
Supervisory Controller Design to Enforce Boundedness,
Reversibility and Liveness in Systems Modeled by Timed Petri

Nets

ALTUĞ İFTAR
Department of Electrical and Electronics Engineering

Eskişehir Technical University
26555 Eskişehir, TURKEY

Abstract: - Supervisory controller design to enforce boundedness, reversibility, and liveness in discrete-event
systems modeled by timed Petri nets where both transitions and places are timed is considered. A controller
design approach which uses the approach of stretching is proposed. The approach produces a supervisory
controller which guarantees boundedness and reversibility simultaneously. The designed controller also
guarantees T -liveness for the largest possible subset T of the set of transitions. Therefore, boundedness,
reversibility, and liveness are enforced simultaneously whenever possible. Furthermore, the designed controller
is maximally permissive in the sense that no transitions are disabled unnecessarily and the reachability set
of the controlled system is the largest possible set in which boundedness and reversibility can be enforced
simultaneously. Controller design for an automated manufacturing system example is also presented to
demonstrate the proposed approach.

Key-Words: - Discrete Event Systems, Timed Petri Nets, Supervisory Control, Algorithms, Manufacturing
Systems, Robotic and Automation Systems

Received: November 17, 2022. Revised: August 23, 2023. Accepted: September 25, 2023. Published: October 16, 2023.

1 Introduction

Discrete-event systems (DES) are very common in
manufacturing, robotics, and automation systems.
A common formalism to model such systems is
Petri nets, [1], [2]. Although Petri nets were first
introduced without the notion of time, time may
play an important role in many DES. Thus, timed
Petri nets (TPNs) were introduced to describe the
evolution of these systems throughout time, [3], [4],
[5], [6], [7], [8], [9]. A TPN, unlike an untimed Petri
net, includes some time-delays, which are usually
associated with either transitions or places. A Petri
net in which time-delays are associated with tran-
sitions is commonly called a timed-transition Petri
net (TTPN) and a Petri net in which time-delays are
associated with places is commonly called a timed-
place Petri net (TPPN). The transitions and places
in a Petri net usually represent events and resources,
respectively. Therefore, when an event takes a cer-

tain time, it is natural to associate this time-delay
with the transition which represents that event. On
the other hand, when the use of a resource takes a
certain time, the time-delay must be associated with
the place which represents that resource. Therefore,
in a system in which both events and use of resources
take time, it may be necessary to use a TPN model,
where both transitions and places are timed.

To design a controller for any system, represen-
tation of the state of the system is, in general, nec-
essary. The state of an untimed Petri net can easily
be represented by the marking vector. However, the
representation of the state of a TPN is much more
complicated, [10]. To overcome this difficulty, the
method of stretching was first introduced for TTPNs
in [11], and then for TPPNs in [12]. The case of
TPNs where both transitions and places are timed
was then considered in [13].

In the present work, as in [11], [12], [13], it is
assumed that all the time-delays are commensurate;

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2023.22.75 Altug Iftar

E-ISSN: 2224-2678 745 Volume 22, 2023

i.e., they are an integer multiple of a common
divisor. This assumption is justified since in many
practical systems a suitable time unit can be found
which divides (at least approximately) all the process
delays. Therefore, in this work, this unit is taken
as the unit of time and all the time-delays are thus
represented by an integer. Furthermore, the time
variable is also represented by an integer and is
denoted by k. Moreover, without loss of generality,
the initial time is assumed to be k = 0.

Since in any manufacturing and/or automation
system, any task requires a minimum time to com-
plete, in this work it is assumed that every transition
has a positive time-delay. On the other hand, since
some of the resources may become immediately
available, some of the places may have zero time-
delay.

Supervisory control is, in general, necessary for
DES to avoid undesirable behaviour, such as dead-
lock, [14], or to enforce desirable behaviour, such
as boundedness, reversibility, and/or liveness, [15].
Controller design to avoid deadlock in TTPNs and
TPPNs were respectively considered in [16], and
in [17], and to enforce boundedness, reversibility,
and liveness in TTPNs and TPPNs were respectively
considered in [18], and in [19]. Deadlock avoidance
controller design for TPNs in which both transitions
and places are timed was then considered in [13]. In
the present work, we consider supervisory controller
design to enforce boundedness, reversibility, and
liveness in TPNs in which both transitions and places
are timed.

