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Abstract: - As a compound fault of bearing is characterized by complexity, disproportion, and interaction, its 

fault diagnostic accuracy tends to decline sharply. To solve this problem, the present study proposes a transient 

fault-signal extraction scheme for bearing compound fault intelligent diagnosis. First, the single fault vibration 

and compound fault vibration signals are transformed into the time-frequency domain by wavelet transform. 

Then, according to the normal condition signal, the transient fault signal of the single signal and compound 

signal is extracted through the positive k sigma principle. Next, the single fault signal symptom parameters are 

calculated to build the fault diagnostic model. Thereafter, the symptom parameters of the extracted compound 

fault transient signal are brought into the diagnostic model to obtain the model output result. Finally, according 

to the developed fault diagnosis discrimination criterion, the method can diagnose the compound fault 

successfully. The effectiveness of the proposed method is validated by bearing fault vibration signals under 

various conditions. The results show that the diagnostic method has superior performance in intelligently 

diagnosing the bearing compound fault. 
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1 Introduction 
Bearings are among the essential components of 

rotating machines. Due to their complex working 

conditions, bearing fault diagnosis is a significant 

task in guaranteeing equipment safety and reducing 

accidents, [1]. In many situations, compound faults 

often appear as spalls or cracks on different 

positions, [2]. Compared with fault diagnosis 

methods that have been successfully used in single 

faults, accurate diagnosis of compound faults has 

not been effectively proven in theory. Bearing 

compound fault is characterized by complexity, 

disproportion, and interaction results in diagnostic 

performance deterioration. Therefore, studying the 

compound fault diagnosis is important. 

Many studies have conducted compound fault 

diagnosis of the rotating machine. With the 

development of automation and information 

technology, most methods are machine learning 

algorithms. The bearing compound fault diagnosis 

can be divided into two types: one is fault 

characteristic frequency-based and the other is 

discriminant model-based. The general process of 

the fault characteristic frequency-based type is as 

follows: the acquired signal is filtered first, and then 

a signal is decomposed to extract or strengthen the 

fault signal.  

The method can identify the fault characteristic 

frequency for fault diagnosis. Numerous compound 

fault diagnosis strategies have been applied with this 

method, [3], [4]. Empirical mode decomposition, 
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[5], [6], empirical wavelet transform combined with 

chaotic oscillator, [7], 1.5-dimension envelope 

spectrum, [8], resonance and spectral kurtosis, [9], 

[10], Hilbert transform demodulation analysis, [11], 

and adaptive maximum correlated kurtosis 

deconvolution, [12], have been successfully applied 

with fault characteristic frequency-based approach. 

This type of method needs to calculate the fault 

characteristic frequency initially, which requires 

knowing intrinsic information about the object, such 

as size, rotation speed, and diameter. These factors 

are difficult to identify in some unknown working 

conditions. The general process of the discriminant 

model-based method is as follows: collecting the 

vibration signal in the fault state, extracting the fault 

features, and building an effective discriminant 

model for fault diagnosis through signal filtering 

and feature extraction. Many different studies have 

addressed compound fault diagnosis by this method. 

Sparse non-negative matrix factorization combined 

with support vector data description, [13], support 

vector machine, [14], [15], [16], independent 

component analysis, [17], principal component 

analysis, [18], [19], and hidden Markov model, [20], 

have been successfully applied in compound fault 

diagnosis. In this method, the accuracy of the 

discriminant model largely depends on the effective 

extraction of features, but no perfect method can be 

used to extract features in the compound fault signal 

characterized by feature coupling. Motivated by this 

problem, the present study developed an automatic 

transient spectrum extraction scheme for bearing 

compound fault diagnosis. Transient spectrum 

extraction can effectively extract single and 

composite fault features from signals, and the 

extracted features have stronger fault representation 

ability. Based on the transient spectrum extraction, 

the compound fault diagnosis model has better 

diagnostic ability. 

 The main contributions of this paper reflect in: 

(1) The proposed positive k sigma principle can 

extract single fault information from compound 

signals effectively. (2) The discriminant model with 

extracted single faults can reduce diagnostic 

performance deterioration caused by compound 

faults. Various experiments confirmed the efficacy 

of this method. 

The rest of this paper is organized as follows. 

Section 2 introduces the bearing compound fault 

diagnosis method and theory proposed in this paper, 

which illustrates the positive k sigma principle to 

extract transient spectra and discrimination criteria. 

Section 3 uses the experiment platform data to 

verify the proposed method. Section 4 provides a 

summary of the conclusions. 

