
On the finite presentation of operads

Abstract: Operads were introduced to describe compositional structures arising in algebraic topology.
Recently, some researches were interested in using operads in applied mathematics, to model composition
of structures in logic, databases, and dynamical systems. In, we focus on finite presentation of an operad
and its associated algebra. More precisely, we prove the general result stating that if an operad O has
a finite presentation, then the associate O-algebra has also a corresponding one. Some application in
physics, especially in wiring diagrams will be discussed.
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1 Introduction
Operad theory is a field of algebra (more precisely
abstract algebra) used to describe algebraic struc-
ture that models some algebraic properties such
as commutativity, associativity, Lie brackets, . . . .

An operad (or colored operad) is a structure
that consists of a bunch of elements that are
viewed as abstract operations, each one having
a multiple inputs, where inputs are finite ordered
list (possibly zero ones) of elements called colors
in a fixed non-empty finite class S, these oper-
ations are equipped with a specification of how
to compose them in one output (element in S),
and subject to associativity and unity axioms, [1],
these operations are represented by trees which
can be grafted onto each other to represent the
composition. Just like a monoid can be viewed as
a single object category, likewise an operad can
be seen as a single object multicategorie, hence
multicategories are also named as operads, or col-
ored operads, and in case of ambiguity, it can be
identified the class S, then it will be called an
S-colored operad.

An operad-algebras (algebra over on operad)
is a generalization of the notion of a module over
a ring. One can define an operad-algebra as a
concrete realization of the abstract operations of
the operad, in other words, it can be defined as a
set combined with concrete operations on this set
whereby their behaviour is analogous to the ab-
stract operations in the operad : an object com-
bined with operations as defined by the operad,
subject to the composition condition as defined
by the operad, [1]. Operad-algebra is to its as-
sociate operad as group representation is to its

group. They form a category analog of that of
universal algebras. Operads were firstly intro-
duced in algebraic topology in the early of 1970s
by [2], notably to model iterated loop spaces,
and the original definition of operad is due to
J.Peter in his book ”The Geometry of Iterated
Loop Spaces”, and he was the first one to coin
the term operad. Operads are basic in homo-
topy theory, and they have many applications in
many branches of mathematics, [3], [4], such as
string topology, category theory, combinatories
of trees, algebraic deformation theory, homotopi-
cal algebras and vertex operator algebras. Fur-
thermore, operads are essential in mathematical
physics, computer science, biology, and others.
For more details on operads, we refer the inter-
ested reader to, [5], [6].

Here, we focus on two specific operads, that
of wiring diagrams (resp. undirected wiring dia-
grams) denoted through this paper by WD (resp.
UWD). The original definition of wiring diagram
is given by Rupel and Spivak in [7] who observed
that the set of wiring diagrams form an operad
called the operad of wiring diagrams. Wiring di-
agrams are a simplified representation of electri-
cal systems or circuits (graphical language) com-
posed of such operations, each one having a mul-
tiple inputs and multiple outputs, each element
of which is allowed to carry a such value, and
describes how these operations are connected be-
tween them to form a larger one operation more
complicated. Contrary to a wiring diagram, an
undirected wiring diagram is version of wiring di-
agrams that each operation can be seen as a fi-
nite set, which each element is allowed to carry a
value. Mathematically speaking, let S be a class,
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a S-wiring diagram (we can drop S, and call it a
wiring diagram if S is clear from the context) in
[1] is given by ψ = (X,Y,DN, v, s) where Y is the
output box of ψ and X = (X1, ...., Xn) is a BoxS-
profile with Xi the i-th input box of ψ, (DN, v) is
an S-finite set, and s is the supplier assignment
for ψ. Similarly a S-undirected wiring diagram
(we can drop S, and call it an undirected wiring
diagram if S is clear from the context) in [1] is
given by ψ = (X,Y,C, f, g) where Y is the output
box of ψ and X = (X1, ...., Xn) is a FinS-profile
with Xi the i-th input box of ψ, C ∈ FinS the set
of cables of ψ, and f, g are maps in the cospan di-
agram. More details about the explicit definition
of wiring diagram and undirected wiring diagram
can be found in [1].

In [1], D. Yau established that for each class
S, the collection of S-wiring diagrams is a BoxS-
colored operad denoted WD that has 8 generat-
ing wiring diagrams that they generate the op-
erad WD and 28 elementary generating relations
that they generate together with the associativ-
ity and the unity axioms defined by the operad
WD all the relations in WD , and he also es-
tablished that for each class S, the collection of
S-undirected wiring diagrams is a FinS-colored
operad denoted UWD that has 6 generating undi-
rected wiring diagrams that they generate the op-
erad UWD and 17 elementary generating rela-
tions that they generate together with the asso-
ciativity and the unity axioms defined by the op-
erad UWD all the relations in UWD. Then every
wiring diagram (respectively undirected wiring
diagram) has a presentation in terms of finitely
many generating wiring diagrams (respectively
undirected wiring diagrams) as a finite iterated
operadic composition, diagrams in both WD and
UWD can be built as an operadic composition
of generating diagrams in different ways, so they
can have many different presentations expressed
as a finite iterated operadic composition. Then
the concept of a simplex was crucial to develop
the necessary language to check if two any pre-
sentations of the same diagram are equivalent,
meaning connected by a finite sequence of ele-
mentary equivalences. According to [1] the op-
erad WD (resp UWD ) has a finite presentation
if and only if WD (resp UWD ) satisfies the two
following assertions : the first is that every wiring
diagram (resp. undirected wiring diagram) can
be generated by the generating wiring diagrams
(resp. undirected wiring diagram) as a finite it-
erated operadic composition, and the second is
that if a wiring diagram (resp. undirected wiring
diagram) can be expressed as an operadic com-
position of the generating wiring diagrams (resp.

undirected wiring diagram) in two different ways,
then it can be found a finite sequence of elemen-
tary equivalences from the first operadic compo-
sition to the other one, that’s what it call a finite
presentation theorem for WD (resp. UWD).

In [1], D. Yau used these finite presentations
to describe the WD-algebra and UWD-algebra
in terms of finitely many generating structure
maps and generating axioms corresponding to
the generating wiring diagrams and elementary
relations in their associted operads. His proof
was based on an equivalence between two differ-
ent definitions of O-algebra (where O = WD or
O = UWD). In fact, the WD-algebra (resp. the
UWD-algebra) has 8 generating structure maps
corresponding to the 8 generating wiring dia-
grams, and 28 generating axioms corresponding
to the 28 elementary relations in WD (resp. 6
generating structure maps corresponding to the
6 generating undirected wiring diagrams, and
17 generating axioms corresponding to the 17
elementary relations in UWD). Finally D.Yau
proved that the operad algebra WD-algebra has
a finite presentation corresponding to the one of
WD.

A natural extension, is to investigate the anal-
ogous of D. Yau’s claim for any O operad, then
our approach is based on the operad WD (resp.
UWD) which initially invented in Spivak, [7], [8].
This paper deals with an operadic approach to
formulating and proving a more general result
that consider both of these finite presentation
theorems as special cases, our main result stating
that if an operad O has a finite presentation, then
the associate O-algebra has also a corresponding
one, a finite presentation of O (resp. O-algebra)
means that the operad O (resp. O-algebra) has a
finite generating set and any two equivalent sim-
plices in O (resp. O-algebra) are connected by
a finite sequence of elementary equivalences in O
(resp. O-algebra). Our results state the following
:

Theorem 1.1. If the operad O has a finite gen-
erating set T , then its associated O-algebra, A,
has a corresponding finite generating set Tµ.

