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Abstract: - The consequences of the COVID-19 pandemic that originated in Wuhan, China in 2019 are still 
being felt globally. At the onset of the pandemic, countries had several measures in place to prevent the spread 
of the virus. The development and availability of COVID-19 vaccines turned out to be one of the most effective 
tools for containing the pandemic, especially in developed countries. This paper considers a model of COVID-
19 breakthrough infections, which are cases where individuals become infected with COVID-19 despite being 
fully vaccinated. The model proposed is a type of the SIR model with a compartment accounting for vaccinated 
individuals and is governed by a system of differential equations. We compute the basic reproduction number of 
the model and use it to analyze the equilibria for both local and global stability. Further, we use numerical 
simulations of the model to understand the factors that contribute to breakthrough infections such as vaccination 
rates, vaccine efficacy, and virus transmission dynamics. 
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1  Introduction 
The COVID-19 pandemic has affected millions of 
people globally, causing unprecedented loss of life 
and disrupting economies and social systems. 
Vaccination emerged as one of the key tools in the 
fight against the pandemic. Vaccines have been 
developed and administered to people worldwide to 
provide immunity against the virus, and they have 
been shown to be highly effective, [1], [2]. 
However, there is still a risk of breakthrough 
infections, where fully vaccinated individuals 
contract the virus. Breakthrough infections occur 
when an individual contracts COVID-19 after being 
fully vaccinated, [3], [4]. These infections can occur 
for several reasons, including vaccine efficacy, virus 
variants, and individual immunity. While vaccines 
are highly effective in preventing severe illness and 
death, they are not 100% effective, [5]. This means 
that even fully vaccinated individuals can still 
contract the virus. 

Virus variants, such as the Delta variant and 
omicron variant, can also increase the risk of 
breakthrough infections, [6]. These variants have 
mutations that make them more transmissible and 
resistant to antibodies, potentially reducing vaccine 
efficacy, [7], [8]. Furthermore, individual immunity 
can also play a role in breakthrough infections. 
Factors such as age, underlying health conditions, 

and medications can affect an individual's immune 
response to the vaccine, [9]. Despite the risk of 
breakthrough infections, vaccination remains critical 
in the fight against COVID-19. Vaccines have been 
shown to reduce the severity of illness and the risk 
of hospitalization and death in breakthrough 
infections, [10]. They also help to reduce the 
transmission of the virus by providing herd 
immunity, making it harder for the virus to spread 
and mutate, [11], [12], [13]. 

Mathematical models have played significant 
roles in epidemiological research and have been 
widely used in the fight against COVID-19 since the 
beginning of the pandemic,  
[14], [15], [16], [17], [18], [19]. These models are 
computer simulations that use mathematical 
equations to predict the spread of the virus, the 
impact of interventions, and the potential outcomes 
of different scenarios. One of the key benefits of 
mathematical models is their ability to provide early 
warning signals of potential outbreaks, [20]. By 
analyzing data on the spread of the virus, 
mathematical models can predict the future 
trajectory of the pandemic, [21]. Mathematical 
models can also be used to evaluate the 
effectiveness of different interventions, [22]. For 
example, models can be used to compare the impact 
of different vaccination strategies, such as 
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prioritizing certain age groups or populations, to 
identify the most effective approach, [23]. 

Several investigators have developed targeted 
mathematical models for the transmission dynamics 
of COVID-19 to facilitate further understanding of 
the virus' characteristics and impact on humans, 
[24], [25], [26], [27], [28]. In this study, we present 
a mathematical model with breakthrough infections 
in vaccinated populations by COVID-19 or its 
variants. We considered a SIR-type model of the 
form SVIRD, where "V" and "D" represents the 
vaccinated and death compartments, respectively. 
The transitions between the compartments are 
governed by a set of differential equations that 
describe how the disease spreads over time. The 
equations are based on the assumption that the rate 
of transmission of the disease depends on the 
number of susceptible individuals, the number of 
infectious individuals, and the efficacy of the 
vaccine. The model further assumes that vaccinated 
populations are not immune from being infected by 
the virus or its variants. Using the quantitative 
results of the model, we will analyze the impact of 
COVID-19 on a given population. 
 