Throughout the paper, we use N and N+ to
denote the sets of natural numbers (with zero) and
positive integers, respectively. For two vectors, a and
b, of the same dimension, a ≥ b (a ≤ b) means that
each element of a is greater (less) than or equal to
the corresponding element of b. For any vector a,
aT denotes its transpose. For a set S, |S| denotes
the number of elements of S and [S]i denotes the
ith element of S (i = 1, . . . , |S|).

2 Preliminaries
2.1 Timed Petri Nets
A TPN is a tuple G = (P, T,N,O,M0,DP ,DT),
where P is the set of places, T is the set of
transitions, N : P × T → N is the input matrix
that specifies the weights of arcs from places to
transitions, O : P × T → N is the output matrix

that specifies the weights of arcs from transitions to
places, M0 : P → N is the initial marking vector
which specifies the number of tokens at each place
at the initial time k = 0, DP : P → N is the vector
of the time-delays of the places, and DT : T → N+

is the vector of the time-delays of the transitions.
Graphically, a TPN can be represented as in

Fig. 1, where circles represent the places, bars rep-
resent the transitions, and the arrows represent the
arcs. An integer next to an arc indicates the weight of
that arc, an integer next to a place indicates the time-
delay of that place, and an integer next to a transition
indicates the time-delay of that transition. However,
to keep the graphics simple, when an arc has a unit
weight, we do not write its weight. Also, an arc with
a zero weight is not shown at all. Similarly, when a
place has a zero time-delay, or when a transition has
a unit time-delay, we do not write those. The dots
inside the circles indicate the tokens present in the
corresponding place at the initial time. Therefore,
for the example TPN shown in Fig. 1, we have
P = {p1, p2, p3}, T = {t1, t2, t3},

N =

 1 1 0
0 0 1
0 0 1

 , O =

 0 0 2
1 0 0
0 1 0

 ,

M0 =

 2
0
0

 , DP =

 1
1
0

 , DT =

 2
3
1

 .

In a TPN, a token which enters a place p ∈ P at
time k can be used to enable a downstream transition
no earlier than at time k+DP (p). A transition t ∈ T
can fire at time k only if it is enabled at time k.
The transition t ∈ T is enabled at time k only if
M(k) ≥ N(t), where M(k) denotes the number
of tokens at each place p ∈ P at time k, which
entered place p at time k − DP (p) or earlier, and
N(t) denotes the column of N which corresponds to
transition t. When a transition t ∈ T fires at time k,
it withdraws N(p, t) tokens from each place p ∈ P
at time k and introduces O(p, t) tokens to each place
p ∈ P at time k+DT (t), where N(p, t) and O(p, t)
are the elements of, respectively, N and O, which
correspond to place p and transition t.

2.2 Stretched Petri Nets
The method of stretching for TPNs in which both
transitions and places are timed was introduced in
[13], to represent the state of such a TPN efficiently.
In this method, given a TPN, another TPN, called the

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2023.22.75 Altug Iftar

E-ISSN: 2224-2678 746 Volume 22, 2023

����
• •

�
�
��	

?����
?

@
@
@@R

?����
?

?
p1

t1

p2

t2

p3

t3

1

2

1

3

2

Fig. 1. Example TPN, [13].

stretched Petri net (SPN) is first defined. The SPN
has, in general, more places and more transitions
than the original TPN. However, each place of the
SPN has zero time-delay and each transition has a
unit time-delay. To obtain the SPN, P1 := {p ∈
P | DP (p) = 0}, P2 := {p ∈ P | DP (p) ≥ 1},
T1 := {t ∈ T | DT (t) = 1}, and T2 := {t ∈
T | DT (t) ≥ 2} are first defined. Then,

I) for any p ∈ P2,
i) DP (p) new places, pp1, pp2, . . ., ppDP (p), and
DP (p) new transitions, tp1, tp2, . . ., tpD(p)
are defined. Each new place is assigned
zero time-delay. The time-delay of p is also
redefined as zero. Furthermore, the newly
introduced transitions are such that each of
them has a unit time-delay and any one
of them fires immediately as it becomes
enabled.

ii) all the arcs which leave place p are de-
tached from p; instead, the originating end
of these arcs are attached to place ppDP (p).
Furthermore, new arcs with unity weights
from p to tp1, from tp1 to pp1, from pp1
to tp2, . . ., and from tpD(p) to ppDP (p) are
introduced.

iii) the tokens inside place p (which indicate
the initial marking) are moved to place
ppDP (p).

