[12] P. Chalupa, T. Schafer, M. Reitner, and
others, Fingerprints of the Local Moment
Formation and its Kondo Screening in the
Generalized Susceptibilities of Many-
Electron Problems, Phys. Rev. Lett. 126,
056403 (2021).
[13] F. Krien, A.I. Lichtenstein, and G.
Rohringer, Fluctuation diagnostic of the
nodal/antinodal dichotomy in the Hubbard
model at weak coupling: A parquet dual
fermion approach, Phys. Rev. B 102,
235133 (2020).
[14] T. Schafer and A. Toschi, How to read
between the lines of electronic spectra: the
diagnostics of fluctuations in strongly
correlated electron systems, Journal of
Physics: Condensed Matter (2021).
[15] L. D. Re and G. Rohringer, Fluctuations
diagnostic of the spin susceptibility: Neel
ordering revisited in dmft (2021),
arXiv:2104.11737.
[16] G. Rohringer, A. Valli, and A. Toschi,
Local electronic correlation at the two-
particle level, Phys. Rev. B 86, 125114
(2012).
[17] G. Rohringer, H. Hafermann, A. Toschi,
and others, Diagrammatic routes to
nonlocal correlations beyond dynamical
mean-field theory, Rev. Mod. Phys. 90,
025003 (2018).
[18] N. Wentzell, G. Li, A. Tagliavini, C.
Taranto, G. Rohringer, K. Held, A.
Toschi, and S. Andergassen, High-
frequency asymptotics of the vertex
function: Diagrammatic parametrization
and algorithmic implementation, Phys.
Rev. B 102, 085106 (2020).
[19] T. Eisner, B. Farkas, M. Haase, and R.
Nagel, Operator Theoretic Aspects of
Ergodic Theory. Vol. 272 of Graduate
Texts in Mathematics. Springer, Cham,
(2015).
[20] Eugenio Bianchi, Lucas Hackl, Nelson
Yokomizo “Linear growth of the
entanglement entropy and the
Kolmogorov-Sinai rate,” Journal for High
Energy Physics (2018) 2018: 25.
[21] M. Haase, The Functional Calculus for
Sectorial Operators. Vol. 169 of Operator
Theory: Advances and Applications.
Birkh¨auser Verlag, Basel, (2006).
[22] M. Haase, Functional analysis. An
Elementary Introduction. Vol. 156 of
Graduate Studies in Mathematics.
American Mathematical Society,
Providence, RI, (2014).
[23] Lucas Hackl, Robert C. Myers “Circuit
complexity of free fermions,” Journal for
High Energy Physics (2018) 2018: 139.
[24] Krien F., Valli A., and Capone M. Single-
boson exchange decomposition of the
vertex function, Phys. Rev. B 100, 155149
(2019).
[25] J. Nokkala, R. Martínez-Peña, G. L.
Giorgi, V. Parigi, M. C. Soriano, and R.
Zambrini, Gaussian states of continuous-
variable quantum systems provide
universal and versatile reservoir
computing, Commun. Physics 4, 53
(2021).
[26] E. Martin-Martnez, D. Aasen and A.
Kempf, Processing quantum information
with the relativistic motion of atoms,
Phys. Rev. Lett. 110 (2013) 160501
[1209.4948].
[27] M. Reed and B. Simon, Methods of
Modern Mathematical Physics I.
Functional analysis. Second edition.
Academic Press, Inc. [Harcourt Brace
Jovanovich, Publishers], New York,
(1980).
[28] D. R. M. Arvidsson-Shukur, Yunger N.
Halpern, H. V. Lepage, A. A. Lasek, C. H.
W. Barnes, and S. Lloyd, Quantum
advantage in postselected metrology, Nat.
Commun. 11, 3775 (2020).
[29] K. Schmudgen, Unbounded Self-adjoint
Operators on Hilbert Space. Vol. 265 of
Graduate Texts in Mathematics. Springer,
Dordrecht, (2012).
[30] T. Shi, E. Demler, and J. I. Cirac,
Variational study of fermionic and
bosonic systems with non-gaussian states:
Theory and applications, Annals of
Physics (2017).
[31] P. Woit, Quantum theory, groups, and
representations: An introduction.
Springer, 2017.
WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2023.22.15