2 Bearing Compound Fault Diagnosis 

Strategy 
The automatic transient spectra scheme of bearing 

compound fault diagnosis covers condition 

surveillance, the positive k sigma principle, the 

discrimination model, and others. The process of the 

proposed method is shown in Figure 1.  

 

1. Wavelet Transform
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time- 

frequency 

with WT

Data preprocessing 

and calculate 7 

symptom  parameters

3. SVM training

4. SVM diagnosis 

Select fault signal samples 
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Training

Diagnosis

Compound 
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Single state
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2. Symptom parameters

calculate

Single faults 

signal

 Fig. 1: Process of proposed compound fault 

diagnosis method 

 

In the training stage, wavelet transforms (WT) 

are used to transform vibration signals measured in 

the normal state and single fault state (inner race, 

outer race, and roller defects) to the time-frequency 

domain. With normal state signals as reference 

signals, the transient spectra of abnormal (fault) 

states are detected. Each impulse wave corresponds 

to one transient spectrum. Then, the frequency 

domain symptom parameter method is used to 

obtain symptom values. These symptom values are 

synthesized as input and substituted into the support 

vector machine (SVM) to establish a model from 

symptom parameters to fault types. 

In the diagnosis stage, condition surveillance is 

performed by measuring vibration signals to reveal 

the bearing condition first. Similar to the training 

stage, the compound fault is transformed into the 

time-frequency domain by WT. Then, the transient 

spectra of abnormal components are extracted using 

reference signals and the positive k sigma principle. 

In these transient spectra, frequency domain 

symptom parameters are used to obtain symptom 

values. Then, the symptom values are substituted 

into the SVM model, which is established in the 

training stage. According to the model result, the 

compound fault can be diagnosed through a 

designed discrimination criterion. 

 

2.1 Condition Surveillance 
The proposed bearing diagnosis method has two 

stages: one is condition surveillance (simple 

diagnosis) and the other is precision diagnosis. 

Before the diagnosis of compound faults, condition 

surveillance is needed to judge the bearing 

condition. Generally, for condition surveillance, 
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statistical symptom parameters acquired from 

vibration signals are used to monitor the mechanical 

condition. These parameters have two types: 

symptom parameters with dimensionality (e.g., 

mean and peak values representing signal 

amplitude) and dimensionless symptom parameters 

(e.g., skewness and waveform kurtosis, which 

represent signal shape), [21].  

In the first step of the proposed method, the 

bearing condition must be diagnosed as either 

normal or not. Kurtosis is one of the most effective 

parameters to detect bearing abnormality. Kurtosis, 

which has been successfully used to detect bearing 

faults [22], is defined as 

 
4 4

1

N

i
i

Kurtosis x N 


   (1) 

where: µ = mean value 

σ = standard deviation 

N = length of signal xi 

 

According to the experimental findings of 

reference, [22], when the bearing vibration signal 

kurtosis value exceeds five times the normal state 

signal kurtosis, the bearing is abnormal. Thus, 

kurtosis is employed for condition surveillance. It 

only judges whether the bearing is normal or not, 

and the further precise diagnosis employs the 

proposed method. 

 

2.2 Discrete Wavelet Transform 
Compared with the fast Fourier transform, wavelet 

transform, [23], [24] has good time-frequency 

localization properties in signal processing and 

characteristic of multi-resolution analysis. Given a 

signal f(t), its discrete wavelet transform is defined 

as 

     
21

,
22

j
wt

wt jj

t k
DWT j k f t d t





 
   

 
  (2) 

where: ψ(t) = mother wavelet 

2j = scale parameter (inverse of frequency) 

2jkwt = translation parameter 

 

2.3 Positive k Sigma Principle Fault-

Transient Spectra Extraction Methodology 
Using Eq. (2), i.e., wavelet transform computation, 

we can obtain time-frequency domain signals of 

each state for the training and diagnosis stages. 

Figure 2 shows the roller bearing vibration signal 

time domain fault impulse waveform of the 

abnormal state (Figure 2(a)) and the corresponding 

impulse waveform frequency spectrum transformed 

by WT in the time-frequency domain (Figure 2(b)). 
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Fig. 2: Signals in time and time-frequency domains: 

(a) vibration signal; (b) time-frequency; and (c) time 

intensity of spectrum 

 

To extract the transient spectra of the abnormal 

bearing, we define time intensity Iw(t) of wavelet 

frequency spectrum W(tk, fi) as follows: 

   
21

=
22wt

j

wt
W jj

j k

t k
I t f t 

 
 
 

  (3) 

An example of Iw(t) is presented in Figure 2(c). 