II) for any t ∈ T2,
i) DT (t)−1 new places, pt1, pt2, . . ., ptDT (t)−1,

and DT (t)− 1 new transitions, tt1, tt2, . . .,
ttDT (t)−1 are defined. Each new place is
assigned zero time-delay and each new
transition is assigned unit time-delay. The

����
?

?����
• •

�
�

��	

?����
?

?����
?

?����
?

@
@
@@R

?����
?

?����
?

?����
?

?
p1

tp11

pp11

t1

pt11

tt11

p2

tp21

pp21

t2

pt21

tt21

pt22

tt22

p3

t3

2

Fig. 2. SPN for the Example TPN, [13].

time-delay of t is also redefined as unity.
Furthermore, the newly introduced transi-
tions are such that any one of them fires
immediately as it becomes enabled.

ii) all the arcs which leave transition t are
detached from t; instead, the originating
end of these arcs are attached to transition
ttDT (t)−1. Furthermore, new arcs with unity
weights from t to pt1, from pt1 to tt1, from
tt1 to pt2, . . ., and from ptDT (t)−1 to ttDT (t)−1
are introduced.

As a result of this procedure, the SPN shown in
Fig. 2 is obtained for the example TPN shown in
Fig. 1. The SPN can be defined as a tuple Ĝ =
(P̂ , T̂ , N̂ , Ô, M̂0). Here, P̂ := P ∪ Pn is the set
of places, where Pn is the set of newly introduced
places; T̂ := T ∪ Tn is the set of transitions, where
Tn is the set of newly introduced transitions; N̂ : P̂×
T̂ → N and Ô : P̂ × T̂ → N are, respectively, the
input and the output matrices; and M̂0 : P̂ → N is
the initial marking vector. Since all the places of the

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2023.22.75 Altug Iftar

E-ISSN: 2224-2678 747 Volume 22, 2023

SPN are delay-free and all the transitions have unit
time-delays, there is no need to include any vectors
to indicate the time-delays in the SPN definition Ĝ.
We refer the reader to [13], for further details.

Although the SPN has, in general, more places
and transitions than the original TPN, its state at any
time k ∈ N is solely and uniquely represented by
the marking vector M̂(k) at time k. Furthermore, the
state of the SPN can be used to define the state of the
original TPN. Moreover, starting with M̂(0) = M̂0,
the evolution of the state of the SPN can easily be
described by the equation

M̂(k + 1) = M̂(k) +
∑
t∈φ(k)

[
Ô(t)− N̂(t)

]
(1)

where φ(k) is the set of transitions which fire at time
k and Ô(t) and N̂(t) indicate the columns of Ô and
N̂ , respectively, which correspond to the transition
t.

2.3 Boundedness, Reversibility and Liveness
The reachability set, R(G), of a TPN G is the set of
all reachable states from the initial state. Although
it is rather complicated to describe the states, and
thus the reachability set, of a TPN (e.g., see, [18]),
the reachability set, R(Ĝ), of the corresponding
SPN Ĝ, can simply be described as the set of all
the markings M̂ , such that there exists a sequence
of enabled transitions which lead from the initial
marking M̂0 to M̂ . Furthermore, there is a one-to-
one correspondence between the states of Ĝ and of
G, thus, between R(Ĝ) and R(G), [18].

For a bound vector K : P → N, a TPN G is said
to be K-bounded if M(p) ≤ K(p), ∀p ∈ P , for all
markings M corresponding to every state in R(G).
G is said to be bounded if it is K-bounded for some
bounded K. G is said to be reversible if for every
state S ∈ R(G), there exists a sequence of enabled
transitions which lead from S to the initial state.
t ∈ T is said to be live if for every state S ∈ R(G),
there exists a sequence of enabled transitions which
lead from S to S′ ∈ R(G) such that t is enabled at
S′. For T ⊂ T , G is said to be T -live if every t ∈ T
is live. Finally, G is said to be live if it is T -live.