 
2 Mathematical Model 
An SVIRD model is a mathematical model used to 
simulate the spread of an infectious disease in a 
population. It is an extension of the classic SIR 
model, which stands for the Susceptible-Infectious-
Recovered model. The SVIRD model adds two 
additional compartments to the SIR model: the 
Vaccinated and Deaths compartments. The 
compartments in the SVIRD model are defined as 
follows: susceptible (S) are individuals who are 
susceptible to getting infected by the disease; 
vaccinated (V) are individuals who have received a 
vaccine against the disease and are thus protected 
from getting infected; infectious (I) are individuals 
who have been infected with the disease and are 
capable of transmitting it to others; recovered (R) 
are individuals who have recovered from the disease 
and are no longer infectious; and deaths (D) are 
individuals who have died from the disease. 
We assume that the total human population at any 
time 𝑡 denoted by 𝑁(𝑡) is: 
 
 𝑁(𝑡) = 𝑆(𝑡) + 𝑉(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) + 𝐷(𝑡).  
 
The transition rates between compartments together 
with their descriptions are given in Table 1, and a 
schematic diagram of the SVIRD model is given in 
Figure 1. 

 
Fig. 1: Schematic diagram of the SVIRD model.  
 
The solid lines represent population movement from 
one compartment to another. The transition from S 
to I or V to I is a result of interaction between 
individuals in the two compartments. 
 
The system of differential equations that governs the 
model is as follows: 
 

Table 1. Description of variables and parameters in 
the model, [1] 

Symbols Description 

Λ Recruitment rate into the population 

𝜌 Natural death rate of human individuals 

𝛼 The transmission rate to susceptibles 

𝜎 The recovery rate from infection 

𝜃 The transition rate from recovered to 
susceptible 

𝛾 The transmission rate to vaccinated class 

𝛽 The vaccination rate of susceptible 

𝜇 The vaccination rate of recovered 

𝜖 The death rate from infection 

 
𝑑𝑆

𝑑𝑡
 = Λ − 𝛼𝑆

𝐼

𝑁
− 𝛽𝑆 + 𝜃𝑅 − 𝜌𝑆

𝑑𝑉

𝑑𝑡
 = −𝛾𝑉

𝐼

𝑁
+ 𝛽𝑆 + 𝜇𝑅 − 𝜌𝑉

𝑑𝐼

𝑑𝑡
 = 𝛼𝑆

𝐼

𝑁
+ 𝛾𝑉

𝐼

𝑁
− 𝜎𝐼 − 𝜖𝐼 − 𝜌𝐼

𝑑𝑅

𝑑𝑡
 = 𝜎𝐼 − 𝜇𝑅 − 𝜃𝑅 − 𝜌𝑅

𝑑𝐷

𝑑𝑡
 = 𝜖𝐼

  

where it is assumed that all the parameters are 
positive and the initial conditions  

(1) 

(2) 

(3) 

(4) 

(5) 
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𝑆(0) = 𝑆0,   𝑉(0) = 𝑉0, 𝐼(0) = 𝐼0, 𝑅(0) = 𝑅0 and 
𝐷(0) = 𝐷0, are all nonnegative. 

Before proceeding, we note here that the fifth 
equation is decoupled from the rest of the system 
and thus will be neglected from subsequent analysis. 
We also observe that if Λ = 0 and 𝜌 = 0, then the 
model does not possess any vital dynamics. Further, 
it is not difficult to establish that the right-hand side 
of the system is locally Lipschitz continuous, thus 
solution a (𝑆(𝑡), 𝑉(𝑡), 𝐼(𝑡), 𝑅(𝑡)) with the 
prescribed initial conditions exists and is unique. It 
can also be easily shown that the model presented 
only admits positive solutions since 
𝑆(𝑡) = 𝑆0exp ∫

0

𝑡
 (−𝛽 − 𝜌 − 𝛼

𝐼(𝜂)

𝑁(𝜂)
+

Λ+𝜃𝑅(𝜂)