The value of µ+kσ exceeding reference state 

(normal state) Iw(t) is normally used in selection to 

extract the transient spectra of fault pulse from the 

signals. Here, µ is the mean value of Iw(t), σ is the 

standard deviation of Iw(t), and k is calculated by 

 
1

=
peaks

peaks

N

W peaks
i

i

k I N 


 
  
 
  (4) 

where: Npeaks = the number of peaks in the reference 

state (normal state) 

 

2.4 Frequency-domain Symptom 

Parameters 
To reflect symptoms of the fault-pulse signal 

transient spectrum as shown in Figure 2(c), 

according to our previous study, [21], seven types of 

frequency domain symptom parameters presented in 

Eqs. (5–11) are used to represent symptoms of the 

transient spectrum. 

   2
1

3 3

=
N N

i i i

i N i N

p f S f S f

 

   (5) 

   4 2
2

3 3

=
N N

i i i i

i N i N

p f S f f S f

 

   (6) 
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     2 2
3

3 3 3

=
N N N

i i i i i

i N i N i N

p f S f f S f S f

  

    (7) 

4 =p
f


 (8) 

   
3 3

5

3

=
N

i

i N

p f f S f N


  (9) 

   
4 4

6

3

=
N

i

i N

p f f S f N


  (10) 

   7

3

=
N

i

i N

p f f S f N


  (11) 

here, 

   
3 3

N N

i i i

i N i N

f f S f S f

 

    

   
2

3

=
N

i

i N

f f S f N


  

where: N = the acquired signal length 

f = the frequency of the acquired signal 

 S f  = signal frequency spectrum, 

1,2,i N . 

The amplitude  s f  significantly influences the 

value of such a symptom parameter. Before the 

symptom parameters are calculated, both the 

spectrum and symptom parameters should be 

normalized. 

/ 2
' '

1

( ) ( ) ( )
N

f

s f s f s f


   (12) 

where: ( )s f  = the spectrum of normalization 

' ( )
ii i pp p p std   (13) 

where: ip : fault symptom parameter; 
'

ip : fault symptom parameter of normalization; 

p : the mean value symptom parameter; 

ipstd : the standard deviation symptom parameter. 

 

2.5 Classification of Compound Faults by 

SVM 
SVM is a type of intelligent algorithm based on the 

theory of statistical learning. As bearings have many 

fault types, compound fault SVM is a multi-class 

classification problem. 

Based on the normal state of bearing, according 

to Eqs. (5–11), single-fault symptom parameters are 

ijkp
(j = 1–M, ki = O, I, R), k = O (outer race defect), 

I (inner race defect), and R (roller defect). Their 

instantaneous spectra and symptom parameters are 

normalized. Seven symptom values are input 

parameters to SVM and the fault type is the output. 

After training the SVM model, compound fault 

parameters Pjc (j = 1–M), where C indicates 

compound faults, are substituted into the model to 

identify the fault type. 

 

2.6 Discrimination Criterion 
Based on the SVM classification model, the model 

output is used to identify the compound fault type. 

This study proposes a discrimination method based 

on cumulative percentage, which is defined as 

follows: 

We assume that Nx, x = 1,2,…,m is the number of 

fault type output by SVM and m is the fault type. Nx 

is ranked as N1≥N2…. ≥Nm≥0 individual percentage, 

and pri is defined as 

1

m

i i ii
pr N N


   (14) 

The cumulative percentage of the first t type in 

the sequence is defined as 

1 1
1,2,

t m

t i ii i
C N N t m

 
   ，  (15) 

As compound faults are characterized by 

multiplicity and coupling, some fault symptoms are 

not sufficiently clear. The proposed method is 

implemented to assess the number of single faults in 

the compound faults. However, the existence of 

noise, complex fault signals, and coupling features 

lead to a condition in which the single fault cannot 

be perfectly (100%) extracted from the compound 

fault signal. Thus, dominant signals of single faults 

are selected to diagnose compound faults. The 

threshold Thr is provided to select t. If Ct≥Thr, then 

the compound faults include the first t fault types. 

Here, the threshold Thr refers to principal 

component analysis theory: the percentage of the 

cumulative sum over 80% can represent the main 

information of the signal. Fault discrimination 

operations are shown in the following steps: 

Step 1: The diagnosis samples are brought into 

the trained model of SVM and obtain the 

classification result iN . 

Step 2: All iN  values are ranked from max to 

min 1 2 mN N N  . 

Step 3: Cumulative percentage 
1 1

=
t m

i i i

i i

Pr N N
 

  , 

where , 1,2,iPr i m  is calculated. 
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Step 4: Fault type is diagnosed; if i rPr Th , then 

a fault type exists from 1 to i. 