3 Supervisory Controller Design

In this section we consider supervisory controller
design to enforce boundedness, reversibility and
liveness in a system modeled by a TPN where both

transitions and places are timed. Since it is easier to
represent the state of the TPN using its SPN, we first
design a controller for the SPN and then describe
the corresponding controller for the original TPN
(OPN). Since there is a one-to-one correspondence
between the states of the SPN Ĝ and of the OPN G,
we have the following:

• G is bounded if and only if Ĝ is bounded.

• G is reversible if and only if Ĝ is reversible.

• G is live if and only if Ĝ is live.

Thus, a controller which guarantees boundedness,
reversibility and liveness in the SPN also guarantees
boundedness, reversibility and liveness in the OPN.
Furthermore, such a controller also avoids deadlock,
since deadlock can not occur in a live Petri net, [20].

To design a controller for the SPN, first, for a
given bound vector K̂ : P̂ → N, we determine the
bounded reachability set, RB , of Ĝ. The bounded
reachability set is the largest subset of R(Ĝ) such
that any M̂ ∈ RB is bounded by K̂ (i.e., M̂(p) ≤
K̂(p), ∀p ∈ P̂) and can be reached from M̂0 by
passing through only states which are bounded by
K̂. Note that, although R(Ĝ) may include infinitely
many elements for an unbounded Petri net, [15],
RB is always a finite set. Algorithm 1, which is
obtained by properly modifying Algorithm A in [19],
constructs the bounded reachability set, RB . The
function τ(m), used in Algorithm 1, returns the set
of sets of simultaneously enabled transitions at state
m and ρ(m,φ) returns the next state, as given by (1),
when φ fires at m. Algorithm 1 returns an empty set
for RB if M̂0(p) > K̂(p), for some p ∈ P̂ . In such
a case, Ĝ is not K̂-bounded at the initial time and,
hence, there exists no controller which can enforce
K̂-boundedness.

Once the bounded reachability set, RB 6= ∅,
is constructed as above, we construct the bounded
reversible reachability set, RS . This set is the largest
subset of RB such that for any M̂ ∈ RS either
M̂ = M̂0 or M̂ can be reached from M̂0 and M̂0

can be reached from M̂ without passing through
any markings outside RS . Algorithm 2, which is
obtained by properly modifying Algorithm B in
[19], constructs this set. Besides RS , this algorithm
also returns the set of all live transitions, T̂ . Here,
functions τ and ρ are as in Algorithm 1 and the
function ε(m) returns the set of enabled transitions
at state m.

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2023.22.75 Altug Iftar

E-ISSN: 2224-2678 748 Volume 22, 2023

Algorithm 1 : Algorithm to construct RB
Inputs: Ĝ = (P̂ , T̂ , N̂ , Ô, M̂0) and K̂
Output: RB
if M̂0 ≤ K̂ then
RB = R1 = {M̂0}
loop
R2 = ∅
for i = 1 to |R1| do
m = [R1]i
Φ = τ(m)
for j = 1 to |Φ| do
φ = [Φ]j , m̂ = ρ(m,φ)
if m̂ /∈ (R2 ∪ RB) and m̂ ≤ K̂ then
R2 ← R2 ∪ {m̂}

end if
end for

end for
if R2 == ∅ then

exit loop
end if
RB ← RB ∪ R2

R1 = R2

end loop
else
RB = ∅

end if
return RB

Once the bounded reversible reachability set, RS ,
is determined, a controller which keeps the state
of the SPN within RS guarantees K̂-boundedness
and reversibility simultaneously for the SPN. Such
a controller can be described as

c(m,φ) :=

{
1 , if ρ(m,φ) ∈ RS
0 , otherwise

, (2)

for any m ∈ RS and for any φ ∈ τ(m), where
c(m,φ) = 0 means that the firing of the set φ at
state m is disabled by the controller and c(m,φ) =
1 means that the firing of this set at state m is
not disabled by the controller. This controller also
guarantees liveness, if and only if T̂ = T̂ , where
T̂ is as returned by Algorithm 2. Otherwise, T̂ is
the largest subset of T̂ such that a controller exists
which guarantees K̂-boundedness, reversibility, and
T̂ -liveness simultaneously.