That will be sufficient to prove the first part
of our main theorem, to establish the second part
of our theorem, we will define the concept of a
simplex and an elementary equivalence, we will
see that every elementary equivalence is induced
by an elementray relation or an operad associa-
tivity unity equivariance axiom, then we develop
the necessary language that allows us to define
what an elementary relation means, and prove
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the following result :

Theorem 1.2. Let T be a finite generating set
for O, and take ζ and ξ two simplices in O. If
|ζ| = |ξ| is an elementary relation in O, then its
corresponding elementary relation in A is µ|ζ| =
µ|ξ|.

Afterwards, we will show that the operad as-
sociativity unity equivariance axiom in O has
a corresponding associativity unity equivariance
axiom in O-algebra, and this together with the
above results permits us to announce the next
result :

Theorem 1.3. If W the set of all elementary
equivalences in T is a strong generating set of O
in T , then its corresponding set Wµ of all ele-
mentary equivalences in Tµ is a strong generating
set of A in Tµ.

This last theorem yields the second part of our
main theorem. and that will be sufficient to prove
the following theorem :

Theorem 1.4. If O has a finite presentation,
then its associated O-algebra, A has a correspond-
ing finite presentation one.

The rest of the paper is broken down as fol-
lows : in section 2 we will summarize the nec-
essary background to prove our results, that will
be proved in section 3. In section 4, we apply see
how our result fits in the cases of both directed
and undirected wiring diagrams operads.

2 Materials
Let S be a class, (n,m) ∈ N2, and Prof(S) the
class of finite ordered sequences of elements in S.
Elements a = (a1, . . . , an) of Prof(S) of length n
are also called S-profiles.

Definition 2.1. A S-colored operad (O, 1, ◦) is
defined as follows:
To any b ∈ S and any two S-profiles, a =
(a1, . . . , an) and c = (c1, . . . , cm), (O, 1, ◦) is
equipped with

• a class O
(
b
a

)
= O

(
b

a1, . . . , an

)
which ele-

ments are called multimaps;

• a bijection

O
(
b
a

)
σ−→ O

(
b
aσ

)
where σ ∈ Sn, and aσ = (aσ(1), . . . , aσ(n))

• a specific element called the b-colored unit

1b ∈ O
(
b
b

)
• a map called the operadic composition ◦i is
defined by

O
(
b
a

)
×O

(
ai
c

)
◦i−→ O

(
b

a ◦i c

)
where a ◦i c =
(a1, . . . , ai−1, c1, . . . , cm, ai+1, . . . , an).

This is enough to satisfy the associativity, the
unity, and the equivariance axioms.

The best general refernce here is, [1].

Definition 2.2. Let C be a collection of mul-
timaps of O, and ψ a multimap in O, we say that
ψ admits a presentation in C if ψ can be expressed
as an iterated operadic composition of multimaps
in C.

For example, consider the collection C =
{ψ1, ψ2, ψ3}, where ψ1, ψ2, ψ3 are multimaps in
O.
Suppose ψ ∈ O such that ψ = (ψ1 ◦3 ψ2) ◦4 ψ3,
then ψ has a presentation in C.
Note that the iterated operadic composition ψ1◦3
(ψ2 ◦4 ψ3) is not necessarily a presentation of ψ
in C, since the equality ψ = (ψ1 ◦3 ψ2) ◦4 ψ3 =
ψ1 ◦3 (ψ2 ◦4 ψ3) is not assured, for this reason, we
need to define the concept of a simplex later.

Definition 2.3. Let O be an operad.

1. A set (or collection) T of multimaps of O
is called a generating set for O if every
multimap in O has a such presentation in
T , meaning that for all ψ in O there ex-
ist ψ1, . . . , ψr in T such that ψ can be de-
composed as an iterated operadic composi-
tion (possibly infinite) of ψ1, . . . , ψr, for some
r ≥ 1.

2. A set (or collection) T of multimaps of O is
called a finite generating set for O, when T
is a finite set (or collection) of mutimaps of
O, and every multimap in O has a such pre-
sentation in T , meaning that for all ψ in O
there exist ψ1, . . . , ψr in T such that ψ can be
decomposed as a finite iterated operadic com-
position of ψ1, . . . , ψr, for some r ≥ 1.

The elements of T are called generating mul-
timaps.

Given an operad O, an algebra over an operad,
or just O-algebra for simplicity, roughly, is a left
module over O with multiplications parametrized
by O. Formally meaning
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Definition 2.4. Let O be an operad. An operad-
algebra (shortly O-operad), is a pair (A, µ)
equipped with a class , denoted Ab, for any b ∈ S,
called the b-colored entry of A, and the multipli-
cation µ is defined to be

Aa =

n∏
i=1

Aai
µψ−→ Ab,

called the structure map, where b ∈ S, a =

(a1, . . . , an) ∈ Prof(S) and ψ ∈ O
(
b
a

)
, such

that the associativity, unity, and equivariance ax-
ioms are respected.

Each structure map has one entry of O. The
best general refernce here is, [1].
Simplices:
Let O be an operad with a finite generating set
T , let n ∈ N∗, we define inductively a n-simplex
ψ and its composition |ψ| in O as follows :

• A 1-simplex is a generating multimap, and
its composition |ψ| is defined to be ψ itself,
i.e |ψ| = ψ;

• A n-simplex, for n ≥ 2 is defined to be a tuple
ψ = (φ, i, ϕ) consists of :{

i ∈ N∗

p− simplex φ with p ≥ 1
q − simplex ϕ with q ≥ 1

such that p + q = n, and the operadic com-
position |ψ| = |φ| ◦i |ϕ|.
Here, the k-simplices for all 1 ≤ k ≤ n − 1
and their compositions are supposed to be
well defined in O.

For simplicity of notation, we also denote a
n-simplex by ψ = (ψ1, . . . , ψn), where the gener-
ating multimaps ψ1, . . . , ψn are ordered in which
they appear in the composition and we write
|ψ| = ψ1 ◦i1 · · ·◦in−1

ψn. Unless otherwise stated a
simplex in O is am-simplex in O for somem ≥ 1.
Moreover we say that a simplex ψ is a presenta-
tion of |ψ|, and the set of all presentations of ψ
in O, denoted by

ψ = {Ψ simplex in O /|Ψ| = ψ} .