𝑆(𝜂)
) 𝑑𝜂, 

𝑉(𝑡) = 𝑉0exp ∫
0

𝑡
  (−𝜌 − 𝛾

𝐼(𝜂)

𝑁(𝜂)
+

𝛽𝑆(𝜂)+𝜇𝑅(𝜂)

𝑉(𝜂)
) 𝑑𝜂,  

𝐼(𝑡) = 𝐼0exp ∫
0

𝑡
  (−𝜎 − 𝜖 − 𝜌 + 𝛼

𝑆(𝜂)

𝑁(𝜂)
+ 𝛾

𝑉(𝜂)

𝑁(𝜂)
) 𝑑𝜂,  

and  

𝑅(𝑡) = 𝑅0exp ∫
0

𝑡
 (−𝜇 − 𝜃 − 𝜌 + 𝜎

𝐼(𝜂)

𝑅(𝜂)
) 𝑑𝜂, 

are always positive. 

 
 
3  Analysis of the Model 
In this section, we state the disease-free equilibrium 
(DFE) and the basic reproduction number of the 
model. The DFE is defined as a steady-state solution 
of the model in which the number of infected 
individuals is zero. The basic reproduction number, 
often denote as 𝑅0, is a threshold parameter used to 
describe the potential of a contagious disease to 
spread within a population. It is defined as the 
average number of secondary infections that result 
from a single infected individual in a susceptible 
population. We use 𝑅0 to show that the DFE is 
locally and globally stable. Further, we establish the 
existence of an endemic equilibrium (EE), a state 
where the disease is present at a relatively stable 
level, if 𝑅0 > 1. 

To compute the equilibria of the model, we set 
the derivatives in the first four equations, [1], to zero 
and solve for the steady states (𝑆∗, 𝑉∗, 𝐼∗, 𝑅∗) in the 
following equations where for simplicity we let 𝑁 =
𝑁∗ 

 

0 = Λ − 𝛼𝑆∗ 𝐼∗

𝑁
− 𝛽𝑆∗ + 𝜃𝑅∗ − 𝜌𝑆∗

0 = −𝛾𝑉∗ 𝐼∗

𝑁
+ 𝛽𝑆∗ + 𝜇𝑅∗ − 𝜌𝑉∗

0 = 𝛼𝑆∗ 𝐼∗

𝑁
+ 𝛾𝑉∗ 𝐼∗

𝑁
− 𝜎𝐼∗ − 𝜖𝐼∗ − 𝜌𝐼∗

0 = 𝜎𝐼∗ − 𝜇𝑅∗ − 𝜃𝑅∗ − 𝜌𝑅∗.

  

 
From above, by factoring 𝐼∗ in equation (8), it is 
obvious that the DFE of the model is 

(𝑆∗, 𝑉∗, 𝐼∗, 𝑅∗):= (
Λ

(𝛽 + 𝜌)
,

𝛽Λ

(𝛽 + 𝜌)𝜌
, 0,0). 

Next, computing the reproduction number 𝑅0 as the 
spectral radius of the next-generation matrix was 
evaluated at the DFE, we obtained, 

𝑅0 =
𝛼𝜌Λ + 𝛾𝛽Λ

𝑁𝜌(𝛽 + 𝜌)(𝜎 + 𝜖 + 𝜌)
. 

Remark 3.1. The value of 𝑅0 stated above can be 
interpreted as a product of the sum of the 
transmissibilities to susceptiles (

𝛼Λ

𝑁(𝛽+𝜌)
) and 

vaccinated (
𝛾𝛽Λ

𝑁𝜌(𝛽+𝜌)
), and the mean duration of 

infectiousness 1

𝜎+𝜖+𝜌
. If we assume that the 

population is constant by setting the recruitment rate 
Λ = 𝜌𝑁, then we get 𝑅0 =

𝛼𝜌+𝛾𝛽

(𝛽+𝜌)(𝜎+𝜖+𝜌)
. 

