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Abstract: - In this paper, the adaptive fuzzy tracking control of a four-wheeled mobile robot subject to wheels 

slip is considered. We proposed an adaptive scheme in that fuzzy logic approximators are used to approximate 

the unknown system functions in designing the adaptive tracking control of a mobile robot. Fuzzy systems are 

expressed as a series expansion of basis functions, to adaptively compensate for the mobile robot nonlinearities. 

The proposed control system works online, parameter adaptation is realized in every discrete step of the control 

process, and a preliminary learning phase of fuzzy system parameters is not required. The stability of the 

algorithm is established in the Lyapunov sense, with tracking errors converging to a neighborhood of zero. 

Simulation results illustrate the effectiveness of the approach. 
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1 Introduction 
Application of modern methods of realization of 

motion of wheeled mobile robots, in which a 

fundamental role is played by artificial intelligence 

methods, belongs to priority research direction in 

the field of modern technologies of autonomous 

robots. Despite significant advances in the field of 

autonomous robotics, still, many problems remain 

unsolved. Most difficulties are associated with a 

description of the natural work environment of an 

autonomous robot. Usually, the knowledge about 

the environment is, in general, incomplete, 

uncertain, and approximate. To this field belong, for 

example, the problems concerning the inclusion of 

the phenomena of mobile robot wheel slips into 

control algorithms. Recently, a lot of attention is 

devoted to the problems of modeling and control of 

wheeled mobile robots taking into account wheel 

slips [3], [5], [6], [7], [8], [9], [11], [12], [13], [18], 

[23], [24], [29], which follows from possibility of 

using those objects in practical applications, 

characterized, for instance, by irregular surfaces and 

various parameters of wheels contact with the 

ground. In the conventional control theory, most of 

the control problems are usually solved by 

mathematical tools based on the system models. 

Fuzzy controllers are assumed to work in situations 

where the plant parameters and structures have 

some uncertainties or unknown variations. As we 

know, based on the universal approximation 

theorem, [26], [27], where fuzzy logic systems have 

been shown to be capable of uniformly 

approximating any well-defined nonlinear function 

to any degree of accuracy, many important adaptive 

fuzzy control schemes have been developed to 

directly incorporate the expert information 

systematically and various stable performance 

criteria are guaranteed by theoretical analyses, [20], 

[21], [22], [28]. Based on the established fuzzy 

system properties, various adaptive fuzzy control 

schemes have been systematically developed, by 

which the stability of the closed-loop system can be 

guaranteed by theoretical analyses, [22], [27]. 

Among these approaches, the adaptive tracking 

control method with a radial basis function fuzzy 

system, [17], is proposed for nonlinear systems to 

adaptively compensate the nonlinearities of the 

systems, [4]. The indirect and direct adaptive 

control schemes using fuzzy systems for nonlinear 

systems have also been shown in [19], to provide 

design algorithms for stable controllers. In addition, 

control systems based on a fuzzy control scheme are 

augmented with variable structure control, [27], 

[29], to ensure global stability and robustness to 

disturbances.  
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In this paper, the intelligent stable adaptive fuzzy 

control system for the position and heading of a 

four-wheeled mobile robot with the inclusion of 

longitudinal and lateral slips is proposed, in which 

fuzzy systems are used for compensation of 

nonlinearities and variable operating conditions of a 

mobile robot.  

The structure of the paper is as follows. In section 

2 basic kinematic relationships are discussed, and 

generalized velocities required for realization of the 

desired robot motion, understood as kinematic 

controller, are determined using the backstepping 

method. Dynamic equations of motion of a four-

wheeled mobile robot taking into account wheel 

slips are given in section 3. Section 4 concerns the 

description of the adopted structure of an adaptive 

fuzzy system for compensation of robot 

nonlinearities. In section 5 synthesis of tracking 

control of mobile robots is conducted and stability 

analysis of the control algorithm is carried out based 

on Lyapunov’s theory. In section 6 obtained results 

of simulations of the introduced solution are 

presented. Conclusions are given in section 7.  

 

 

2 Kinematic Controller for WMR 
The object analyzed in the present article is a four-

wheeled mobile robot. A diagram of its kinematic 

structure is shown in Fig. 1, [24], [25]. 