For example, we can consider for some
i, j, k, l ∈ N the case of a 5-simplex in O which is
an iterated operadic composition in the operad
O of the form:
(((ψ1 ◦i ψ2) ◦j ψ3) ◦k ψ4) ◦l ψ5, shortly
((((ψ1, i, ψ2), j, ψ3), k, ψ4), l, ψ5)
((ψ1 ◦i (ψ2 ◦j ψ3)) ◦k ψ4) ◦l ψ5, shortly

(((ψ1, i, (ψ2, j, ψ3)), k, ψ4), l, ψ5)
(ψ1 ◦i ((ψ2 ◦j ψ3) ◦k ψ4)) ◦l ψ5, shortly
((ψ1, i, ((ψ2, j, ψ3), k, ψ4)), l, ψ5)
(ψ1 ◦i (ψ2 ◦j (ψ3 ◦k ψ4))) ◦l ψ5, shortly
((((ψ1, i, ψ2), j, ψ3), k, ψ4), l, ψ5)
((ψ1 ◦i ψ2) ◦j (ψ3 ◦k ψ4)) ◦l ψ5, shortly
(((ψ1, i, ψ2), j, (ψ3, k, ψ4)), l, ψ5)
ψ1 ◦i (ψ2 ◦j (ψ3 ◦k (ψ4 ◦l ψ5))), shortly
(ψ1, i, (ψ2, j, (ψ3, k, (ψ4, l, ψ5))))
ψ1 ◦i (ψ2 ◦j ((ψ3 ◦k ψ4) ◦l ψ5)), shortly
(ψ1, i, (ψ2, j, ((ψ3, k, ψ4), l, ψ5)))
ψ1 ◦i ((ψ2 ◦j (ψ3 ◦k ψ4)) ◦l ψ5), shortly
(ψ1, i, ((ψ2, j, (ψ3, k, ψ4)), l, ψ5))
ψ1 ◦i (((ψ2 ◦j ψ3) ◦k ψ4) ◦l ψ5), shortly
(ψ1, i, (((ψ2, j, ψ3), k, ψ4), l, ψ5))
ψ1 ◦i ((ψ2 ◦j ψ3) ◦k (ψ4 ◦l ψ5)), shortly
(ψ1, i, ((ψ2, j, ψ3), k, (ψ4, l, ψ5)))
(ψ1 ◦i ψ2) ◦j ((ψ3 ◦k ψ4) ◦l ψ5), shortly
((ψ1, i, ψ2), j, ((ψ3, k, ψ4), l, ψ5))
(ψ1 ◦i ψ2) ◦j (ψ3 ◦k (ψ4 ◦l ψ5)), shortly
((ψ1, i, ψ2), j, (ψ3, k, (ψ4, l, ψ5)))
((ψ1 ◦i ψ2) ◦j ψ3) ◦k (ψ4 ◦l ψ5), shortly
(((ψ1, i, ψ2), j, ψ3), k, (ψ4, l, ψ5))
(ψ1 ◦i (ψ2 ◦j ψ3)) ◦k (ψ4 ◦l ψ5), shortly
((ψ1, i, (ψ2, j, ψ3)), k, (ψ4, l, ψ5)).

In our example, for ψ = (((ψ1 ◦i ψ2) ◦j
ψ3) ◦k ψ4) ◦l ψ5, there exists a 5-simplex Ψ =
((((ψ1, i, ψ2), j, ψ3), k, ψ4), l, ψ5) (shortly Ψ =
(ψ1, ψ2, ψ3, ψ4, ψ5 )) whose composition is ψ =
|Ψ| = (((ψ1 ◦i ψ2) ◦j ψ3) ◦k ψ4) ◦l ψ5, then
the 5-simplex Ψ is a presentation of ψ = |Ψ|,
but neither ((((ψ1, j, ψ2), i, ψ3), k, ψ4), l, ψ5) nor
(((ψ1, i, (ψ2, j, ψ3)), k, ψ4), l, ψ5) is not necessarily
a presentation of ψ.

Definition 2.5. Two simplices ψ and ϕ are said
to be equivalent in O, whenever their composi-
tions |ψ| and |ϕ| are equal in O.

A sub-simplex ψ̂ of ψ is defined to be itself
if ψ is a 1-simplex, since otherwise ψ = (φ, i, ϕ)
is defined as above, hence a sub-simplex of ψ is
defined to be either a sub-simplex of φ, or of ϕ,

or ψ itself, and we write ψ̂ ⊆ ψ.
Once again in our example, for ψ =
(ψ1◦i(ψ2◦jψ3))◦k(ψ4◦lψ5), both ψ1◦i(ψ2◦jψ3) =
(ψ1, i, (ψ2, j, ψ3)), ψ2 ◦j ψ3 = (ψ2, j, ψ3), or
ψ4 ◦l ψ5 = (ψ4, l, ψ5) are sub-simplices of
ψ, however, both ψ1 ◦i ψ2 = (ψ1, i, ψ2) and
ψ3 ◦k (ψ4 ◦l ψ5) = (ψ3, k, (ψ4, l, ψ5)) are not.

In what follows, we will see how two such sim-
plices that are presentations of the same mul-
timap can be related, more precisely we develop
the precise concept that will allow us to be able to
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replace (or substitue) a sub-simplex of a simplex
by another one.

Definition 2.6. Given a n-simplex ψ in O with
ψ = (ψ1, ...., ψn) and k < n. A relaxed k-moves
of ψ is the given of some 1 ≤ k′, k” ≤ k ; 1 ≤
s ≤ n−k′ and a (n−k′+k”)-simplex ϕ such that
:

1. ψj = ϕj for all 1 ≤ j ≤ s− 1,

2. ψj = ϕj−k′+k” for all s+ k′ ≤ j ≤ n,

3. |ζ| = |ξ|, for ζ = (ψs, ...., ψs+k′−1) a sub-
simplex of ψ, and ξ = (ϕs, ...., ϕs+k”−1) a
sub-simplex of ϕ such that

Remarks.

• Firstly it is worth to point out the compat-
ibility with the operadic composition ◦i of
ψs+k′ = ϕs+k”,

• a relaxed k-moves of ψ, is finally a l-simplex
ϕ, where l = n−k′+k” such that n−k+1 ≤
l ≤ n+k−1. Since k < n then 2 ≤ l ≤ 2n−2,

• for s = 1, we obtain ζ = (ψ1, ...., ψk′), ξ =
(ϕs, ...., ϕk”) and ψj = ϕj−k′+k” for all 1+k

′ ≤
j ≤ n,

• if k = 1, then ϕ is a n-simplex, such that
ψj = ϕj for all 1 ≤ j ≤ n,

• one may consider k = n, but in this case we
should have k′ < k and k” < k,

• a k-relaxed moves is a substitution of a k′-
simplex (k′ ≤ k) with k”-simplex (k” ≤ k),
but keeping fixed the operadic composition
into which they are substituted.

Definition 2.7. Under the same hypotheses of
the previous definition, we say that ψ and ϕ are
equivalent by a relaxed k-moves.

Vocabulary.
Let O be an operad with a finite generating set
T , then :

• every multimap in O has a decomposition (or
presentation) in T , then there exists a sim-
plex ψ in T which is a presenation of this
multimap. The above equality relation

|ζ| = |ξ|

is either an operad associativity or unity or
an equivariance axiom, otherwise is called an
elementary relation,

• an elementary sub-simplex ψ̂ of ψ is a sub-
simplex of one of two following forms:

– ψ̂ is one side (either left or right) of a
specified elementary relation,

– ψ̂ is one side (either left or right) of a
specified operad associativity or unity
or equivariance axiom involving only the
generating multimaps.
Suppose that we have a n-simplex ψ (for
some integer n ≥ 2) in O which is a
presentation of the multimap |ψ| in O,
and ζ is a sub-simplex of ψ such that
|ζ| = |ξ|, where ξ is a simplex in O, then
the relation |ζ| = |ξ| is either an elemen-
tary relation or an operad associativity
or unity or equivariance axiom involving
only the generating multimaps, hence,
one can obtain a relaxed k-moves of the
simplex ψ by substituting the elemen-
tary sub-simplex ζ by the other one ξ,

• two simplicies ψ and ϕ are called to be el-
ementarily equivalent in O, if ψ and ϕ are
equivalent by a relaxed k-moves (for some in-

teger k ≥ 2), then we write ψ
k∼ ϕ (if there is

no confusion, we can drop k and write ψ ∼ ϕ)
and call this an elementary equivalence in O,
in other words an eleelementary equivalence
is a subsitution of a elementary sub-simplex
of one side by the other one,

• two simplicies ψ and ϕ are said to be con-
nected by a finite sequence of elementary
equivalences in O if and only if there exist

some simplices ψ1, ...., ψr in O such that ψ1
k1∼

. . .
kr−1∼ ψr, and ψ

k∼ ψ1
k1∼ . . .

kr−1∼ ψr
kr∼ ϕ for

some integers k, k1, . . . , kr ≥ 2.