We now move on to establish the existence of an 
endemic equilibrium that is biologically relevant, 
that is, a positive equilibrium since the model does 
not admit negative solutions. To achieve this 
objective, we revisit equations (6), (8), and (9), and 
observe that if 𝐼∗ ≠ 0 then we get 

 𝑅∗ = 𝐴1𝐼
∗, 𝑆∗ =

𝑁(Λ+𝜃𝐴1𝐼∗)

𝛼𝐼∗+𝑁(𝛽+𝜌)
  and 

 𝑉∗ = 𝑁 (𝐴2 −
𝛼

𝛾

𝑁(Λ+𝜃𝐴1𝐼∗)

𝛼𝐼∗+𝑁(𝛽+𝜌)
), where 

 𝐴1 = 𝜎/(𝜃 + 𝜇 + 𝜌) and 𝐴2 = (𝜎 + 𝜖 + 𝜌)/𝛾. 
Substituting for 𝑆∗, 𝑉∗ and 𝑅∗ in equation (7) we 
obtain the following quadratic equation in the 
variable 𝐼∗ : 

𝐵2𝐼
∗2 + 𝐵1𝐼

∗ + 𝐵0 = 0, 
where 

𝐵0 = 𝜌(𝛽 + 𝜌)𝐴2𝑁
2(𝑅0 − 1)

𝐵1 = 𝛾(𝛽 + 𝜌)𝐴2𝑁(𝑅0 − 1) + 𝐴1𝑁[𝛽𝜃 +

𝜇(𝛽 + 𝜌) + 𝛼𝜃𝜌/𝛾] − 𝛾Λ/𝜌 − 𝛼𝜌𝐴2𝑁

𝐵2 =  −𝛼(𝜖 + 𝜌 + 𝜌𝐴1).

 

(6) 
(7) 
(8) 
(9) 
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The following result guarantees that the model will 
always contain at least one positive endemic 
equilibrium.      

Theorem 3.1. If 𝑅0 > 1, then the model presented 

possesses at least one positive endemic equilibrium. 

Proof. Let 𝑓(𝐼∗) be a polynomial given by the left-
hand side of equation (10), that is, 

𝑓(𝐼∗) = 𝐵2𝐼
∗2 + 𝐵1𝐼

∗ + 𝐵0. 

Observe that 𝐵2 < 0 from above. For 𝐼∗ = 0 we get 
that 𝑓(0) = 𝐵0 > 0 if 𝑅0 > 1. Next, we see that 
𝑓 → −∞ as 𝐼∗ → ∞. Thus, by the intermediate value 
theorem, the function 𝑓 has a positive root on the 
interval [0,∞) yields an endemic equilibrium. 

We now consider the stability of the DFE. The 
following result provides a condition under which 
the DFE is locally stable.    ∎ 

Theorem 3.2. The disease-free equilibrium of the 

model is locally asymptotically stable if the 

reproduction number 𝑅𝑜 < 1, otherwise, it is 

unstable. 

Proof. Evaluating the Jacobian matrix of the model 
at the DFE gives 

[
 
 
 
 
 
 −𝛽 − 𝜌 0 −

𝛼Λ

𝑁(𝛽 + 𝜌)
𝜃

𝛽 −𝜌 −
𝛾𝛽Λ

𝑁𝜌(𝛽 + 𝜌)
𝜇

0 0 (𝜎 + 𝜖 + 𝜌)(𝑅0 − 1) 0
0 0 𝜎 −𝜇 − 𝜃 − 𝜌]

 
 
 
 
 
 

 

whose eigenvalues are −𝛽 − 𝜌,−𝜌, (𝜎 + 𝜖 +
𝜌)(𝑅0 − 1) and −𝜇 − 𝜃 − 𝜌. Clearly, if 𝑅0 < 1, 
then the eigenvalues are all negative, thus rendering 
the DFE to be locally asymptotically stable. If 𝑅0 >
1, then one of the eigenvalues is positive therefore 
rendering the DFE unstable.  

We will require the following lemma to show that 
the DFE is globally stable. 

Lemma 3.1. Suppose that 𝑆(0) ≤
𝛬

𝛽+𝜌
 and 𝑉(0) ≤ 

𝛽𝛬

𝜌(𝛽+𝜌)
, then respectively, 𝑆(𝑡) ≤

𝛬

𝛽+𝜌
 and 𝑉(𝑡) ≤ 

𝛽𝛬

𝜌(𝛽+𝜌)
.  