 

 
Fig. 1: Model of the analyzed robot 

 

In the model, the following basic robot 

assemblies can be distinguished: 0 – mobile 

platform (body with additional control and 

measurement frame attached to it), 1-4 – wheels, 5-6 

– toothed belts (caterpillars). In the analyzed robot, 

the front wheels are coupled with the back wheels 

by means of the toothed belts. The following 

symbols are adopted for i-th wheel: Ai – geometric 

centre, ri – radius, θi – wheel spin angle. Mobile 

platform spin angle is denoted oz
o . It is assumed 

that the motion of the mobile robot occurs in the Oxy 

plane (as shown in Fig. 1). Position and orientation of 

the mobile platform are described by generalized 

coordinates vector:  

 

  Toz

o

R

o

R

oo yx ,,q  (1) 

 

where: oxR, oyR – coordinates of the point R of the 

mobile platform, φz = oφoz – the spin angle of the 

mobile platform with respect to z-axis of stationary 

coordinate system {O}. Generalized velocities 

vector q  can be determined based on the value of 

the velocity of motion of the point R of the robot 

along the direction of the x-axis of the {R} system 

connected with the robot, that is vR, and angular 

velocity of spin of the mobile platform, that is  , 

based on the kinematic equations of motion in the 

form:  
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The above equation is valid if the robot moves on 

horizontal ground. In the control of the position and 

heading of the robot, one assumes that the motion of 

the robot is realized based on the desired vector of 

its position and heading, which has the form: 

 

  TdRdRdd xx ,,q , (3) 

 

where: xRd, yRd – desired coordinates of the 

characteristic point R of the robot in the {O} 

coordinate system in (m), φd = oφozd – the desired 

spin angle of the mobile platform with respect to z-

axis of {O} coordinate system in (rad). To define 

the problem of tracking control, based on the 

relationship (2) let us define desired parameters of 

motion of the point R in the form of the equation: 
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where: vRd, ωd – respectively desired linear velocity 

of the characteristic point R of the robot in (m/s) and 

desired angular velocity of its mobile platform in 

(rad/s), in the stationary coordinate system {O}. In 

the problem of tracking control, one should 

determine the vector of control of position and 
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heading of the robot us = [vs, ωs]
T, such that q → qd 

for t . The errors of the robot’s position and 

heading in the coordinate system associated with the 

robot {R} and in the stationary system {O} can be 

determined from the relationship: 
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where OLF eee ,,  are respectively longitudinal 

position error in (m), lateral position error in (m), 

and heading error in [rad]. Generalized velocities 

required for the desired motion of the robot can be 

determined using various methods. A popular 

method used for this purpose is the so-called 

backstepping method, [1], [2], [7], [15]. According 

to it, the vector of desired generalized velocities of 

motion of the robot’s mobile platform expressed in 

the robot’s coordinate system {R} can be 

determined based on the following relationship: 
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where: ssv , – desired velocities of robot motion 

expressed in the coordinate system {R}, that is, the 

linear velocity of characteristic point R in (m/s) and 

angular velocity of the mobile platform in (rad/s), kF 

(s–1), kL (rad/m2), ko (rad/m) – chosen positive 

parameters. 

 

 

3 Dynamic Model of a WMR Subject 

to Wheel Slip 
In Fig. 2 a schematic diagram of the analyzed robot 

with marked reaction forces acting on the robot in 

the wheel-ground plane of contact is presented, [24].  

 

 
Fig. 2: Diagram of reaction forces acting on the 

robot in the wheel-ground contact plane 

 
In the description of the motion of the four-

wheeled robot, it is assumed that the tire-ground 

coefficient of adhesion changes according to the 

Kiencke model and values of longitudinal slip ratios 

3  and 4  depend respectively on angular 

velocities of driven wheels 3
 and 4

 . Additionally, 

equality of driving torques for passive and active 

wheels is assumed, that is, 31    and 42   . After 

taking into account the above assumptions, dynamic 

equations of motion for the hybrid chassis system, 

i.e. with wheels and toothed belts, are written as 

[24]:  
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where RyRxp aa ,,  are respectively: a constant 

