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Abstract: - Robot tasks and functions are advanced by IoT, remote working, and new human lifestyle 
requirements in tedious or accurate occupations such as surgery, product inspections, or agriculture harvesting. 
Numerous robots are technologically advanced by scientists for diverse tasks. Flexible robots are developed 
based on stated applications since they can adjust their geometry to the working situations. The present study 
introduces a wire-driven flexible robot stimulated by animal trunks. It can make a motion in planar and space 
based on the construction of that. Initially, a kinematic model was developed to predict end-effector trajectory, 
and then a dynamic model was established to compute the required tension of tendon wires based on bending 
beam theory. Models are simulated by MATLAB/SIMULINK Software and implemented by a generic 
controller. Various input functions are applied to the model, and outputs show good stability and accuracy. 
Based on these results, in future work, a WDFR will be developed and controlled by the current presented PID 
controller. 
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1 Introduction 
Recently robotics systems and manipulators have 
been employed in daily life and industry, especially 
during pandemic disasters. Three categories of robot 
arms are generated: continuum, discrete, and 
serpentine, [1]. Serial links and parallel robots are 
listed as discrete robots. They include several links 
and joints to provide motion in the desired 
workspace with definite payload and accuracy in 
positioning. They have a limited degree of freedom 
with big size. Oppositely, continuum robots provide 
an infinite degree of freedom with compact size 
although their capacity in payload and accuracy is 

limited. Thus, they are proper for a confined 
environment. Nevertheless, their accuracy and 
payload capacity of them is not as much as rigid 
manipulators. Reports show that continuum robots 
are in the primary stage and it is an open area for 
researchers to develop them for novel applications, 
[2]. Another kind of robot arm is a serpentine robot 
with more rigidity while they are more flexible than 
discrete robots. Many applications are presented for 
them such as laparoscopic surgery, [3].  

Most traditional manipulators are actuated by 
servo motors in each joint or linear motion motors 
in prismatic links. In live creatures, rigid bones are 
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connected to muscles via tendons, [4]. During 
motion, some flexible muscles are shrieked and 
others are expanded to generate particular motion in 
the live organ. This mechanism works by producing 
bending and many organs of humans do this such as 
hands, feet, fingers, etc. Thus, most artificial 
muscles mimic this task to present bending motion. 
Various solutions are developed to create bending in 
robot arms: Shape Memory Alloy wires, [5], 
Piezoelectric Ceramic, [6], Pneumatic Artificial 
Muscles, [7], and Electro Active Polymers, [8], [9]. 
SMAs use a two-phase alloy in which the phase is 
changed by electricity and elongation is created. The 
response time of SMA is normally slow. PZT 
ceramics produce mechanical stress and strain by 
exposing it to electrical signals. They are acting 
faster than SMAs. EAP response time is desired, but 
the payload is not very high to lift heavy objects. 
PAMs provide large amounts of force, but their 
pressure sources are large and expensive air 
compressors. They work with expandable air tubes 
and rounded springs. 

Wires and pulleys can be used as tendons which 
are flexible, lightweight, inexpensive, and strong for 
large tensile forces, [10]. Wire-driven mechanism is 
used robot arm, [10], [11], and continuum robot, 
[12], [13], [14], [15], [16]. Building effective 
continuum robots is still a challenge, and it is an 
open area for researchers to make enhanced robots 
for various purposes, [17]. On the other hand, 
artificial intelligent control methods were developed 
for robots and dynamical systems with a large range 
of variations in working conditions, [18], [19], [20], 
[21], [22]. Combining AI techniques with WDFR 
can improve the performance of, particularly in 
Agribots for spraying or seeding mounting a WDFR 
can improve their efficiency, [22], [23], [24], [25], 
[26], [27], [28], [29], [30]. Also, other types of 
robots such as UAVs can be implemented to this 
kind of manipulators for various field operations, 
[30], [31], [32], [33], [34], [35], [36], [37], [38], 
[39], [40]. 

Current work aims to present a simulation study 
on a wire-driven flexible robot based on governed 
kinematic and dynamic models and design a generic 
controller based on them. 
 

 

2 Methodology 
Firstly, the kinematic model of the WDFR is 
explained, and then the dynamic model which is 
established based on beam theory is mentioned. 
Besides, the design of a generic controller for 
feedback control of WDFR is described. By 

simulation study, the performance of WDFR in 
positioning and tracking is assessed. 
 
2.1 Kinematic Model of WDFR 
The structure of the proposed WDFR consists of ten 
vertebras in a conical shape. The vertebra as a 
segment of the kinematic chain is connected to other 
vertebras. Four wires are passed through each 
vertebra. This chain is mounted to a base. By 
applying tension on each cable, bending occurs in 
the WDFR. Thus, the behavior of WDFR is the 
same as a cantilever bar exposed to a bending 
moment. The deflection of the beam provides 
positioning for the WDFR end effector. Thus, 
various tensions in the cables generate different 
bending moments on the cantilever bar. Figure 1 
illustrates a schematic structure of WDFR. By 
bending occurrence, the beam is bent as a part of the 
arc. Therefore, by employing beam bending theory, 
the position of the end effector is reached with 
regard to the curvature created. Figure 2 shows the 
curvature radius of the cantilever bar as WDFR. 
This figure illustrates the final shape of the 
manipulator during bending to reach to target. 
 