Proof. From the differential equation 1, we obtain 
the differential inequality. 

𝑑𝑆

𝑑𝑡
≤ Λ − 𝛽𝑆 + 𝜃𝑅 − 𝜌𝑆 

whose solution is given as 

𝑆(𝑡) ≤
Λ

𝛽 + 𝜌
− (

Λ

𝛽 + 𝜌
− 𝑆(0)) × 

exp − (𝛽 + 𝜌)∫0

𝑡
 (1 +

𝜃𝑅(𝜂)

Λ−(𝛽+𝜌)𝑆(𝜂)
) 𝑑𝜂. 

Clearly, 𝑆(𝑡) ≤
Λ

𝛽+𝜌
 if 𝑆(0) ≤

Λ

𝛽+𝜌
. To establish the 

second inequality, we use the differential inequality 
𝑑𝑉

𝑑𝑡
≤ 𝛽𝑆 + 𝜇𝑅 − 𝜌𝑉 

which is a consequence of the differential equation 
(2). On substituting for 𝑆(𝑡) ≤

Λ

𝛽+𝜌
 in the above 

inequality, we get 
𝑑𝑉

𝑑𝑡
≤

𝛽Λ

𝛽 + 𝜌
+ 𝜇𝑅 − 𝜌𝑉 

whose solution satisfies 

𝑉(𝑡) ≤
𝛽Λ

𝜌(𝛽 + 𝜌)
− (

𝛽Λ

𝜌(𝛽 + 𝜌)
− 𝑉(0)) ×

exp − 𝜌∫  
𝑡

0

 (1 +
𝜇𝑅(𝜂)

𝛽Λ/(𝛽 + 𝜌) − 𝜌𝑉(𝜂)
)𝑑𝜂.

 

It follows that 𝑉(𝑡) ≤
𝛽Λ

𝜌(𝛽+𝜌)
 if 𝑉(0) ≤

𝛽Λ

𝜌(𝛽+𝜌)
. ∎ 

The next result which is stronger than the previous 
theorem establishes the global stability of the DFE 
by using a Lyapunov function and LaSalle's 
invariance theorem, [29].     

Theorem 3.3. Suppose that 𝑆(𝑡) ≤
𝛬

𝛽+𝜌
 and 𝑉(𝑡) ≤ 

𝛽𝛬

𝛽+𝜌
 according to Lemma 3.1. Then the disease-free 

equilibrium of the model is globally asymptotically 

stable if the basic reproduction number 𝑅0 < 1. 

Proof. We consider the Lyapunov function 
candidate 

𝐿(𝑡) =
1

2
𝐼2.  

Differentiating with respect to 𝑡 gives 
𝑑𝐿

𝑑𝑡
 = 𝐼

𝑑𝐼

𝑑𝑡

 = 𝐼 (𝛼𝑆
𝐼

𝑁
+ 𝛾𝑉

𝐼

𝑁
− 𝜎𝐼 − 𝜖𝐼 − 𝜌𝐼)

 = (𝛼
𝑆

𝑁
+ 𝛾

𝑉

𝑁
− 𝜎 − 𝜖 − 𝜌) 𝐼2

 ≤ (
𝛼Λ

𝑁(𝛽 + 𝜌)
+

𝛽𝛾Λ

𝑁𝜌(𝛽 + 𝜌)
− 𝜎 − 𝜖 − 𝜌) 𝐼2.

 

Clearly, if 𝑅0 < 1 then we have that 
𝑑𝐿

𝑑𝑡
≤ (𝜎 + 𝜖 + 𝜌)(𝑅0 − 1) < 0. 
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Therefore by LaSalle's invariance principle, the 
DFE is globally asymptotically stable.   ∎ 
 
 
4 Numerical Results and Discussion 
In this section, we present numerical simulations of 
the model for different scenarios. The values of the 
parameters used in the simulations were estimated 
based on values from the published literature for 
COVID-19, [30], [31], [32], [33], [34], and other 
parameter values were assumed to demonstrate the 
predictions of the model. All populations were 
normalized to the total population 𝑁. We also 
assume that the recruitment rate Λ = 𝜌𝑁 so that the 
population remains constant. The simulations 
reported in this paper were carried out using the 
initial conditions 𝑆(0) = 0.99999, 𝑉(0) = 0, 
𝐼(0) = 0.00001, 𝑅(0) = 0 and 𝐷(0) = 0. We 
remark here that several simulations were carried 
out with small perturbations or different sets of 
initial conditions and the long-term behavior of the 
model's predictions were unchanged. 
 

