
1 Introduction

A genetic regulatory network (GRN in
short) is a complex system that governs
the interactions among genes and their pro-
ducts, including proteins, RNA molecules,
and other regulatory elements, within a
living organism, [1]. It plays an important
role in controlling the development, growth,
and function of cells and tissues, as well as
coordinating various physiological processes
throughout an organism’s life, [2],[3]. Un-
derstanding genetic regulatory networks is
of great interest in various fields, including
developmental biology, systems biology,
and biotechnology, [4], [5].
Computational models, such as Boolean
networks and differential equations, are
employed to simulate and predict the be-
havior of genetic regulatory networks under
different conditions, [6]. These models help
uncover the network’s underlying principles
and aid in the design of genetic engineering
strategies to modulate specific biological

processes for therapeutic or industrial
purposes,[7].
The dynamical system of the form





dx

dt
=

1

1 + e−µ1(w11x+w12y+w13z−θ1)
− v1x,

dy

dt
=

1

1 + e−µ2(w21x+w22y+w23z−θ2)
− v2y,

dz

dt
=

1

1 + e−µ3(w31x+w32y+w33z−θ3)
− v3z,

(1)

is used to model genetic regulatory
networks, where µi, θi and vi are the
parameters, wij are the coefficients of the
so-called regulatory matrix

W =




w11 w12 w13

w21 w22 w23

w31 w32 w33


 . (2)
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Such system was considered in the paper [8].
The parameters of the GRN have the follow-
ing biological interpretations:

• vi - degradation of the i-th gene expres-
sion product;

• wij - the connection weight or strength
of control of gene j on gene i. Positive
values of wij indicate activating influ-
ences while negative values define re-
pressing influences;

• θi - influence of external input on gene
i, which modulates the gene’s sensitiv-
ity of response to activating or repress-
ing influences.

Definition 1.1. The j′th nullcline is the

geometric shape for which
dxj

dt
= 0. The

critical points of the system are located
where all of the nullclines intersect. In
a two-dimensional linear system, the
nullclines can be represented by two lines
on a two-dimensional plot; in a general
two-dimensional system they are arbitrary
curves.

The nullclines for the system are defined by
the relations





v1x =
1

1 + e−µ1(w11x+w12y+w13z−θ1)
,

v2y =
1

1 + e−µ2(w21x+w22y+w23z−θ2)
,

v3z =
1

1 + e−µ3(w31x+w32y+w33z−θ2)
.

(3)

Critical points are solutions of the system
(3).

Proposition 1.1. System (1) has at least
one equilibrium (critical point). All equi-
libria are located in the open box Q3 :=
{(x, y, z) : 0 < x < 1

v1
, 0 < y < 1

v2
, 0 <

z < 1
v3
}.

2 Critical points

The type of the critical point is determined
by the position of the roots of the char-
acteristic equation on the complex plane.
Two main possibilities exist: either the
three eigenvalues are real or two of them
are complex conjugates. A critical point
is stable if all eigenvalues have negative
real parts; it is unstable if at least one
eigenvalue has positive real part.

• Node. All eigenvalues are real and
have the same sign. The node is sta-
ble (unstable) when the eigenvalues are
negative (positive).

• Saddle. All eigenvalues are real and
at least one of them is positive and at
least one is negative. Saddles are al-
ways unstable.

• Focus−Node. It has one real eigen-
value and a pair of complex-conjugate
eigenvalues, and all eigenvalues have
real parts of the same sign. The critical
point is stable (unstable) when the sign
is negative (positive).

• Saddle− Focus. Negative real eigen-
value and complex eigenvalues with
positive real part, and positive real
eigenvalue and complex eigenvalues
with negative real part. This type of
critical point is unstable, [9].

3 Lyapunov exponents

Lyapunov exponents are a concept from
chaos theory and dynamical systems that
provide a quantitative measure of the
sensitivity to initial conditions in a chaotic
system, [10]. The concept is named after
the Russian mathematician Aleksandr
Lyapunov, who introduced it in the late
19th century.
Lyapunov exponents have applications
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in various fields, including weather fore-
casting, fluid dynamics, biology, economics,
and cryptography. They are particularly
useful in studying chaotic systems, predict-
ing long-term behavior, and understanding
the stability of dynamical systems.
Calculating Lyapunov exponents can
be a complex task, especially for high-
dimensional systems, and often involves
numerical methods and simulations.
The generally accepted convention is to
write the Lyapunov exponents in descend-
ing order

λ1 ≥ λ2 ≥ . . . λn.

In 3D phase space, there exist four types
of attractors: stable points, limit cycles, 2D
tori and strange attractors, [11]. The fol-
lowing set of LEs characterizes possible dy-
namical situations to be met:

• (LE1, LE2, LE3) = (−,−,−) - stable
fixed point;

• (LE1, LE2, LE3) = (0,−,−) - stable
limit cycle;

• (LE1, LE2, LE3) = (0, 0,−) - stable 2D
tori;

• (LE1, LE2, LE3) = (+, 0,−) - strange
attractor.