For example, given the SVM model fault type 

output ranking of No>NI>NR, if (No+NI)/ 

(No+NI+NR )≥ Thr, the compound fault includes O 

(outer race defect) and I (inner race defect). If (No)/ 

(No+NI+NR )≥ Thr, then only the outer race defect O 

exists. 

 

 

3 Experiment 
 

3.1 Experimental Conditions 
To verify the effectiveness and feasibility of the 

proposed method, this study presents the results of 

roller-bearing compound fault diagnosis tests 

performed on a rotating experimental machine 

facility (Figure 3). An experimental bench used for 

fault diagnosis testing is provided and includes 

loading equipment, a servo motor, and a rotor 

system. The original vibration signals of each state 

were measured by an accelerometer with a sampling 

frequency of 100,000 Hz. Objects of diagnosis 

include a single fault in Figure 4 (outer race defect, 

inner race defect, and roller defect) and a compound 

fault (inner race defect and outer race defect, inner 

race defect and roller defect, and outer race defect 

and roller defect) created by machining. The inner 

race defect is 0.15 mm × 0.5 mm (depth × width), 

the outer race defect is 0.15 mm × 0.5 mm (depth × 

width), and the roller defect is 0.15 mm × 0.5 mm 

(depth × width). The accelerometer is installed in 

the vertical direction of the bearing seat (1,500 

revolutions per minute). The length of the 

experiment data is 16,384. 

 

 
Fig. 3: Experimental bench 

 

 
Fig. 4: Fault bearing for test: (a) outer race defect, 

(b) inner race defect, and (c) roller defect 

 

This experiment adopts a compound fault that 

includes inner race and roller defects as an object to 

verify the effectiveness of the proposed method. If 

the fault-state operating conditions of the bearing 

experiment differ from the normal state, then the 

diagnostic accuracy declines. 

 

3.2 Condition Surveillance 
Kurtosis analysis is used for condition surveillance. 

According to theory, in the normal state, the kurtosis 

value is near 3 and the probability distribution 

follows the normal distribution. If the kurtosis value 

exceeds 5 times the normal state, then faults exist in 

the bearing. The farther the kurtosis value from 5, 

the more serious the fault. This study adopts 

vibration signals of the normal state, single fault, 

and compound fault to calculate the time domain 

kurtosis values. Results are provided in Table 1. 

Table 1. Kurtosis Values of Each State 

Type Kurtosis Value 

Normal state 2.869 

Inner race defect state 109.2879 

Outer race defect state 34.1227 

Roller race fault state 253.4692 

Compound fault state 74.84 

 

As shown in Table 1, the normal state kurtosis 

value is near 3. The kurtosis values of the inner race 

defect, outer race defect, roller defect, and 

compound fault are 109.2879, 34.1227, 253.4692, 

and 74.84, respectively. All of these values are 

larger than 5 times the normal state. This result 

indicates the fault in measured vibration signals. To 

allow a straightforward analysis, Figure 5 shows the 

calculated probability density distribution of each 

state. 

 

Fig. 5: Probability distribution of each state 

 

As presented in Figure 5, according to the 

standard normal distribution, the probability 
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distribution of the normal state follows the normal 

distribution. The probability distributions of the 

inner race, outer race, and roller defects deviate 

from the normal distribution. The more apparent this 

deviation, the more apparent the fault. Compared 

with the normal distribution, the compound fault 

kurtosis value deviates from the normal distribution. 

 

3.3 Extraction of Transient Spectra using 

WT 
Considering the characteristics of vibration signals, 

this study adopts Gabor wavelet ψ(t) to transform 

signals to the time–frequency domain. 

   = itt g t e  (16) 

where: gσ(t)is referred to as the Gaussian window 

function defined as 

 
 

2

24
1

=
2

t

g t e











 (17) 

where: σ = the standard deviation (factor width) 

µ = the mean value (time factor) 

Through WT operations, time–frequency 

diagrams of a normal state, single fault state, and 

compound fault state are obtained. The example of 

the inner race defect result is shown in Figure 6. 