Denotations. Let O be an operad with a finite
generating set T . Let ψ be an n-simplex in O for
some integer n ≥ 2.

• The set of all relaxed k-moves of ψ in T is
denoted by Wk

ψ,

• The set of all relaxed k-moves for all k ∈
{2, . . . , n− 1} is

Wn
ψ :=

n−1⋃
k=2

Wk
ψ,

and this is the set of all relaxed n-moves of
ψ in T . In other words, Wn

ψ is the set of all
elementary equvalences of ψ.
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• The set of all relaxed n-moves in T is denoted
by W, where

W :=
⋃
ψ∈O

Wn
ψ

In other words, W is the set of all elementary
equivalences in T .

Definition 2.8. Let O be an operad with a finite
generating set T , and W the set of all its ele-
mentary equivalences. We say that W is a strong
generating set for O in T if any two equivalent
simplices in T are connected by a finite sequence
of elementary equivalences in W. Roughly speak-
ing, W is the set that generate all relations in
O.

Finally, one may understand that a multimap
can be built by using the generating multimaps in
two ways different thanks to a finite sequence of
steps connecting them such that each step is re-
lated to the next one by replacing an elementary
sub-simplex of one side (either left or right) of a
specified elementary relation or a specified operad
associativity/unity/equivariance axiom involving
only the generating multimaps with the elemen-
tary sub-simplex of the other side.

3 Results and proofs
In this section we will present and prove our re-
sults related the finite presentations of an operad
and its associate algebra. Firstly let us recall
what that means. In all the remainder of this
paper, let (O, 1, ◦) be an S-colored operad and
(A, µ) the associated O-algebra.

Definition 3.1. We say that O (respectively O-
algebra A) has a finite presentation if O (respec-
tively O-algebra A) satisfies the two following as-
sertions :

1. O (respectively O-algebra A) has a finite gen-
erating set,

2. any two simplices in O (respectively O-
algebra A) that are presentation of the same
multimap (respectively structure map) are
connected by a finite sequence of elementary
equivalences.

Our first result states the following :

Theorem 3.1. If the operad O has a finite gen-
erating set, then the associated O-algebra A, has
a corresponding finite generating set.

Proof. Let T = {ψ1, . . . , ψd} be a finite generat-
ing set for O where d ∈ N∗. Then every multimap
ψ in O has a presentation in T of the form

ψ = ψl1 ◦i1 · · · ◦ik−1
ψlk ,

where lr, k ∈ N∗ for all integers 1 ≤ r ≤ k,
and ψl1 , . . . , ψlk in T (note that some of the ψlr
may be repeated). It follows that there exists
a l-simplex (ψl1 , . . . , ψlk) in O (especially in T )
whose composition is ψ. Then the structure map
µψ in O-algebra A associated to the multimap
ψ in O is µψ = µψl1◦i1 ···◦ik−1

ψlk
, applying the

associativity axiom of the O-algebra A, we get
µψ = µψl1 ◦i1 · · · ◦ik−1

µψlk . Then µψ has a pre-

sentation in the set Tµ = {µψ1
, . . . , µψd}. Since ψ

is an arbitrary element in O, then this is true for
all ψ in O, so each structure map µψ in A has a
presentation in Tµ, then Tµ is a finite generating
set for A.

Definition 3.2. The structure maps of Tµ are
called generating structure maps.

Lemma 3.1. Let n ≥ 2, and ψ1, . . . , ψn be some
multimaps in O. If (ψ1, . . . , ψn) is a n-simplex
in O, then its corresponding n-simplex in A is
(µψ1

, . . . , µψn).

Proof. We will lead an induction proof. For
n = 1, a 1-simplex ψ in O is a generating mul-
timap, and its composition is itself |ψ| = ψ, since
ψ is a generating multimap in O, then by the
previous theorem, its associated structure maps
µψ in A is a generating structure map, hence
the corresponding 1-simplex of ψ in A is the 1-
simplex µψ, and its composition is defined as itself
|µψ| = µ|ψ| = µψ, in other words, one can define
the 1-simplices in A as the generating structure
maps.
For n = 2, a 2-simplex is an iterated operadic
composition in O of the form ψ = (ψ1, i, ψ2)
for some integer i ≥ 1, and its composition is

|ψ| = ψ1◦iψ2, consider ψ1 ∈ O
(

b
a1, . . . , an

)
, and

ψ2 ∈ O
(

ai
c1, . . . , cm

)
, are two generating mul-

timaps in O, then by the operadic composition
◦i defined by O, we can assert that ψ1 ◦i ψ2 ∈

O
(

b
a ◦i c

)
, then its associated structure map is

defined by

µψ = µψ1◦iψ2
:=

i−1∏
k=1

Aai×
m∏
j=1

Acj×
n∏

k=i+1

Aai
µψ−→ Ab
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Follows, [1], the associativity axiom in A states
that

µψ = µψ1◦iψ2
= µψ1

◦i µψ2

where µψ1
and µψ2

are generating structures maps
in A (1-simplices) corresponding to the generat-
ing multimaps (1-simplices) ψ1 and ψ2 respec-
tively in O. Hence, the corresponding 2-simplex
of ψ in A is µψ = (µψ1

, i, µψ2
) for some integer

i ≥ 1, and its composition is defined in A as

|µψ| = µ|ψ| = µψ1◦iψ2
= µψ1

◦i µψ2

Then the statement holds for n = 2.
Assume that the statement holds for any given

integer p, q ≤ n, and let ψ = (ψ1, . . . , ψn+1) be a
(n + 1)-simplex, then ψ is an iterated operadic
composition in O of the form ψ = (ϕ, i, φ) for
some integer i ≥ 1, where ϕ is a p-simplex for
some integer p ≥ 1, and φ is a q-simplex for some
integer q ≥ 1 such that p + q = n + 1, with-
out loss of generality we can suppose that ϕ =
(ψ1, . . . , ψr) and φ = (ψr+1, . . . , ψn+1) then by in-
duction on n, the corresponding p-simplex of ϕ in
A is µϕ = (µψ1

, . . . , µψr), its composition |µϕ| =
µ|ϕ| = µψ1

◦i1 · · · ◦ir−1
µψr , and the corresponding

q-simplex of φ in A is µφ = (µψr+1
, . . . , µψn+1

), its
composition |µφ| = µ|φ| = µψr+1

◦ir+1
· · ·◦in µψn+1

,
by definition of the (n+1)-simplex ψ, the next op-
eradic composition |ψ| = |ϕ| ◦i |φ| is well defined
in O, then µ|ψ| = µ|ϕ|◦i|φ|, and by the associativ-
ity axiom in A, we get

|µψ| = µ|ψ| = µ|ϕ|◦i|φ| = µ|ϕ| ◦i1 µ|φ|

Hence the n + 1-simplex in A corresponding the
n + 1-simplex ψ = (ψ1, . . . , ψn+1) in O is µψ =
(µψ1

, . . . , µψn+1
).

Then the statement holds for n+ 1.