Algorithm 2 : Algorithm to determine RS and T̂
Inputs: Ĝ = (P̂ , T̂ , N̂ , Ô, M̂0) and RB

Outputs: RS and T̂
RX = RB , T̂ = ∅
Start: R′ = RX \ {M̂0} , RS = {M̂0}
loop
R = R′ , Flag = 0
for i = 1 to |R| do
m̄ = [R]i , Φ = τ(m̄)
for k = 1 to |Φ| do
φ = [Φ]k , m̂ = ρ(m̄, φ)
if m̂ ∈ RS then
RS ← RS ∪ {m̄} , R′ ← R′ \ {m̄} ,
Flag = 1, go to Break

end if
end for
Break: continue

end for
if Flag == 0 then

exit loop
end if

end loop
if RS == {M̂0} then

go to Finish
end if
RR = ∅ , Ra = {M̂0}
loop
Rb = ∅ , RR ← RR ∪ Ra

for i = 1 to |Ra| do
m̄ = [Ra]i , Φ = τ(m̄)
for j = 1 to |Φ| do
φ = [Φ]j , m̂ = ρ(m̄, φ)
if m̂ ∈ RS and m̂ /∈ RR ∪ Rb then
Rb ← Rb ∪ {m̂}

end if
end for

end for
if Rb == ∅ then

exit loop
end if
Ra = Rb

end loop
if RS 6= RR then
RX = RR, go to Start

end if
for i = 1 to |RS | do
m̄ = [RS]i , T1 = ε(m̄)
for j = 1 to |T1| do
t = [T1]j
if ρ(m̄, {t}) ∈ RS then
T̂ ← T̂ ∪ {t}

end if
end for

end for
Finish: return RS , T̂

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2023.22.75 Altug Iftar

E-ISSN: 2224-2678 749 Volume 22, 2023

4 Example

We borrow the automated manufacturing system
example presented in [13]. The TPN model of the
system is shown in Fig. 1. The corresponding SPN is
shown in Fig. 2. We aim to design a controller which
enforces K̂-boundedness for K̂(p) = 2, ∀p ∈ P̂ ,
reversibility, and liveness simultaneously. Algorithm
1 returns the bounded reachability set, RB , shown
in Table 1, where the ordering of the places is as
follows: p1, pp11 , pt11 , p2, pp21 , pt21 , pt22 , p3. This set is
same as the reachability set R(Ĝ), obtained in [13],
since the system is already K̂-bounded. Algorithm
2 then determines that

RS = {m0,m1,m2,m3,m7,m8,m9,m13, . . . ,m24}

and T̂ = T̂ . Thus, the states m4, m5, m6, m10,
m11, and m12 are excluded from RS , since it is not
possible to reach to M̂0 = m0 from any one of these
states. The controller described by (2) then disables
t1 at states m1, m2, and m3 and t2 at states m7, m8,
and m9. Thus, a controller which disables firing t1
at states corresponding to m1, m2, and m3 and t2 at
states corresponding to m7, m8, and m9 in the OPN
guarantees boundedness, reversibility and liveness in
the OPN. Furthermore, this controller also avoids
deadlock, since the controlled system is live.

5 Conclusions

Supervisory controller design to enforce bounded-
ness, reversibility, and liveness in DES modeled
by TPNs where both transitions and places are
timed has been considered. A controller design ap-
proach which uses the approach of stretching has
been proposed. The approach produces a supervi-
sory controller which guarantees boundedness and
reversibility simultaneously. The designed controller
also guarantees T -liveness for the largest possi-
ble subset T of the set of transitions. Therefore,
boundedness, reversibility, and liveness are enforced
simultaneously whenever possible. Furthermore, the
designed controller is maximally permissive in the
sense that no transitions are disabled unnecessarily
and the reachability set of the controlled system is
the largest possible set in which boundedness and
reversibility can be enforced simultaneously.