 
Fig. 1: WDFR components 
 

 
Fig. 2: Curvature radius of cantilever beam 
 

The location of the end effector is presented by 
P(x,y) in planar Cartesian space, and the radius of 
curvature is denoted by R. Refer to Figure 3,  y can 
be reached by: 
 
𝑦 = 𝑅 − 𝑅 cos ∝= 𝑅(1 − cos ∝)                  (1)                                                                                            
 
And x is calculated by: 
 
𝑥 = 𝑅𝑠𝑖𝑛 ∝                                                    (2)                                                                                                                           
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Where “α” is the axe angle of the created arc. Here, 
the curvature radius “R” is obtained by the bending 
moment as: 
 
1

𝑅
=

 𝑀

𝐸𝐼
→ 𝑅 =

𝐸𝐼

𝑀
                                                    (3)                                                                                                                                          

 
Where, E is Young's modulus, and I is the second 
moment of area of the cantilever bar. To compute 
M, the dynamic model of WDFR must be presented 
based on the beam theory. 

 
Fig. 3: Position of end effector regarding bending 
 
2.1.1 Dynamic Model of WDFR 

Regards to the bent beam theory, the curvature 
radius can be acquired as: 
𝐸𝐼

𝑑2𝑦

𝑑𝑥2 = 𝑀                                                            (4)                                                                                                          
1

𝑅
=

𝑑2𝑦

𝑑𝑥2                                                                   (5)                                                                                                                                    
In addition, the exposed mechanical normal stress 
due to the tension of the wire is attained by: 
𝜎 =

𝑀𝑐

𝐼
                                                                    (6)                                                                                                           

The normal stress is gotten by dividing the tension 
force (F) to cross area (A): 
𝐹

𝐴
=

𝑀𝑐

𝐼
→ 𝑀 =

𝐼𝐹

𝑐𝐴
                                                  (7)                                                                                                        

On the other hand, the vertical deflection of the bent 
beam in the tip of that is calculated by: 
𝑦 =

𝑀𝐿2

2𝐸𝐼
                                                                  (8)                                                                                                                             

Thus, from Eq.7 and 8, “y” is available: 
 
𝑦 =

𝐹𝐿2

2𝐶𝐴𝐸
                                                                (9)                                                                                                                 

 
Consequently, the dynamic model of the WDFR 

has developed with respect to the identified position 
from curvature radius and bending moment. Now, 
the position of the end effector and the needed 
tension of the wire are presented consequently the 
design of the controller of the WDFR can be done. 
 

 

3 Simulation of WDFR 
To study the accuracy and stability of the desired 
controller, a simulation of the WDFR is conducted 

based on the attained kinematic model and dynamic 
model. In the first step, a block diagram is 
constructed in MATLAB/Simulink Software to 
simulate the position of WDFR `s end effector. 
Next, a block diagram is developed for the tendon 
actuator. Figure 4 exemplifies the closed-loop 
diagram of the designed PID controller. The length 
of the WDFR is 18cm, and the diameter of the 
conical components is 3cm.  

 
Fig. 4: Block diagram of designed PID controller 
 

The subsystem includes a dynamic model, and 
subsystem 1 consists of inverse dynamics used in 
the controller. Equations of the dynamic model are 
constructed by mathematical operators in the 
subsystem, and they are shown in Figure 5. The 
dynamic inverse used in the controller is revealed in 
Figure 6. 

 
Fig. 5: block diagram of dynamic model based on 
equation stated 
 

 
Fig. 6: Dynamic inverse of WDFR shown by block 
diagram 
 

The step function and ramp function are applied 
in the system as desired values of end effector 
height. The output of simulated WDFR is reached to 
reduce the error between actual output and desired 
output by tuning the PID. The PID coefficients are 
obtained as Kp=700, Ki=10, and Kd=0.8. The crude 
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method is employed for PID tuning. Moreover, the 
random function is inserted into the WDFR 
controller because its variation is high, and the 
output of the system can unveil the robustness of the 
controller in terms of stability and accuracy. 
 

 

4 Results and Discussions 
The response of the WDFR is reached when the step 
function is applied to the manipulator. As can be 
seen in Figure 7, the closeness of output to desired 
input is very high. The error value is 0.01%. 
Moreover, the PID presents enhanced performance 
when a ramp function is considered as input. In this 
case, the error value is obtained as 0.05%. Next, a 
random function is imported to the WDFR due to 
high variations in values. Similar to the mentioned 
input cases, the WDFR can follow a trajectory with 
acceptable error and high accuracy. The error value 
is 0.03%. It is revealed in Figure 8.  Also, a random 
signal is applied as input to the controller, and the 
response of the robot is very superior. It follows the 
input signal perfectly. Thus, the accuracy of the 
WDFR implemented to the PID controller is 
acquired properly. Lastly, the correlation of WDFR 
output and random function is presented in Figure 9. 

 

 
Fig. 7: The WDFR response to step function 

 

 
Fig. 8: Convergence between WDFR response and 
ramp function as desired input 

 
Fig. 9: Correlation of WDFR output and random 
function 
 
 
5 Conclusion 
Kinematic and Dynamic models of the WDFR are 
stated, and a simulation study is conducted to 
evaluate the performance of that when exposed to 
different desired inputs. The designed PID for 
WDFR is tuned by the crude method. The results 
show that the proposed PID provides proper control 
to the current WDFR in terms of accuracy with 
minimum error. Consequently, employing a PID 
controller in this case will be desired and low cost. 
In future works, based on this achievement, a test 
rig of WDFR will be introduced and to be used in 
various operations. 
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