Corollary 3.1. Let ψ̂ be a sub-simplex of the
n-simplex ψ in O, then the corresponding sub-

simplex of ψ̂ in A is µ
ψ̂
.

Proof. Given a n-simplex ψ in O for an integer
n ≥ 1, then its corresponding n-simplex in A is
µψ. Once again we will lead an induction proof ;
for n = 1, ψ is a 1-simplex, then ψ is a generating
multimap, and a sub-simplex of ψ is defined to be

itself ψ̂ = ψ, then the corresponding sub-simplex

of ψ̂ = ψ in A is µ
ψ̂

= µψ that is a generat-

ing structure map. Then the statement holds for
n = 1.
Suppose that the statement holds for any integers
p, q ≥ 1, and ψ is a n + 1-simplex for an integer
n ≥ 1, then according to the definition of a sim-
plex ψ can be written as the form ψ = (ϕ, i, φ)

for some integer i ≥ 1, with ϕ is p-simplex and
φ is q-simplex such that p + q = n + 1, and the
operadic composition in O, |ψ| = |ϕ| ◦i |φ|, then a

sub-simplex ψ̂ of ψ is defined to be a sub-simplex

of either ϕ, or of φ, or ψ itself, hence, if ψ̂ is
a sub-simple of either ϕ, or of φ, by induction

on n, the corresponding sub-simplex of ψ̂ in A
is µ

ψ̂
which is a sub-simplex of either µϕ, or of

µφ, otherwise, if ψ̂ is defined to be ψ itself, then

the corresponding sub-simplex of ψ̂ = ψ in A,
is the corresponding simplex of ψ in A which is
µ
ψ̂
= µψ.

Then the statement holds for n+ 1.

Corollary 3.2. Let ψ and ϕ be two simplices in
O, then ψ and ϕ are equivalent in O if and only
if their associated simplices µψ and µϕ are equiv-
alent in A. More presicely

|ψ| = |ϕ| ⇔ |µψ| = |µϕ|

Proof. Suppose ψ = (ψ1, . . . , ψr) and ϕ =
(ϕ1, . . . , ϕs) are two simplices in O for some inte-
gers r, s ≥ 1 such that |ψ| = |ϕ|.
Then ther exist i1, . . . ir−1, j1, . . . , js−1 ∈ N∗ such
that |ψ| = ψ1 ◦i1 · · · ◦ir−1

ψr, and |ϕ| = ϕ1 ◦j1
· · · ◦js−1

ϕs, since the corresponding simplex of
ψ in A is µψ = (µψ1

, . . . , µψr) with composition
|µψ| = µ|ψ| = µψ1

◦i1 · · · ◦ir−1
µψr , and the corre-

sponding simplex of ϕ in A is µϕ = (µϕ1
, . . . , µϕs)

with composition |µϕ| = µ|ϕ| = µϕ1
◦j1 · · ·◦js−1

µϕs ,
then the relation |ψ| = |ϕ| implies

|µψ| = µ|ψ| = µψ1◦i1 ···◦ir−1
µψr = µϕ1◦j1 ···◦js−1

µϕs = µ|ϕ| = |µϕ|

Conversely, we know that the construction of a
simplex in A requires the existence of a simplex
in O. Let ψ and ϕ be two simplices in O and
their associated simplices respectively µψ and µϕ
are equivalent in A, i.e |µψ| = µ|ψ| = µ|ϕ| =
|µϕ|, since each structure map has one entry in

O, let it be for example O
(

a
b1, . . . , bm

)
with

(a, b) ∈ S × Prof(S) for some m ∈ N∗, then

|ψ|, |ϕ| ∈ O
(

a
b1, . . . , bm

)
, therefore they have the

same structure map, hence |ψ| = |ϕ|, so ψ and ϕ
are two simplices equivalent in O. This finishes
the proof.

Our second lemma corresponding to the k-
moves states that

Lemma 3.2. Given a n-simplex ψ in O with ψ =
(ψ1, . . . , ψn), for any k < n, and any ϕ ∈ Wk

ψ
,
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one have
µϕ ∈ Wk

µψ

in other words, if ψ and ϕ are equivalent by a
relaxed k-moves in O, then µψ and µϕ are equiv-
alent by a relaxed k-moves in O-Algebra A.

In fact

ϕ ∈ Wk
ψ
⇒ µϕ ∈ Wk

µψ

Proof. Let ϕ ∈ Wk
ψ, then there exist 1 ≤ k′, k” ≤

k , 1 ≤ s ≤ n − k′, and (n − k′ + k”)-simplex ϕ
with

1. ψj = ϕj for all 1 ≤ j ≤ s− 1,

2. ψj = ϕj−k′+k” for all s+ k′ ≤ j ≤ n,

3. ζ = (ψs, . . . , ψs+k′−1) is a sub-simplex of ψ,
and ξ = (ϕs, . . . , ϕs+k”−1) is a sub-simplex
of ϕ such that |ζ| = |ξ|, which is compatible
with the operadic composition ◦i of ψs+k′ =
ϕs+k”.

We conclude by the Lemma 3.1 and the Corollary
3.2

1. µψj = µϕj for all 1 ≤ j ≤ s− 1,

2. µψj = µϕj−k′+k” for all s+ k′ ≤ j ≤ n,

3. µζ = (µψs , . . . , µψs+k′−1
) is a sub-simplex of

µψ, and µξ =
(
µϕs , . . . , µϕs+k”−1

)
is a sub-

simplex of µϕ such that µ|ζ| = µ|ξ|, which is
compatible with the operadic composition ◦i
of µψs+k′ = µϕs+k” .

Then µψ and µϕ are equivalent by a relaxed k-
moves in O-Algebra A.

As a direct consequence, now we can announce
the following :

Theorem 3.2. Under the same hypotheses of
Definition 2.6, consider ζ and ξ two simplices in
O such that |ζ| = |ξ| is an elementary relation in
O, then its corresponding elementary relation in
A is µ|ζ| = µ|ξ|.

Proof. Let |ζ| = |ξ| be an elementary relation
in O, then ζ and ξ are two simplices that are
equivalent in O, by the Corollary 3.2, their cor-
responding simplices in A are equivalent, hence
|µζ | = µ|ζ| = µ|ξ| = |µξ|, and the previous Lemma
3.2 provides that this relation is an elementary
relation in A which is the corresponding of the
elementary relation |ζ| = |ξ| in O.

Remarks

• For the operad WD (resp. UWD) , we
know from the finite presentation theorem
in Chapter 5, in [1] (resp. in Chapter
10, in [1]) that one may substitute a sub-
simplex within a simplex presentation by an-
other, only by allowing substitution of an el-
ementary sub-simplex of one side of an el-
ementary relation or an operad associativ-
ity/unity/equivariance axiom involving only
generating wiring diagrams by the elemen-
tary sub-simplex of the other side,

• in theorems 3.2, we saw that each elementary
relation in O has a corresponding elementary
relation in A. Now we will prove the cor-
responding associativity/unity/equivariance
axiom for generating multimaps in A.

Proposition 3.1. The associativity axiom holds
in A (for the definition see 2.11 and 2.12 in [1]).

Proof. For some integers n ≥ 2, m, l ≥ 1, and
1 ≤ i < j ≤ n where |c| = n, |b| = m, and |a| = l.