The algorithms proposed for controller design
terminates in finite time. The computational com-
plexity of Algorithm 1 is proportional to the size

Table 1. Bounded reachability set, RB .

m0 =
[
0 2 0 0 0 0 0 0

]T
m1 =

[
0 1 1 0 0 0 0 0

]T
m2 =

[
0 1 0 1 0 0 0 0

]T
m3 =

[
0 1 0 0 1 0 0 0

]T
m4 =

[
0 0 1 0 1 0 0 0

]T
m5 =

[
0 0 0 1 1 0 0 0

]T
m6 =

[
0 0 0 0 2 0 0 0

]T
m7 =

[
0 1 0 0 0 1 0 0

]T
m8 =

[
0 1 0 0 0 0 1 0

]T
m9 =

[
0 1 0 0 0 0 0 1

]T
m10 =

[
0 0 0 0 0 1 0 1

]T
m11 =

[
0 0 0 0 0 0 1 1

]T
m12 =

[
0 0 0 0 0 0 0 2

]T
m13 =

[
0 0 1 0 0 1 0 0

]T
m14 =

[
0 0 0 1 0 0 1 0

]T
m15 =

[
0 0 0 0 1 0 0 1

]T
m16 =

[
0 0 0 1 0 1 0 0

]T
m17 =

[
0 0 0 0 1 0 1 0

]T
m18 =

[
0 0 0 0 1 1 0 0

]T
m19 =

[
0 0 0 0 1 0 1 0

]T
m20 =

[
0 0 1 0 0 0 1 0

]T
m21 =

[
0 0 0 1 0 0 0 1

]T
m22 =

[
0 0 0 0 1 0 0 1

]T
m23 =

[
0 0 1 0 0 0 0 1

]T
m24 =

[
2 0 0 0 0 0 0 0

]T

of RB , which is related to both the size of the
Petri net and the bound vector. The computational
complexity of Algorithm 2, on the other hand, is
at worst proportional to the square of the size of
RB . Therefore, the overall computational complexity
of the proposed design approach is bounded by the
square of the size of RB .

The proposed controller design uses the so-called
behavioral approach, [20], [21], as opposed to the
so-called structural approach, [22], [23]. Although
behavioral approach is more tedious (as it requires
the construction of the reachability set), it can
guarantee the design of maximally permissive con-
trollers; whereas the structural approach, in general,
produces conservative controllers, [22].

As discussed in [24], to model some DES, it
may be necessary to use Petri net models in which
the arcs are timed. A Petri net in which arcs are
timed can be called a timed-arc Petri net (TAPN).
Therefore, as a future study, the present approach
can be extended to TAPNs. Furthermore, the present
approach can also be extended to decentralized su-
pervisory controller design along the lines of [25].

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2023.22.75 Altug Iftar

E-ISSN: 2224-2678 750 Volume 22, 2023

References
[1] M. Zhou and F. DiCesare, Petri Net Synthesis for Discrete

Event Control of Manufacturing Systems. Norwell, MA:
Kluwer Academic Publishers, 1993.

[2] J. Proth and X. Xie, Petri Nets: A Tool for Design and
Management of Manufacturing Systems. West Sussex:
John Wiley & Sons, 1996.

[3] F. D. J. Bowden, “A brief survey and synthesis of the
roles of time in Petri nets,” Mathematical and Computer
Modelling, vol. 31, pp. 55–68, 2000.

[4] J. Wang, Timed Petri Nets: Theory and Application.
Boston, MA: Kluwer Academic, 1998.

[5] W. M. Zuberek, “Timed Petri nets in modeling and analysis
of cluster tools,” IEEE Transactions on Robotics and
Automation, vol. 17, pp. 562–575, 2001.

[6] L. Popova-Zeugmann, Time and Petri Nets. New York:
Springer, 2013.

[7] L. Liang, F. Basile, and Z. Li, “A reduced computation of
state space to enforce GMECs and deadlock-freeness on
TPN systems,” in IFAC PapersOnLine 53-4, pp. 166–172,
2020.

[8] S. Akshay, L. Helouet, and R. Phawade, “Combining free
choice and time in Petri nets,” Journal of Logical and
Algebraic Methods in Programming, vol. 101, 2020.

[9] D. Lefebvre and C. Daoui, “Control design for bounded
partially controlled TPNs using timed extended reachabil-
ity graphs and MDP,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 50, no. 6, pp. 2273–2283, 2020.

[10] C. Lakos and L. Petrucci, “Modular state space exploration
for timed Petri nets,” International Journal on Software
Tools for Technology Transfer, vol. 9, pp. 393–411, 2007.