associated with a model of wheel-ground adhesion, 

projections of acceleration of characteristic point R 

of the robot in the coordinate system associated with 

the robot {R}. In turn, constants ai that occur in 

equation (7) result from geometry, masses, and 

distribution of masses of the analyzed robot and 

were determined in the work, [24]. From the 

kinematic relationships of the analyzed model of the 

mobile robot, one can determine angular velocities 

of driven wheels as functions of control signals that 

realize the desired trajectory of the robot’s motion, 

according to the following relationship: 
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where the control signals’ vector has the form: 
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After introducing equation (8) into dynamic 

equations of motion of a mobile robot (7), one 

obtains: 
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where: M is a constant positive-definite inertia 

matrix, 
12)( x

RR RuF  is a vector describing robot 

nonlinearities, 12x

z Rτ   denotes bounded unknown 

disturbances which include, for example, motion 

phenomena not taken into account in the 

description, 12x
Rτ  is control signals’ vector 

identical with torques of robot driving wheels 3 and 

4. The dimensionality of equation (10) results from 

the assumption of active torques of wheels 3 and 4 

and passive torques of wheels 1 and 2 being 

respectively equal.  

 

 

4 Fuzzy Systems, Fuzzy Basis 

Function Expansion and Function 

Approximation 
Problems of control of wheeled mobile robots with 

the inclusion of wheels’ slips are complex and their 

solution requires the application of complex 

methods. Because of the lack of a systematic 

approach to analysis and synthesis of control of 

nonlinear systems so far, the adaptive fuzzy systems 

became an attractive tool used in the theory of 

nonlinear systems. Fig. 3 shows an adaptive fuzzy 

system. An adaptive fuzzy system is defined as a 

fuzzy system equipped with a learning algorithm, 

where the fuzzy system is constructed from a set of 

fuzzy IF-THEN rules using fuzzy logic principles 

and the learning algorithm adjusts the parameters of 

the fuzzy system based on the training information, 

[14], [16], [17], [20], [26], [28].  Adaptive fuzzy 

systems can be viewed as fuzzy logic systems 

whose rules are automatically generated through a 

training process. In this section, we will give the 

mathematical formulas of fuzzy systems and fuzzy 

basis functions. 
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Adaptation/
Learning Signal

x y

 
Fig. 3: Adaptive fuzzy system 

 

Without loss of generality, we assume that fuzzy 

systems are MISO systems  VU:f n , 

where  n
n21 U...UUU    is the input space 

and RV  is the output space. Consider a fuzzy 

logic system (FLS) with rules in the following form 
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j
nA is n x...and and 
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A are fuzzy sets defined by their respective 

membership functions   n1,2...,i ,
xA i

j
i

  and 

 j are singleton rule consequents. When a 

product and operator and a product implication 

method are used  together with the center of gravity 

defuzzification method, this leads to a fuzzy logic 

system with the following form 

 

 

 

  

 

 
















N

1j ix
n

1i A

N
1j jix

n

1i A
)(fy

j
i

j
i

x . (12) 

 

Which coincides with the Takagi-Sugeno model, 

[22]. When all the parameters of the FLS in (12) are 

considered free, methods such as back-propagation 

learning can be applied. The idea introduced in [14], 

[20], [26], is to fix the premise parameters of the 

FLS such that the resulting fuzzy system is 

equivalent to a linear combination of nonlinear 

functions called fuzzy basis functions. 

Definition 4.1, [26], defines fuzzy basis functions  

(FBF) as 

 

 

  



 






N

1j ix
n

1i A

ix
n

1i A
jp

j
i

j
i , j=1,2,…,N. 

  (13) 

Now the fuzzy system (12) is equivalent to  a linear 

combination of an FBFs   
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In order to develop learning algorithms for these 

fuzzy systems, we need to specify the functional 

form of the fuzzy membership function for a fuzzy 

set 
j
i

A . The membership function can be any 

continuous bounded function, e.g., the Gaussian 

membership function 
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and Fig. 4 shows an example of FBFs in one-

dimensional premise space. 