Let f ∈ O
(
d
c

)
, g ∈ O

(
ci
a

)
, and h ∈ O

(
cj
b

)
, be

some generating multimaps in O, then the hori-
zontal associativity in O states that

(f ◦j h) ◦i g = (f ◦i g) ◦j−1+l h

the corresponding equality in A of this equality
is given by

µ(f◦jh)◦ig = µ(f◦ig)◦j−1+lh

by the associativity axiom in A, we obtain

(µf ◦j µh) ◦i µg = (µf ◦i µg) ◦j−1+l µh

Since f, g and h are generating multimaps in O,
then µf , µg, and µh are generating structure
maps in A corresponding respectively to f, g and
h. Hence the last equality is the corresponding
associativity of the horizontal associativity in A.

Suppose now n,m ≥ 1, 1 ≤ i ≤ n, and 1 ≤
j ≤ m.

Let f ∈ O
(
d
c

)
, g ∈ O

(
ci
b

)
, and h ∈ O

(
bj
a

)
,

are some generating multimaps in O, then the
vertical associativity in O states that

f ◦i (g ◦j h) = (f ◦i g) ◦i−1+j h

the corresponding equality in A of this equality
is given by

µf◦i(g◦jh) = µ(f◦ig)◦i−1+jh

by the associativity axiom in A, we have
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µf ◦i (µg ◦j µh) = (µf ◦i µg) ◦i−1+j µh

where µf , µg, and µh are generating structure
maps in A, corresponding respectively to the gen-
erating multimaps f, g and h in O. Then the last
equality is the corresponding associativity of the
vertical associativity in A.

Remark: By the operad associativity in O, we
mean both the horizontal and the vertical asso-
ciativity, and by the O-operad associativity in A,
we mean their corresponding in A.

Proposition 3.2. The unity axiom holds in A
(for the definition see 2.13 and 2.14 in [1]).

Proof. Let f ∈ O
(
d
c

)
be a generating multimap,

1d ∈ O
(
d
d

)
and 1d the d-colored unit in O, and

1ci ∈ O
(
ci
ci

)
the ci-colored unit in O.

The left unity in O states 1d ◦1 f = f . Then,
the corresponding equality in A of this equality
is given by

µ1d◦1f = µf

by associtivity axiom in A, we get

µ1d ◦1 µf = µf

On the other hand, the right unity in O states
that

f ◦i 1ci = f.

the corresponding equality in A of this equality
is given by

µf◦i1ci = µf

Once again, the associtivity axiom in A, assert

µf ◦i µ1ci = µf

where µf is a generating structure map corre-
sponding to the generating multimap f in O, and
µ1ci , µ1d are the identity maps in A correspond-
ing respectively to the ci-colored and d-colored
unit in O. Then the corresponding unity axiom
in A holds.

Proposition 3.3. The equivariance axiom holds
in A (for the definition see 2.15 in [1]).

Proof. For some integers n,m ≥ 1 and 1 ≤ i ≤ n
where |c| = n, |b| = m, σ ∈ Sn, and τ ∈ Sm.

Let f ∈ O
(
d
c

)
, and g ∈ O

(
cσ(i)
b

)
, be generating

multimaps in O, then the equivariance axiom in
O states

fσ ◦i gτ = (f ◦σ(i) g)σ◦iτ

the corresponding equality in A of this equality
is given by

µfσ◦igτ = µ(f◦σ(i)g)σ◦iτ

by the associativity axiom in A, we obtain

µfσ ◦i µgτ = µ(f◦σ(i)g)σ◦iτ

where fσ ∈ O
(
d
cσ

)
, gτ ∈ O

(
cσ(i)
bτ

)
and (f ◦σ(i)

g)σ◦iτ ∈ O
(

d
(c ◦σ(i) b)(σ ◦i τ)

)
.

Since f, g are generating multimap in O, then fσ,
gτ are too, hence µfσ , µgτ are generating struc-
ture maps in A corresponding respectively to the
generating multimaps fσ, gτ in O.
Then the last equality is the equivariance axiom
in A corresponding to the equivariance axiom in
O.

Vocabulary.
Let O be an operad equipped with a finite gener-
ating set T , and A the O-algebra equipped with
the corresponding finite generating set Tµ.

• every structure map in A has a presentation
in Tµ, then there exists a simplex in Tµ which
is presentation of this structure map. The
equality relation defined in the Theorem 3.1

|µζ | = µ|ζ| = µ|ξ| = |µξ|

is either an O-operad associativity or unity
or an equivariance axiom, or an elementary
relation in A,

• an elementary sub-simplex µ
ψ̂
of µψ is a sub-

simplex of one of two following forms:

– µ
ψ̂
is one side (either left or right) of a

specified elementary relation in A,

– µψ̂ is one side (either left or right) of a

specified O-operad associativity or unity
or equivariance axiom involving only the
generating sturture maps.
Suppose that we have a n-simplex µψ
(for some integer n ≥ 2) in A which is
a presentation of the structure map |µψ|
in A, and µζ is a sub-simplex of µψ such
that |µζ | = |µξ|, where µξ is a simplex

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2023.22.63

Ettaki Ayoub, Elomary Mohamed Abdou, 
Mamouni My Ismail

E-ISSN: 2224-2678 630 Volume 22, 2023



in A, then the relation |µζ | = |µξ| is ei-
ther an elementary relation inA or anO-
operad associativity or unity or equivari-
ance axiom involving only the generat-
ing structur maps, hence, one can obtain
a relaxed k-moves of the simplex µψ by
substituting the elementary sub-simplex
µζ by the other one µξ,

• two simplicies µψ and µϕ are called to be el-
ementarily equivalent in A, if µψ and µϕ are
equivalent by a relaxed k-moves (for some

integer k ≥ 2), then we write µψ
k∼ µϕ (if

there is no confusion, we can drop k and write
µψ ∼ µϕ) and call this an elementary equiv-
alence in A, in other words an elementary
equivalence is a subsitution of a elementary
sub-simplex of one side by the other one.

• two simplicies µψ and µϕ are said to be
connected by a finite sequence of elementary
equivalences in A if and only if there exist
some simplicies µψ1

, . . . , µψr in A such that

µψ1

k1∼ . . .
kr−1∼ µψr , and µψ

k∼ µψ1

k1∼ . . .
kr−1∼

µψr
kr∼ µϕ for some integers k, k1, . . . , kr ≥ 2.

Denotations. Let O be an operad with a finite
generating set T and A its associated O-algebra
with the corresponding finite generating set Tµ.
Let ψ be an n-simplex in O and µψ its corre-
sponding n-simplex in A.

• The set of all relaxed k-moves of µψ in Tµ is

denoted by Wk
µψ ,

• The set of all relaxed k-moves for all k ∈
{2, . . . , n− 1} is

Wn
µψ :=

n−1⋃
k=2

Wk
µψ ,

and this is the set of all relaxed n-moves of
µψ in Tµ. In other words, Wn

µψ is the set of
all elementary equvalences of µψ in A.

• The set of all relaxed n-moves in Tµ is de-
noted by Wµ, where

Wµ :=
⋃
µψ∈A

Wn
µψ

In other words,Wµ is the set of all elementary
equivalences in Tµ.

Lemma 3.3. Let ψ and ϕ be two simplices ele-
mentarily equivalent in O, then their correspond-
ing simplices µψ and µϕ are elementarily equiva-
lent in A . In other words

ψ ∼ ϕ⇒ µψ ∼ µϕ

Proof. Let ψ and ϕ be two simplices elementarily
equivalent in O, then ψ and ϕ are equivalent by
a relaxed k-moves, then ϕ ∈ Wk

ψ, by the Lemma

3.2, we get µϕ ∈ Wk
µψ , where µψ and µϕ are the

corresponding simplices of ψ and ϕ respectively in
A, in other words, µψ and µϕ are equivalent by a
relaxed k-moves in A, then they are elementarily
equivalent in A.