[11] A. Aybar and A. İftar, “Supervisory controller design for
timed Petri nets,” in Proceedings of the IEEE International
Conference on System of Systems Engineering, (Los An-
geles, CA, U.S.A.), pp. 59–64, Apr. 2006.

[12] A. Aybar and A. İftar, “Representation of the state of
timed-place Petri nets using stretching,” in Proceedings of
the 4th IFAC Workshop on Discrete-Event System Design,
(Playa de Gandia, Spain), pp. 79–84, Oct. 2009.

[13] A. İftar, “Supervisory control of manufacturing systems
modeled by timed Petri nets,” in Proceedings of the 12th
IFAC Workshop on Intelligent Manufacturing Systems,
(Austin, TX, U.S.A.), pp. 128–132, Dec. 2016.

[14] Z. W. Li, M. C. Zhou, and N. Q. Wu, “A survey and
comparison of Petri net-based deadlock prevention policies
for flexible manufacturing systems,” IEEE Transactions on
Systems, Man, and Cybernetics–Part C, vol. 38, pp. 173–
188, 2008.

[15] A. Aybar, A. İftar, and H. Apaydın-Özkan, “Centralized
and decentralized supervisory controller design to enforce
boundedness, liveness, and reversibility in Petri nets,”
International Journal of Control, vol. 78, pp. 537–553,
2005.

[16] A. Aybar and A. İftar, “Deadlock avoidance controller
design for timed Petri nets using stretching,” IEEE Systems
Journal, vol. 2, pp. 178–188, 2008.

[17] A. Aybar and A. İftar, “Supervisory controller design for
timed-place Petri nets,” Kybernetika, vol. 48, pp. 1114–
1135, 2012.

[18] A. Aybar and A. İftar, “Supervisory controller design to
enforce some basic properties in timed-transition Petri nets
using stretching,” Nonlinear Analysis: Hybrid Systems,
vol. 6, pp. 712–729, 2012.

[19] A. Aybar and A. İftar, “Supervisory controller design
to enforce basic properties in timed-place Petri nets,” in
Preprints of the 6th IFAC Conference on Management and
Control of Production and Logistics, (Fortaleza, Brazil),
pp. 486–492, Sept. 2013.

[20] R. S. Sreenivas, “On the existence of supervisory policies
that enforce liveness in discrete-event dynamic systems
modelled by controlled Petri nets,” IEEE Transactions on
Automatic Control, vol. 42, pp. 928–945, 1997.

[21] H. Boucheneb, A. Alger, and G. Berthelot, “Towards a
simplified building of time Petri nets reachability graph,”
in Proceedings of the 5th International Workshop on Petri
Nets and Performance Models, (Reims, France), pp. 46–
55, May 1993.

[22] M. V. Iordache and P. J. Antsaklis, “Design of T -liveness
enforcing supervisors in Petri nets,” IEEE Transactions on
Automatic Control, vol. 48, pp. 1962–1974, 2003.

[23] Z. W. Li and M. C. Zhou, “Elemetary siphons of Petri
nets and their application to deadlock prevention in flexible
manufacturing systems,” IEEE Transactions on Systems,
Man, and Cybernetics–Part A, vol. 34, pp. 38–51, 2004.

[24] A. Aybar and A. İftar, “Supervisory control of discrete-
event systems modeled by timed-arc Petri nets,” in Pro-
ceedings of the European Control Conference, (Saint Pe-
tersburg, Russia), pp. 656–661, May 2020.

[25] A. Aybar and A. İftar, “Overlapping decompositions and
expansions of Petri nets,” IEEE Transactions on Automatic
Control, vol. 47, pp. 511–515, 2002.

Sources of Funding
This work has been supported by the Scientific
Research Projects Commission of Eskişehir Techni-
cal University under grant numbers 22ADP301 and
23ADP033.

Conflicts of Interest
The author has no conflicts of interest to declare that
are relevant to the content of this article.

Creative Commons Attribution License 4.0
(Attribution 4.0 International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/
licenses/by/4.0/deed.en_US

Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)
The author contributed in the present research, at all

stages from the formulation of the problem to the

final findings and solution.

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2023.22.75 Altug Iftar

E-ISSN: 2224-2678 751 Volume 22, 2023

	Introduction
	Preliminaries
	Supervisory Controller Design
	Example
	Conclusions
	References
	Blank Page