Any dissipative dynamical system will have
at least one negative exponent, the sum of
all of exponents is negative, [12],[14],[15].
In general, a system has a set of Lyapunov
exponents, each characterizing the average
stretching or shrinking of phase space in a
particular direction, [13].

3.0.1 Properties of Lyapunov expo-
nents

1. The number of Lyapunov exponents is
equal to the number of phase space di-
mensions, or the order of the system
of differential equations. They are ar-
ranged in descending order [15].

2. The largest Lyapunov exponent of a
stable system does not exceed zero [16].

3. A chaotic system has at least one
positive Lyapunov exponent, and the
more positive the largest Lyapunov
exponent, the more unpredictable the
system is [16].

4. To have a dissipative dynamical sys-
tem, the values of all Lyapunov expo-
nents should sum to a negative number
[15].

5. A hyperchaotic system is defined as a
chaotic system with at least two pos-
itive Lyapunov exponents. Combined
with one null exponent and one nega-
tive exponent, the minimal dimension
for a hyperchaotic system is four [15].

Proposition 3.1. The largest Lyapunov ex-
ponent of a stable system does not exceed
zero, [16].

Proposition 3.2. Only dissipative dynami-
cal systems have attractors, [9].

4 Quasi-periodic solu-

tions

Quasi-periodicity refers to a pattern or
behavior that exhibits some level of perio-
dicity but is not perfectly periodic. In other
words, it shows repetitive characteristics,
but the repetition is not strictly regular.
This concept is encountered in various
fields, including physics, mathematics,
signal processing, and even in everyday life,
[17]. They can describe the behavior of
certain celestial objects in astronomy, vibra-
tions in mechanical systems, or oscillations
in chemical reactions. Quasi-periodicity is a
valuable concept that helps us understand
and model complex systems that exhibit
both regular and irregular behaviors.
Quasi-periodicity describes in dynamical
systems solutions, which neither exhibit a
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finite period length nor are chaotic, [18].
Quasi-periodic behavior can be challenging
to visualize and analyze. Advanced mathe-
matical tools and numerical simulations are
often used to study and understand these
solutions.

Definition 4.1. Quasi-periodic solutions
are characterized by a discrete frequency
spectrum, which does not consists of integer
multiples of one single base frequency.
The spectrum consists of linear combi-
nations of at least two independent base
frequencies,[18].

Two zero Lapunov values in 3D systems
indicates quasi-periodic dynamic, [19].

4.1 Example

Consider the system (1) and the regulatory
matrix

W =




0.025 0.5 1.14
−0.9 0.2 5.5881
0.08 −1 2


 (4)

v1 = 0.2505, v2 = 0.1407, v3 = 0.4305; µ1 =
4.6, µ2 = 4.2, µ3 = 7; θ1 = 0.565, θ2 =
0.8355, θ3 = 0.49. Let initial conditions
be (0; 0.5; 0.1). There is the critical
point P = (3.94; 1.30; 0.67). Charac-
teristic values for critical point P are
λ1 = −0.23, λ2,3 = 1.21 ± 1.87i. The
type of critical point is a saddle-focus.
The nullclines of the system (1) with the
regulatory matrix (4) are considered in
Figure 1.
The trajectory of the system (1) with
the regulatory matrix (4) is considered in
Figure 2.
Solutions (x(t), y(t), z(t)) of the system (1)
with the regulatory matrix (4) are shown
in Figure 3.
The dynamics of Lyapunov exponents are
shown in Figure 4. Lyapunov exponents
are λ1 = 0.00; λ2 = 0.00; λ3 = −0.05;

The presence of two zero values indicates
the quasi-periodicality of the dynamics.

Figure 1: The nullclines of the system (1) with
the regulatory matrix (4).
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Figure 2: The trajectory of the system (1) with
the regulatory matrix (4).
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Figure 3: Solutions (x(t), y(t), z(t)) of the
system (1) with the regulatory matrix (4)

Figure 3 demonstrate a discrete frequency
spectrum, which does not consists of inte-
ger multiples of one single base frequency.

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2023.22.73 Olga Kozlovska, Inna Samuilik

E-ISSN: 2224-2678 730 Volume 22, 2023



0 2000 4000 6000 8000 10 000
-0.4

-0.3

-0.2

-0.1

0.0

Steps

L
C

E
s

Figure 4: The dynamics of Lyapunov expo-
nents.

Figure 2 demonstrate complicated trajec-
tory motion. Despite trajectories complex
motion, the quasi-periodic motion is pre-
dictable. Trajectories starting close to each
other stay close to each other, and the long-
term prognosis is guaranteed.

5 Conclusions

The three-dimensional GRN system is con-
sidered. The dynamics of Lyapunov expo-
nents are shown. The nullclines of the sys-
tem (1) with the regulatory matrix (4) are
shown. Also the trajectory of the system
(1) with the regulatory matrix (4) is shown.
Getting quasy-periodicity in 3D GRN sys-
tem is very important.
The next step of devolopment of GRN sys-
tem after quasy-periodicity is chaotic be-
havior. Chaotic behavior in 3D cases in
GRN occur extremely rare, [20].
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