Theorem 3.3. Let ψ and ϕ be two simplices con-
nected by a finite sequence of elementary equiva-
lences in O, then their corresponding simplices
µψ and µϕ are connected by a finite sequence
of elementary equivalences in A. More precisely
if ψ1, . . . , ψr is a finite sequence of elementary
equivalences in O, for an integer r ≥ 1 such that

ψ ∼ ψ1 ∼ · · · ∼ ψr ∼ ϕ

Then
µψ ∼ µψ1

∼ · · · ∼ µψr ∼ µϕ

where µψ1
, . . . , µψr is the corresponding finite se-

quence of elementary equivalences of ψ1, . . . , ψr
in A.

Proof. Let ψ and ϕ be two simplices connected
by a finite sequence of elementary equivalences in
O, then there exist simplices ψ1, . . . , ψr such that
ψ ∼ ψ1 ∼ · · · ∼ ψr ∼ ϕ, since ψ ∼ ψ1, then
the Lemma 3.3 assert that µψ ∼ µψ1

, similraly
µψ1

∼ µψ2
, . . . , µψr ∼ µϕ.

Hence
µψ ∼ µψ1

∼ · · · ∼ µψr ∼ µϕ

Lemma 3.4. Let O be an operad and A its asso-
ciated algebra, let T be a finite generating set for
O, and Tµ its corresponding finite generating set
of A, if W the set of all elementary equivalences
in T is a strong generating set of O in T , then
Wµ the set of all elementary equivalences in Tµ is
a strong generating set of A in Tµ.
Proof. Let µψ = (µψ1

, . . . , µψr) and µϕ =
(µϕ1

, . . . , µϕs) be two simplices in Tµ for some
integers r, s ≥ 1 that are equivalent, then their
composition are equal in A, i.e |µψ| = |µϕ|,
the Corollary 3.2 assert that the two simplices
ψ = (ψ1, . . . , ψr) and ϕ = (ϕ1, . . . , ϕs) are equiva-
lent in O, i.e |ψ| = |ϕ|, since W is a strong gener-
ating set of O in T , then ψ and ϕ are connected
by a finite sequence of elementary equivalences in
W, then there exist φ1, . . . , φl for an integer l ≥ 1
such that ψ ∼ φ1 ∼ · · · ∼ φl ∼ ϕ, by the previous
Lemma 3.3, we get µψ ∼ µφ1

∼ · · · ∼ µφl ∼ µϕ,
where µφ1

, . . . , µφl is a finite sequence of ele-
mentary equivalences in Wµ. This finishes the
proof.
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As we have collected all necessary tools, we can
now formulate and prove our following main the-
orem :

Theorem 3.4. Suppose that O has a finite pre-
sentation, then A has a corresponding finite pre-
sentation one.

Proof. Firstly, we have to prove that every struc-
ture map can be expressed as a finite iter-
ated operadic composition in terms of generating
structue maps in A.
Indeed, let µψ be a simplex in A for a fixed
simplex ψ in O whose composition is µ|ψ|, let
T = {ψ1, . . . , ψd} be a finite generating set for
O where d ∈ N∗, then there exist ψ1, . . . , ψl ∈ T
for l ∈ N∗ sucht that ψ = (ψ1, . . . , ψl) and

|ψ| = ψ1◦i1 · · ·◦il−1
ψl fo some integers ı1, . . . , il−1 ≥ 1

By Theorem 3.1, the corresponding finite gen-
erating set of T in A is Tµ = {µψ1

, . . . , µψd},
and by Lemma 3.1 the corresponding l-simplex
of (ψ1, . . . , ψl) in A is (µψ1

, . . . , µψl) whose com-
position is given by

|µψ| = µ|ψ| = µψ1◦i1 ···◦il−1
ψl = µψ1

◦i1 · · · ◦il−1
µψl

Since this is true for every structure map in A,
then every structure map can be expressed as a
finite iterated operadic composition in terms of
generating structue maps in Tµ which is a finite
generating set of A.

Secondly, it remains to prove that if a struc-
ture map can be operadically generated by the
generating structure maps in two different ways,
then there exists a finite sequence of elementary
equivalences in Wµ from the first iterated op-
eradic composition to the other one.
Let µ|φ| be a structure map in A, for a fixed |φ|
in O which is generated by the generating struc-
ture maps in two different ways, then there exist
two simplices in O, ψ = (ψ1, . . . , ψr) in which the
composition is |ψ| and ϕ = (ϕ1, . . . , ϕs) in which
the composition is |ϕ| for some integers r, s ≥ 1
such that

µ|φ| = µ|ψ| = µ|ϕ|

By the corollary 3.2, we get |ψ| = |ϕ|, then ψ
and ϕ are equivalent in T , since W is a strong
generating set for O in T , then there exist a finite
sequence of elementary equivalences φ1, . . . , φm
in W, such that ψ ∼ φ1 ∼ · · · ∼ φm ∼ ϕ for
some integer m ≥ 1, the Theorem 3.3 assert that
µψ and µϕ are connected by a finite sequence of
elementary equivalences in Wµ

µψ ∼ µφ1
∼ · · · ∼ µφm ∼ µϕ

By the Lemma 3.4, Wµ is a strong generating set
of A in Tµ, hence µψ and µϕ are connected by
finite sequence of elementary equivalences in Wµ.
This fineshes the proof

Our approach’s advantage that it allow us
to get a finite presentation of the O-algebra
A directly out of the finite presentation of the
operad O.

Unfortunately, we wanted to prove that any
multimap (resp. structure map) in the O operad
with a finite generating set has a stratified pre-
sentation which is a simplex presentation where
the same generating multimaps within the sim-
plex must appear in a consecutive serie, for ex-
ample, suppose O an operad with the finite gen-
erating set T = (ψ1, ψ2, ψ3), consider the follow-
ing 9-simplex (ψ1, ψ2, ψ3, ψ1, ψ3, ψ2, ψ3, ψ1, ψ3)
then the stratified 9-simplex is given by
(ψ1, ψ1, ψ1, ψ2, ψ2, ψ3, ψ3, ψ3, ψ3). D.Yau had
proved that every wiring diagram in WD (resp.
undirected wiring diagram in UWD) has a strat-
ified presentation (see Theorem 5.11 and 10.12 in
[1]), but we couldn’t prove that for a such simplex
in O.

4 Applications
As an application of our main theorem, we will
consider the operad of wiring diagrams, denoted
WD, and that of undirected wiring diagrams, de-
noted UWD. We suppose here that the reader is
familiar with the basic tools, vocabulary of the
operad of wiring diagrams (directed or not) and
its structure. If not, we recommend, [1]. Let
us recall that a multimap in WD (respectively
in UWD) is called a wiring diagram (respec-
tively undirected wiring diagram), and a gener-
ating multimap in WD (respectively in UWD) is
called a generating wiring diagram (respectively
a generating undirected wiring diagram). In fact,
D. Yau has especially proved that both WD and
UWD have a finite presentation (Theorem 5.22 in
[1], for WD), (Theorem 10.19 in [1], for UWD).