 
Fig. 2: Model simulations demonstrating a disease-
free equilibrium for parameter values 𝛼 = 0.25, 𝛽 =
0.0024, 𝜃 = 0.025, 𝛾 = 0.0025, 𝜌 = 1/(365 ×
70), 𝜇 = 1.5 × 10−4, 𝜖 = 10−5, and 𝜎 = 1/14. 
 
We start by confirming numerically the analytic 
results established in the previous section. The 
simulations in Figure 2 demonstrate numerically 
both the existence and global stability of the 
disease-free equilibrium. The introduction of an 
infected individual leads to a wave of COVID-19 
propagating within the population until it reaches a 
peaking. After cresting, the wave continues to die 
out till there are no more infectious individuals left 
in the population.  

 

 
Fig. 3: Model simulations demonstrating an endemic 
equilibrium. The parameter values are the same as in 
Figure 2 with the exception that 𝛾 = 0.025. 
 

This result appears to reflect a pattern so far 
observed in COVID-19. That is the emergence of a 
variant that eventually dies out or is displaced by a 
more competitive variant. Recall that we only 
established the existence of an endemic equilibrium 
in the previous section without discussing its 
stability. The result in Figure 3 represents an 
endemic equilibrium for the chosen parameter 
values. The results demonstrate COVID-19 
persisting in the population after a wave has crested, 
however, at a stable level. 

 
Fig. 4: Model simulations of COVID-19 infections 
demonstrating the efficacy of a vaccine.  
 
Here we simulate the number of cases by varying 
the transmission rate 𝛾 to vaccinated individuals. All 
other parameter values are as stated in Figure 2. 
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Fig. 5: Model simulations of COVID-19 infections 
demonstrating the effect of the vaccination rate 𝛽 on 
the trajectory of COVID-19. Here we vary 𝛽, set 
𝛾 = 0.025 and all other parameter values are as 
stated in Figure 2. 
 

Next, we turn our attention to simulating the 
efficacy of COVID-19 vaccines. We do so by 
comparing the number of COVID-19 infections for 
vaccinations having different degrees of 
effectiveness. We assume that a vaccine is more 
effective if the transmissibility rate to vaccinated 
individuals 𝛾 approaches zero, and that 100% 
effectiveness is achieved if 𝛾 = 0. The results 
presented in Figure 4 show the number of COVID-
19 cases for each vaccination regiment. A vaccine 
having a high transmissibility rate 𝛾 = 0.025 will 
lead to COVID-19 being endemic while one with a 
much lower transmission rate 𝛾 = 0.0025 will 
eventually lead to the eradication of the virus. It is 
important to observe that in the simulations 
provided, it takes a while before a disease-free 
equilibrium is attained. This underscores the 
necessity of public health officials to recommend 
additional measures needed to combat the pandemic. 
A mildly effective vaccine is better than none. 
Though an effective vaccine is crucial in reducing 
the overall incidence of COVID-19, the results in 
Figure 5 do show that the behavior of the population 
plays an important role. No matter how effective a 
vaccine is, if only a small proportion of the 
population is getting vaccinated, then COVID-19 
will persist in the population. However, a higher 
vaccination rate will shift an endemic state to a 
disease-free state. Put together, the simulations in 
Figures 4 and 5 demonstrate that to move the 
population towards herd immunity, the vaccine has 
to be very effective and the rate of vaccine uptake 
should also be very high. 
 

 
Fig. 6: Model simulations of COVID-19 infections 
demonstrating the longevity of immunity provided 
by the vaccine.  
 