In Figure 6, (a) shows vibration signals acquired 

by the experiment, (b) shows some data of the time 

domain signals intercepted from (a), (c) shows the 

time–frequency contour diagram of the wavelet 

spectrum obtained by WT, and (d) shows the time 

intensity of the wavelet spectrum. As presented in 

Figure 6, the fault pulse in the vibration signal time 

domain has a corresponding fault symptom transient 

spectrum in the time–frequency domain. The time-

intensity of Iw(t) of this point exceeds the time 

intensity when no pulse signal exists. With the 

normal state as a reference, the positive k sigma 

principle µ+kσ of Iw(t) is used as the method to 

select fault-signal transient spectra. According to 

experiment results, µ+6σ has been used to extract 88 

transient spectra from a single inner-race defect, 

µ+4σ has been used to extract 118 transient spectra 

from a single outer-race defect, µ+3σ has been used 

to extract 104 transient spectra from a single roller 

defect, and µ+3σ has been used to extract 153 

transient spectra from a compound fault. 

Obtained transient spectra have been normalized 

and then, symptom parameters in Eqs. (5–11) are 

used to obtain symptom values of the transient 

spectra, followed by normalizing of symptom 

parameters using Eqs. (12–13). 

After the operations mentioned, the data obtained 

can be used to establish the classification model and 

identify and diagnose the compound faults. 
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Fig. 6: Fault signal time domain and time–frequency 

domain (inner race defect) 

 

3.4 Diagnosis of Compound Faults 
In this section, SVM is used to establish a roller-

bearing diagnosis model. Based on this built model, 

the compound fault can be classified. Some 

symptom parameters of the SVM model training 

part are inner race defect: 1(type), outer race defect: 

2(type), and roller defect: 3(type). Diagnosis parts 

(compound faults) are presented in Table 2. 
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Table 2. Diagnosis samples 

State 
Fault 

type 
No. P1 … P7 

Fault 

type 

Train-

ing 

Inner 

1 0.802 … 2.373 1 

… … … … 1 

60 0.048 … 3.338 1 

Outer 

61 1.212 … 2.912 2 

… … … … 2 

120 0.864 … 2.684 2 

Roller 

123 0.877 … 3.936 3 

… … … … 3 

180 1.098 … 3.163 3 

Diagno-

sis 

Com-

pound 

181 2.47 … 0.774 
Un-

known 

… … … … 
Un-

known 

333 0.343 … 2.86 
Un-

known 

 

Here, the SVM model uses RBF as the kernel 

function. In the training stage, 60 symptom 

parameter samples of each state of the inner race 

defect, outer race defect, and roller defect (total of 

180 samples) are taken to train the SVM model. 

Additionally, 24 symptom parameter samples of 

each state are taken as test samples to test the 

model. After the model training, the 153 symptom 

parameters calculated from the compound fault state 

are used as diagnosis samples to diagnose the 

compound fault, as shown in Table 3. 

 

Table 3. Sample setting of the SVM model 

 Fault type 
Training 

samples 

Test 

samples 

Training 

state 

Inner 60 24 

Outer 60 24 

Roller 60 24 

Diagnosis 

state 
Compound No 

153 

(for 

diagnosis) 

 

All single-fault (inner race, outer race, and roller 

defects) training samples are used to train the SVM 

model. Then, testing samples of all single faults are 

used to test the trained model. The model test 

accuracy is defined as: 

%
correctSampl

Accuracy
testingSampl

es

es




 (18) 

The model test results are presented in Figure 7. 

 

 
Fig. 7: Accuracy of a test sample of the SVM model 

(I: inner, O: outer, and R: roller) 

 

As shown in the results, output result accuracy 

reaches 95.83%, thereby indicating the good 

performance of the training model and the 

successful establishment of mapping from fault 

symptom parameters to fault types. Based on this 

trained model, symptom parameters of compound 

fault are substituted into the model to verify the type 

of compound fault. 

Substituting the 153 calculated compound fault 

symptom parameters into the built SVM model, we 

find that the output of the model belongs to three 

types (I: inner race defect, O: outer race defect, and 

R: roller defect). According to Eq. (14), NI is 38 and 

its percentage PI is 24.84%; NO is 19 and its 

percentage PO is 12.42%, and NR is 96 and its 

percentage PR is 62.74%. Based on the ranking of a 

percentage from maximum to minimum, and using 

Eq. (15), the cumulative percentage of each fault 

state (CI, CO, and CR) has been calculated, with 

results shown in Figure 8. 

 

Fig. 8: Fault type in compound fault 

 

According to the results, the fault types are 

ranked as follows: roller, inner race, and outer race 

defects. As the data in the table show, the 

cumulative percentage of the second (fault types: 

roller defect and inner race defect) is 87.58%, which 

indicates the inner race and roller defects in the 

compound fault. This result is consistent with the 

experimental facility, indicating the effectiveness of 

the proposed method. 
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To further prove the effectiveness of this method, 

we have tested three types of single fault (inner race, 

outer race, and roller defects) and another type of 

compound fault (outer race defect + roller defect). 