In the chapter 3 in [1] D. Yau described the
set

T WD = {ϵ, δ, τ, θ, λ, σ∗, σ∗, ω}
of 8 wiring diagrams which is a finite generating
set for the operad WD. In the chapter 8 in [1] he
had described the set

T UWD =
{
ϵ, ω∗, τf , θ(X,Y ), λ(X,x±), σ

(X,x1,x2)
}

of 6 undirected wiring diagrams which is a finite
generating set for the operad UWD. Then ev-
ery wiring diagram (resp. undirected wiring dia-
gram) has a presentation in T WD (resp. T UWD)
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as a finite iterated operadic composition. That is
the first assumption of our theorem.

For the wirings diagrams, in the chapter 3 in
[1] D. Yau described 28 elementary relations in
T WD, and in the chapter 5 in [1] he had proved
that any two equivalent simplices in WD are ei-
ther equal or are connected by a finite sequence
of elementary equivalences where each elemen-
tary equivalence is induced by either one of the
28 elementary relations or an operad associativ-
ity/unity/equivariance axiom for the generating
wiring diagrams. Following our denotations, the
set WWD of all elementary equivalences in T WD

is a strong generating set of WD. That is the
second assumption of our theorem.
Hence, by our main theorem 3.4, the WD-algebra
has a corresponding finite presentation.
By using our approach in Theorem 3.1, the cor-
reseponding finite generating set for the WD-
algebra is given by

T WD
µ = {µϵ, µδ, µτ , µθ, µλ, µσ∗ , µσ∗ , µω} .

which elements are called the generating struc-
ture maps corresponding to the 8 generating
wiring diagrams. Then every structure map can
be obtained from finitely many generating struc-
ture maps via some iterated operadic composi-
tions. These generating structure maps are ex-
actly those defined by D. Yau (see definition 6.9
in [1]). For example the first generating wiring
diagram in WD is the empty wiring diagram

ϵ ∈ WD
(
∅
)

(see Definition 3.1 in [1]), then

its corresponding generating structure map in the
WD-algebra is defined to be µϵ : ∗ −→ A∅ (see
Definition 6.9 in [1]).

In other hand, by applying Theorem 3.2 to
the operad WD, we find that every elementary
relation in WD has a corresponding elementary
relations in the WD-algebra. Then every one
of the 28 elementary relations in WD (see def-
inition 3.43 in [1]) has a corresponding elemen-
tary relation in the associated WD-algebra that
are exactly the generating axioms defined by D.
Yau (see definition 6.9 in [1]). For example,
the first elementary relation in WD (see propo-

sition 3.15 in [1]) says that if τb,a ∈ WD
(
a
b

)
and τc,b ∈ WD

(
b
c

)
are two consecutive name

changes, then they can be composed into one

name change τc,a ∈ WD
(
a
c

)
, i.e

τb,a ◦ τc,b = τc,a

By using our Theorem 3.2, its corresponding ele-
mentary relation in WD is given by

µτb,a ◦ µτc,b = µτc,a

where µτx,y := Ax −→ Ay.
This last equality is exactly the first generating
axiom in WD-algebra defined by D.Yau (see def-
inition 6.9 in [1]). The corresponding operad as-
sociativity, unity and equivariance axiom can be
obtained immediately from the propositions 3.1,
3.2 and 3.3.

In [1] D.Yau had proved that (Theorem 5.22)
any two equivalent simplices in WD are either
equal or are connected by a finite sequence of ele-
mentary equivalences in WD which each elemen-
tary equivalence is induced by either one of the
28 elementary equivalences or an operad associa-
tivity/unity/equivariance axiom for the generat-
ing wiring diagrams in WD, hence, by our The-
orem 3.3 any two equivalent simplices in WD-
algebra are either equal or are connected by a fi-
nite sequence of elementary equivalences in WD-
algebra, which each elementary equivalence in
WD-algebra is induced by either one of the 28
generating axioms or an WD-algebra operad as-
sociativity/unity/equivariance axiom for the gen-
erating structures maps. Following our denota-
tions, the setWWD

µ of all elementary equivalences

in T WD
µ is a strong generating set of WD-algebra.

Then, WD-algebra has a finite presentation.
The same can be done for the operad UWD,

of undirected wiring diagrams by considering its
finite generating set

T =
{
ϵ, ω∗, τf , θ(X,Y ), λ(X,x±), σ

(X,x1,x2)
}
,

whose corresponding finite generating set for the
WD-algebra is

Tµ =
{
µϵ, µω∗ , µτf , µθ(X,Y )

, µλ(X,x±)
, µσ(X,x1,x2)

}
.

and the elementary relations in UWD is given by
D. Yau (see definition 8.26 in [1] ), and their cor-
responding elementary relations in UWD-algebra
that are called by D. Yau generating axioms (see
definition 11.1 in [1]).
For more application, the reader can see the op-
erad of normal wiring diagrams and strict wiring
diagrams and their algebras.

5 Future Work
As an extension of our study, we will try to in-
vestigate our result and discribe the operad with
two inputs and one output, a such operad is of
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the form O
(

Z
X Y

)
, where X,Y, Z ∈ S.

Let ψ be a multimap in O
(

Z
X Y

)
, by the ◦i-

composition in O
(

Z
X Y

)
, we can decompose ψ

as follows :

O
(
Z
I

)
×O

(
I
I I

)
×O

(
I
X

)
×O

(
I
Y

)
(◦1;Id;Id)−→ O

(
Z
I I

)
×O

(
I
X

)
×O

(
I
Y

)
(◦1;Id)−→ O

(
Z
X I

)
×O

(
I
Y

)
◦2−→ O

(
C
X Y

)
Here, I is a specific element in S.
For a specific elements X,Y and Z in S, we will
try to find a finite generating set T for this op-
erad.
By putting

ψZ ∈ O
(
Z
I

)
ψI ∈ O

(
I
I I

)
ψX ∈ O

(
I
X

)
We obtain

ψ = ((ψZ ◦1 ψI) ◦1 ψX) ◦2 ψY

By the associativity axiom in O, we get also

ψ = ((ψZ ◦1 ψI) ◦2 ψY ) ◦1 ψX

ψ = ψZ ◦1 ((ψI ◦1 ψX) ◦2 ψY )

ψ = ψZ ◦1 ((ψI ◦2 ψY ) ◦1 ψX)

ψ = (ψZ ◦1 (ψI ◦1 ψX)) ◦2 ψY

ψ = (ψZ ◦1 (ψI ◦2 ψY )) ◦1 ψX
These equalities give all the presentation possible
of ψ, then there is 6 simplices, in fact, six
4-simplices that can be a presentation of ψ.
from these equalities, we check the following

elementary relations in O
(

Z
X Y

)
:

(ψZ ◦1 ψI) ◦1 ψX = ψZ ◦1 (ψI ◦1 ψX)

(ψZ ◦1 ψI) ◦2 ψY = ψZ ◦1 (ψI ◦2 ψY )

(ψI ◦1 ψX) ◦2 ψY = (ψI ◦2 ψY ) ◦1 ψX

The six 4-simplices are :

ψ1 = (((ψZ , 1, ψI), 1, ψX), 2, ψY )

ψ2 = (((ψZ , 1, ψI), 2, ψY ), 1, ψX)

ψ3 = (ψZ , 1, ((ψI , 1, ψX), 2, ψY ))

ψ4 = (ψZ , 1, ((ψI , 2, ψY ), 1, ψX))

ψ5 = ((ψZ , 1, (ψI , 1, ψX)), 2, ψY )

ψ6 = ((ψZ , 1, (ψI , 2, ψY )), 1, ψX)
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