Discrete Dynamics in Nature
and Society, Volume 2012, Article ID 148942, 5
pages.
[14] Yu S., Global stability of a modified Leslie-
Gower model with Beddington-DeAngelis func-
tional response, Advances in Difference Equa-
tions, 2014, 2014, Article ID 84.
[15] Li Z., Han M. A., et al, Global stability of
stage-structured predator-prey model with mod-
ified Leslie-Gower and Holling-type II schemes,
International Journal of Biomathematics, Vol. 6,
No.1, Article ID 1250057, 2012.
[16] Lin X., Xie X., et al, Convergences of a stage-
structured predator-prey model with modified
Leslie-Gower and Holling-type II schemes, Ad-
vances in Difference Equations, 2016, 2016, Ar-
ticle ID 181.
[17] Xiao Z., Li Z., Zhu Z., et al. Hopf bifurcation and
stability in a Beddington-DeAngelis predator-
prey model with stage structure for predator and
time delay incorporating prey refuge, Open
Mathematics, Vol. 17, No.1, pp. 141-159, 2019.
[18] Xie X., Xue Y., et al. Permanence and global
attractivity of a nonautonomous modified Leslie-
Gower predator-prey model with Holling-type II
schemes and a prey refuge, Advances in Differ-
ence Equations, 2016, 2016, Article ID 184.
[19] Deng H. , Chen F., Zhu Z., et al, Dynamic behav-
iors of Lotka-Volterra predator-prey model incor-
porating predator cannibalism, Advances in Dif-
ference Equations, 2019, 2019, Article ID 359.
[20] Chen L., Chen F., Chen L., Qualitative analy-
sis of a predator-prey model with Holling type II
functional response incorporating a constant prey
refuge, Nonlinear Analysis: Real World Applica-
tions, Vol. 11, No.1, pp.246-252, 2010.
[21] Chen L., Chen F., Dynamical analysis of a
predator-prey model with square root functional
response, Journal of nonlinear functional analy-
sis, Vol.8, No.1, pp. 1-12, 2015.
[22] Chen F. D., Lin Q. X., Xie X. D., et al, Dynamic
behaviors of a nonautonomous modified Leslie-
Gower predator-prey model with Holling-type III
WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2023.22.36
Qianqian Li, Qun Zhu, Fengde Chen