Verification results are presented in Table 4. 

As shown in Table 4, if the diagnostic proportion 

of a certain type of fault in the signal exceeds 95%, 

it indicates that there is only one type of fault. For 

composite faults, according to the method 

mentioned in Section 2.6, the cumulative percentage 

of extracted faults is 89.54%, exceeding 80%, 

indicating that it is a compound fault and proving 

that the diagnosis is effective. 

 

Table 4. SVM fault diagnosis in single fault and 

compound faults 

N

o. 

Classifica-

tion of fault 

Classified 

correctly 

Misjudged 

datasets 

Accur

-acy 

(%) 

1 

I 

NI :21 (I) 1 (others) 
CI: 

95.23 
 

2 

O 

No :24 (O) 0 
Co: 

100 
 

3 

R 

NR: 22 (R) 1 (others) 
CR: 

95.45 
 

4 

O and R 

NR+O: 124 

(O and R) 
13 (others) 

CR+O: 

89.54 

 

(I: inner race defect, O: outer race defect, R: roller 

defect.) 

 

3.5 Diagnosis of Compound Faults 
To further prove the effectiveness and advancement 

of this proposed method, we employed the 

conventional method for comparison with the 

developed method. The main steps of the 

conventional method are the following: (1) dividing 

the compound fault vibration signal by N signal 

subsets, (2) every signal subset attracts frequency 

domain symptom parameters according to Eqs. (5–

11), (3) the symptom parameters are placed in the 

SVM model by single fault symptom parameters, 

and (4) the discrimination criterion is used to 

calculate the diagnosis accuracy. The results are 

shown in Table 5. 

The results in Table 5 show that the conventional 

method was used in single-fault diagnosis, and the 

diagnosis accuracy approximates the proposed 

method. When the conventional method was used in 

the compound fault of the roller bearing, the 

conventional method had a low accuracy (the 

cumulative percentage of the outer race defect and 

roller defect is 56.45%). These results show that the 

proposed method can reduce the diagnostic 

performance deterioration caused by compound 

faults in roller bearing diagnosis. 

Table 5. Results of proposed and conventional 

methods 

N

o. 

Classifica

-tion of 

fault 

Classified 

correctly 

Proposed 

method 

accuracy 

(%) 

Conven-

tional 

method 

accuracy 

(%) 

1 

I 

NI : 21 (I) CI : 95.23 
CI: 

 95.23 
 

2 

O 

No : 24 (O) Co : 100 
Co:  

95.85 
 

3 

R 

NR : 22 (R) CR : 95.45 
CR : 

 95.45 
 

4 

O and R 

NR+O: 124 

(O and R) 

CR+O : 

89.54 

CR+O: 

 56.45 

 

(I: inner race defect, O: outer race defect, R: roller 

defect.) 

 

3.6 Different Fault Severity in Compound 

Faults 
When the compound fault vibration signal has 

different fault-severity bearing components, the 

proposed method's efficacy depends on the fault 

degree. If the positive k sigma principle can extract 

the transient spectra of all the single faults, then 

different fault-severity bearing components can be 

diagnosed using the developed method. If the 

positive k sigma principle cannot extract certain 

transient spectra, then the slight fault (which was 

not extracted) can be regarded as a noise signal and 

does not affect the operation, and the compound 

fault cannot be effectively diagnosed. 

The following experiments are conducted to 

verify our findings. Two compound fault roller-

bearing vibration signals are observed: the first 

compound fault signal composed of inner race 

defect is 0.15 mm × 0.5 mm (depth × width) and the 

roller defect is 0.05 mm × 0.3 mm (depth × width). 

The roller defect severity is slight compared with 

the inner race defect. The second compound fault 

signal is composed of the outer race defect 0.15 mm 

× 0.3 mm (depth × width) and roller defect 0.15 mm 
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× 0.5 mm (depth × width). The results of the 

positive k-sigma principle of the developed method 

are shown in Figure 9. 
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Fig. 9: Different fault-severity diagnosis results:  

(a) compound fault: outer race and roller defects;  

(b) compound fault: inner race and roller defects 

After the operation by the SVM model, in the 

compound fault, the percentage of the outer race 

defect is 86.36%. If larger than 80%, then the roller 

defect cannot be accurately diagnosed. The reason is 

that the roller defect degree is slight and cannot 

extract the single fault (roller defect) feature by the 

positive k sigma principle. In the compound fault, 

the cumulative percentages of the inner race and 

roller defects are 92.91% (roller defect: 49.61% and 

inner race defect: 43.31%). The compound fault 

diagnosis result is correct. Therefore, when the 

severity of a single fault in a composite fault signal 

is different, the positive k sigma principle can 

extract the transient spectrum of a single fault as a 

feature. If the transient spectrum cannot be extracted, 

it is considered a noise signal. 