 

 
Fig. 4:. Membership functions 

 

It has been shown, [10], [21], [27], that FLS possess 

the universal approximate property. That is, for any 

given continuous function )(g x  on a compact set U 

and any given real number 0 , there exists a 

fuzzy system  xf in the form (14) such that  

 

     


xx
Ux
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Therefore, the fuzzy system (14) is qualified to 

estimate the unknown non-linear function )(g x . In 

fact, there exist, ideal control representatives P , 

centroids c and widths w , so that the non-linear 

function can be represented as  

 

      xPΓx
Tg , (17) 

with the estimation error bounded by m . 

Then an estimate of )(g x  can be given by 

 

    xPΓx
Tˆĝ  , (18) 

 

where Γ̂ is an estimate of ideal values provided by a 

learning algorithm.  It is shown in [26], [27], that 

Gaussian basis functions do have the best 

approximation property. This is the main reason we 

choose the Gaussian function as the membership 

function. In this work, an FBF can be generated 

based on a numerical input-output pair. 

 

 

5 Adaptive fuzzy Control Algorithm 

and Stability 
In the present section, the synthesis of control of 

position and heading of a wheeled mobile robot 

using the control structure of nonlinear systems will 

be conducted, which takes into account 

compensation for robot nonlinearities realized by 

means of the FBFs linear with respect to parameters 

described in section 4. The task of this control will 

be the reduction of the actual control vector (9) to 

the control vector resulting from the analysis of 

kinematics (6). To this end, let us define the velocity 

tracking error: 

 Rd uus  .  (19) 

 

After differentiating relationship (19) and inserting 

it into (7), one obtains dynamic equations of motion 

written as a function of the velocity error: 
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where z  represents bounded disturbances so that 

Zz   and nonlinear function has the form: 
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Vector x allowing determination of the value of the 

nonlinear function can be defined as: 
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and it should be available for measurement. The 

function f(x) involves all parameters of the analyzed 

wheeled mobile robot such as masses, mass 

moments of inertia, coefficients of motion 

resistance, and description of the slip phenomenon. 

Quantities of this kind usually can be described only 

in an approximate way. Because the function f(x) is 

described approximately, if one adopts the law of 

control with the inclusion of this approximation in 

the form: 
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δspkxfτ  )(ˆ , (23) 

where )(ˆ xf  is an output of a fuzzy system, pk is a 

positive-definite diagonal matrix, and δ  is a control 

signal robust to non-modeled phenomena and other 

disturbances, then the description of a closed system 

one may express as: 
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where velocity tracking error s in a significant way 

will depend on the correct approximation of robot 

nonlinearities. Approximation of the control 

compensating for nonlinearities f(x) is often applied 

in practice. For the approximation, a fuzzy system 

may be used. It is convenient to use a fuzzy system 

linear with respect to the parameters, described in 

section 4. Then, the nonlinear function 

approximated by the fuzzy system one can write in 

the form: 

 
    εxΓxf  PT , (25) 

 

where ε is approximation error satisfying condition 

mεε , 0constεm  .The estimate of the f(x) 

function can be written as:  
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where Γ̂  is the matrix of estimated parameters of an 

ideal fuzzy system. After using (26) in the control 

law with the robot’s nonlinearities compensation, 

the control law in the following form is obtained: 
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Substitution of (25) and (26) into (24) yields: 
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 is an error of approximation of f(x) 

function, equal to: 
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where ΓΓΓ ˆ~
  is an error in the estimation of 

weights of the neural network. After using 

relationship (29), equation (28) is written as: 
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The structure of the system for adaptive fuzzy 

control of robot generalized velocities is shown in 

Fig. 5. For a derivation of an algorithm of ̂  

weights learning, the theory of Lyapunov stability is 

used. 
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Fig. 5: Adaptive fuzzy feedback control scheme. 