 

 

4 Conclusion 
An automatic transient-spectra extraction scheme 

was developed to reduce diagnostic performance 

deterioration caused by compound faults in roller 

bearing diagnosis. The single fault features were 

extracted from the compound fault vibration signal 

by a positive k sigma principle. The created 

diagnosis discrimination criterion is the ratio of the 

single components to the multiple components 

estimated by understanding the relationship between 

the single and compound faults. The developed 

method was verified through various conditions of 

the defective roller bearing by the SVM model. The 

experimental results indicated that the developed 

method was superior to the conventional method in 

compound fault diagnosis. 

In the future, this method can be applied to other 

rotating machines, such as in the diagnosis of gear 

faults. At the same time, the complexity and time 

consumption of the developed method have to be 

considered in future research. 

 

 

Acknowledgment: 

This work was supported by a program for scientific 

research start-up funds of Guangdong Ocean 

University. 

 

 

References: 

[1] Zhang, X.j., Jirui Z., Wu Y.Q., Dong Z., 

Zhang M.L., Feature Extraction for Bearing 

Fault Detection Using Wavelet Packet Energy 

and Fast Kurtogram Analysis, Applied 

Sciences, Vol.10, No.21, 2020, pp. 7715. 

[2] Zheng, K., Jia, G.Z., Yang L.C., Wang J.Q., A 

Compound Fault Labeling and Diagnosis 

Method Based on Flight Data and Bit Record 

of Uav, Applied Sciences, Vol.11, No.12, 

2021, pp. 5410. 

[3] Zhang, J.F., Zhang Q.H., He X., Sun G.X.& 

Zhou D.H., (2021). "Compound-Fault 

Diagnosis of Rotating Machinery: A Fused 

Imbalance Learning Method." IEEE 

Transactions on Control Systems Technology, 

Vol.29, No.4, 2021, pp. 1462-1474. 

[4] Jing, M., Wang, H., Zhao, L.Y., Yan R.Q., 

Compound Fault Diagnosis of Rolling 

Bearing Using Pwk-Sparse Denoising and 

Periodicity Filtering, Measurement, Vol.181, 

No.107736, 2021, pp. 109604. 

[5] Li, Z.X., Jiang, Y., Hu, C.Q., Peng, Z.X., 

Difference equation based empirical mode 

decomposition with application to separation 

enhancement of multi-fault vibration signals, 

Journal of difference equations and 

applications, Vol.23, 2017, pp. 457-467. 

[6] Sun, Y.J., Li S.J., Wang X.H, Bearing Fault 

Diagnosis Based on EMD and Improved 

Chebyshev Distance in SDP Image, 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2023.22.74 Miyazaki Shuuji, Zhi-Qiang Liao, Peng Chen

E-ISSN: 2224-2678 742 Volume 22, 2023



Measurement, Vol.176, No.17, 2021, pp. 

109100. 

[7] Jiang, Y., Zhu, H., Li, Z., A new compound 

faults detection method for rolling bearings 

based on empirical wavelet transform and 

chaotic oscillator, Chaos, Solitons & Fractals, 

Vol.89, 2016, pp. 8-19. 

[8] Yan, X.A., Jia, M.P., Xiang, L., Compound 

fault diagnosis of rotating machinery based on 

OVMD and a 1.5-dimension envelope 

spectrum, Measurement Science and 

Technology, Vol.27, No.17, 2016, pp. 075002. 

[9] Wang, T.Y., Chu, F.L., Han, Q.K., Kong, Y., 

Compound faults detection in gearbox via 

meshing resonance and spectral kurtosis 

methods, Journal of Sound and Vibration, 

Vol.392, 2017, pp. 367-381. 

[10] Zhang, X., Wan S.T., He Y.L., Wang X.L., 

Dou L.J., Teager Energy Spectral Kurtosis of 

Wavelet Packet Transform and Its Application 

in Locating the Sound Source of Fault 

Bearing of Belt Conveyor, Measurement, 

Vol.173, 2021, pp. 108367. 

[11] Chen, J.L., Zi, Y.Y., He, Z.J., Yuan, J., 

Compound faults detection of rotating 

machinery using improved adaptive redundant 

lifting multiwavelet, Mechanical Systems and 

Signal Processing, Vol.38, No.4, 2013, pp. 

36-54. 

[12] Tang, G.J., Wang, X.L., He, Y.L., Diagnosis 

of compound faults of rolling bearings 

through adaptive maximum correlated 

kurtosis deconvolution, Journal of 

Mechanical Science and Technology, Vol.30, 

No.1, 2016, pp. 43-54. 

[13] Wang, H.C., Fault diagnosis of rolling 

element bearing compound faults based on 

sparse no-negative matrix factor-ization-

support vector data description, Journal of 

Vibration and Control, Vol.24, 2018, pp. 272-

282. 

[14] Bensaoucha, S., Youcef B., Sandrine M., Sid 

A. B., Aissa A., Induction Machine Stator 

Short-Circuit Fault Detection Using Support 

Vector Machine, Compel-the International 

Journal for Computation and Mathematics in 

Electrical and Electronic Engineering, 

Vol.2021, No.3, 2021, pp. 40. 

[15] Chen, F.F., Tang, B.P., Song, T., Li, L., 

Multi-fault diagnosis study on roller bearing 

based on multi-kernel support vector machine 

with chaotic particle swarm optimization, 

Measurement, Vol.47, 2014, pp. 576-590. 

[16] Liu, Z., Cao, H., Chen, X., He, Z., Shen, Z., 

Multi-fault classification based on wavelet 

SVM with PSO algorithm to analyze vibration 

signals from rolling element bearings, 

Neurocomputing, Vol.99, 2013, pp. 399-410. 

[17] Li, Z.X., Yan, X.P., Tian, Z., Yuan, C.Q., 

Peng, Z.X., Li, L., Blind vibration component 

separation and nonlinear feature extraction 

applied to the nonstationary vibration signals 

for the gearbox multi-fault diagnosis, 

Measurement, Vol.46, No.4, 2013, pp. 259-

271. 

[18] Yan, R.Q., Shen F., Zhou M.J., Induction 

Motor Fault Diagnosis Based on Transfer 

Principal Component Analysis, Chinese 

Journal of Electronics, Vol.30, No.1, 2020, 

pp. 18-25. 

[19] Hwang, S.Y., Kim K.S., Kim H.J., Jun H.B., 

Lee J.H., Application of Pca and 

Classification for Fault Diagnosis of Mab 

Installed in Petrochemical Plant Process 

Facilities." Applied Sciences, Vol.11, No.9, 

2021, pp. 11093780. 

[20] Purushotham, V., Narayanan, S., Prasad, 

S.A.N., Multi-fault diagnosis of rolling 

bearing elements using wavelet analysis and 

hidden Markov model based fault recognition, 

NDT & E International, Vol.38, No.8, 2005, 

pp. 654-664. 

[21] Wang, H., Chen, P., Intelligent Methods for 

Condition Diagnosis of Plant Machinery, 

InTech, 2011, pp. 119-140. 

[22] Antoni, J., Randall, R., The spectral kurtosis: 

application to the vibratory surveillance and 

diagnostics of rotating machines, Mechanical 

Systems and Signal Processing, Vol.20, 2006, 

pp. 308-331. 

[23] Chen, J., Li, Z., Pan, J., Chen, G., Zi, Y., 

Yuan, J., Chen, B., He, Z., Wavelet transform 

based on inner product in fault diagnosis of 

rotating machinery: A review, Mechanical 

Systems and Signal Processing, Vol. 70–71, 

2016, pp. 1-35. 

[24] Qin, C., Wang G.D., Xu Z., Tang G., 

Improved Empirical Wavelet Transform for 

Compound Weak Bearing Fault Diagnosis 

with Acoustic Signals, Applied Sciences, 

Vol.10, No.2, 2020, pp. 10020682. 

 

 

 

 

 

 

 

 

 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2023.22.74 Miyazaki Shuuji, Zhi-Qiang Liao, Peng Chen

E-ISSN: 2224-2678 743 Volume 22, 2023



Contribution of Individual Authors to the 

Creation of a Scientific Article (Ghostwriting 

Policy) 

The authors equally contributed to the present 

research, at all stages from the formulation of the 

problem to the final findings and solution. 

 

Sources of Funding for Research Presented in a 

Scientific Article or Scientific Article Itself 

This work was supported by a program for scientific 

research start-up funds of Guangdong Ocean 

University. 

 

Conflict of Interest 

The authors have no conflict of interest to declare. 

 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 

This article is published under the terms of the 

Creative Commons Attribution License 4.0 

https://creativecommons.org/licenses/by/4.0/deed.en

_US 

 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2023.22.74 Miyazaki Shuuji, Zhi-Qiang Liao, Peng Chen

E-ISSN: 2224-2678 744 Volume 22, 2023

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