 

Let us take a scalar positive-definite function: 
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  (31)  

where 0T  FF  is a design matrix. A derivative of 

the V function with respect to time, one can write as: 
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  (32) 

After inserting the expression sM  from equation 

(30), one obtains: 
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  (33) 

After choosing the law of adaptation of weights as:  

 

   T~
sxFPΓ 


, 

(34) 

 

and after introducing the robust control signal: 

 

 
s

s
Zεδ M  , (35) 

Relationship (33) is transformed into the form: 
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  (36) 

After writing in expanded form the error of desired 

velocities (15) as: 
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(37) 

 

and after determining a derivative of error (15), and 

putting doLF kkk  , one gets: 
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(38) 

                                                                                                                        

Since V is positive definite for
 

0s   and V  is 

negative semidefinite, both  s, 
~

  are bounded 

according to Lyapunov’s theorem. Such a synthesis 

of the adaptive fuzzy control permits proper 

operation of the control system with a proportional 

controller until the fuzzy system starts adapting. 

 

 

6 Simulation Results 
This section shows some simulation results of the 

fuzzy logic system using a four-wheeled robot 

subject to wheel slip whose objective is to follow 

the given reference trajectory. An adaptive fuzzy 

system with adaptive learning rules (34) was used in 

the simulation. The three Gaussian membership 

functions were selected along each input dimension, 

therefore 9 fuzzy IF-THEN rules can be generated. 

The initial and final membership function shapes are 

shown in Fig. 6. 

 

Remark: We omitted the signal du in learning the 

conclusion of the rules because nothing brings on in 

the process of learning as numerous simulations 

showed, but the dimensionality of the problem 

grows considerably. 

 

 

a)                                       b) 

       
Fig. 6: Membership functions along  a) Rv and  b)   

dimension 

 

For use in simulation investigations, one assumes 

the following robot parameters: 

 geometric dimensions (A1A3 = A2A4 = L, A1A2 = 

A3A4 = W – see Fig. 1), L = 0.35 m, W = 0.386 m, 

ri = 0.0965 m, i = {1, …, 4},  

 masses of particular bodies: m0 = 15.02 kg, mi = 

0.66 kg, m5 = m6 = 0.17 kg,  

 rolling resistance coefficient fr = 0.03,  

whereas the constants ai occurring in equation (7) 

were determined using the methodology described 

in works, [3], [4]. The following values of gains for 

the controller were assumed: kL = 15, kF = 10, ko = 5, 

kp = diag(20, 20). Desired motion parameters of the 

robot’s wheels, kinematic parameters of point R, 

and motion path of point R are shown in Fig. 7. In 

simulation three phases of motion are assumed: 

acceleration, motion with constant velocity of the 

point R ( m/s3.0Rv ), and braking. For an 

approximation of nonlinearities and variable robot 

operating conditions, the fuzzy system described in 

section 4 is used with Gaussian functions describing 

fuzzy sets, assuming each element of the f vector is 

approximated with 6 rules. In the simulation, 

parametric disturbance occurring st 12  is assumed 

in the form of an increase in the rolling resistance 

coefficient 03.0 rf , when the characteristic point 

R of the robot moves along a curvilinear path.  
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a)                                        b) 

    
c)                                  d)      

  
Fig. 7: Desired kinematic quantities used in 

simulation: a) kinematic parameters of the point R, 

b) desired velocities: linear of the point R, and 

angular of the robot’s body, c) angular velocities of 

driven wheels, d) desired motion path of the point R. 

Trajectory tracking performances for two cases were 

considered, firstly with action generation fuzzy 

compensation of the nonlinearity of the robot 

according to the scheme shown in Fig. 5 (case 1), 

and secondly without the compensation of the 

nonlinearity of the robot and robust term (case 2). 

 

Case 1. 

 

In Fig. 8 are shown obtained control signals, and in 

Fig. 9, errors of neural control of position and 

heading of the robot. The obtained control signals 

43,  (i.e., desired torques for driven wheels) that 

realize desired trajectory of motion of the point R of 

the mobile robot are shown in Fig .8a. Values of 

torques are the largest during motion of the mobile 

robot along a circular trajectory, their value is 

constant until the occurrence of a parametric 

disturbance. This corresponds to robot motion with 

constant velocity.  At the moment of occurrence of 

the parametric disturbance, the value of the 

3 torque increases whereas the value of the 4  

torque decreases, which results from an increase in 

the adopted motion resistance. For time 12t  s 

values of torques decrease, which corresponds to the 

phase of braking and finishing motion along the 

rectilinear path. 

 

 

 

 

 

 

 

         a)                                      b)     

             
       c)                                   d) 

  
Fig. 8: Control signals according to a relationship 

(23) 

 
The discussed total control signals are generated 

based on control signals compensating for robot 

nonlinearities shown in Fig. 8b, signals generated by 

a P-type regulator (Fig. 8c), and robust control 

signals (Fig. 8d). The fuzzy compensation control 

has the largest influence on the total control signal, 

as far as level and character are concerned. In turn, 

the stabilizing P control and robust δ  control have 

the largest values during periods of occurrence of 

disturbances associated with wheels’ slips or 

resulting from the character of desired velocity, 

desired motion path, or the occurring parametric 

disturbances. It follows from the fact that in those 

motion states, the fuzzy compensation adapts to 

changing operating conditions of the robot, and only 

after the adaptation period the fuzzy system 

generates dominant control signals. This fact of the 

significance of the influence of fuzzy compensating 

control on the overall quality of control is confirmed 

by results shown in Fig. 9a-c, in which errors of 

neural control of position and heading of the robot 

are presented. Error-values are the largest during the 

period of motion along a circular trajectory, and 

then as the process of fuzzy adaptation progresses, 

they decrease. The occurring parametric disturbance 

as well as changing robot operating conditions, 

excite the proposed control structure, which as a 

result generates control signals that make the control 

errors eee yRxR ,,  bounded, which confirms the 

theoretical considerations. In Fig. 9d are shown the 

desired and actual paths realized with small errors, 

marked as ‘trajd’ and ‘traj’, respectively. 
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a)                                     b) 

                      
c)                                                  d) 

     
Fig. 9: Errors of fuzzy control of robot’s position 

and heading 

 
For quantitative evaluation of the generated control 

signals and realized tracking motion, the following 

quality indices are introduced: 

 maximum values of the errors exRmax, eyRmax in (m) 

and
 maxe  

in (rad), ))(abs( (.)(.) kee max  ,  k =1,2,…n, 

the square root of the mean squared error 

(RMSE) of motion realization  
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(rad),  

where k is the ordinal number of a discrete value 

and n = 23 000 is the total number of discrete 

values. Values of all quality indices of realization of 

tracking motion are given in Table 1. 

 

Table 1. Values of the introduced quality indices  

exR eyR eφ exRmax eyRmax eφmax 

0.0101 0.005403 0.01001 0.02004 0.01345 0.01787 

 

Case 2. 

 

To gauge the effectiveness of the fuzzy 

compensation of the nonlinearity of the robot it is 

useful to compare the performance of the closed-

loop system without the output of action generating 

compensation of the nonlinearity of the robot and 

without robust term. The output tracking 

performance, in this case, is shown in Fig. 10. The 

output tracks corresponds to the desired trajectory 

with the bigger values of the introduced quality 

indices, 

a)                                      b) 

 
c)                                     d) 

      
Fig. 10: Errors of fuzzy control of the robot’s 

position and heading 

 
which are given in Table 2, because of the non-

linearity of the robot dynamics. There exist state 

errors resulting from the nonlinear appearance of the 

system. 

 

Table 2. Values of the introduced quality indices  

exR eyR eφ exRmax eyRmax eφmax 

0.01324 0.009465 0.01001 0.02278 0.02314 0.04633 

 

 

7 Conclusions 
In the article, a stable algorithm of control of 

position and heading in tracking the motion of a 

four-wheeled mobile robot is designed. In the 

algorithm, the fuzzy system linear with respect to 

estimated parameters is used. The algorithm does 

not require prior knowledge of the dynamic 

properties of the controlled object and is robust to 

occurring longitudinal and lateral slips of wheels as 

well as to parametric disturbances. After the fuzzy 

logic system has compensated partially for the non-

linearity of the controlled system through adaptive 

learning, the output tracking of the plant follows the 

reference trajectory quite satisfactorily. The same 

controller works even if the behavior or structure of 

the system has changed. Results of conducted 

simulation investigations lead to the conclusion that 

intelligent control with a correctly designed 

kinematic controller significantly increases the 

accuracy of the realization of tracking motion. 

Additionally, the proposed fuzzy control algorithm 

operates online and does not require initial learning 

of fuzzy parameters. 
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