Here, we set 𝛾 = 0.025 and vary the vaccine 
waning rate 𝜓. We consider the effect on the 
number of cases ranging from 6 − 18 months of 
protection. All other parameter values are as stated 
in Figure 2. 
 

The efficacy of a vaccine is also dependent on 
the longevity of the immunity it provides. To 
investigate this, we slightly modify the first two 
equations of the model by subtracting a vaccine 
waning term 𝜓𝑉 from the vaccination compartment 
and adding it to the susceptible compartment. With 
this modification, the DFE of the model is 
(

(𝜌+𝜓)Λ

𝜌(𝛽+𝜌+𝜓)
,

𝛽Λ

𝜌(𝛽+𝜌+𝜓)
, 0, 0). A corresponding 

basic reproduction number is 𝑅0 =
𝛼(𝜌+𝜓)+𝛾𝛽

𝜌(𝛽+𝜌+𝜓)(𝜎+𝜖+𝜌)
, where we have set Λ = 𝜌𝑁 (see 

Remark 3.1). Clearly, if 𝜓 = 0 we recover the 
previous DFE and 𝑅0. Here, we take 𝜓 to be the rate 
at which the COVID-19 vaccine is waning. The 
results given in Figure 6 consider different cases 
where the protection granted by COVID-19 ranges 
from 6 − 18 months. We can see that, the shorter 
the duration of afforded protection, the more the 
number of COVID-19 cases, thus necessitating the 
need for more frequent vaccination or boasting. 
Finally, the mean duration of infectiousness, that is, 
how long it takes infectious people to recover and 
stop being a threat to others plays an important role 
in determining the trajectory of each COVID-19 or 
its variants. The results in Figure 7 simulate the 
trajectory of COVID-19 for infectiousness periods 
of 7 and 14 days for vaccination and non-
vaccination regiments. The results indicate that 
COVID-19 or a variant that has an infectiousness 
period of up to 14 days is likely to remain endemic 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2023.22.59 Ming Zhu, Ephraim Agyingi

E-ISSN: 2224-2678 589 Volume 22, 2023



even in a vaccinated population. On the other hand, 
a variant with a shorter infectiousness period when 
combined with vaccination will be quickly 
eradicated. 
 

 
Fig. 7: Model simulations of COVID-19 infections 
by comparing different vaccinations status 𝛽 and 
recovery rates 𝜎.  
 
We let 𝛽 = 0 represent no vaccine uptake and 𝛽 =
0.0024 for vaccine uptake. The recovery rates 𝜎 are 
set at 1/7 and 1/14, indicating an infectiousness 
period of 7 and 14 days, respectively. 
 
 
5 Conclusion 
In this paper, we have developed an SVIRD model 
for COVID-19 and used it to study breakthrough 
infections in a vaccinated population. The model is 
based on the assumption that COVID-19 
vaccinations do not provide full immunity to 
vaccinated individuals. The model is formulated as a 
system of differential equations and the existence of 
a disease-free equilibrium that is globally stable 
when the basic reproduction number is less than one 
is established. The existence of an endemic 
equilibrium is also ascertaining if the basic 
reproduction number is greater than one and 
numerical simulations do show that it is globally 
stable. We used simulations of the model to study 
different vaccination strategies and the predictions 
do provide early warning signals of potential 
outbreaks. A key prediction of the model is that an 
effective vaccine will reduce the number of 
infections in a short amount of time as long as there 
is a high vaccination rate. Considered alone, a very 
effective vaccine, or one that protects for more than 
a year, combined with low vaccine uptake may 
eventually eradicate the disease, however, only after 
a very long time. The model also predicts that given 

any vaccine that affords some immunity, if there is a 
high vaccination turnout, then the virus will still be 
eradicated in a shorter amount of time. Further 
predictions of the model suggest that knowing the 
infectious period of COVID-19 or its variants is 
very important. Variants with shorter duration of 
infectiousness are easily eradicated while those with 
long durations are likely to become endemic within 
a population. The predictions made in this study are 
mostly limited to the assumptions made and the 
values of the parameters used. The model does not 
account for all the factors that can influence the 
spread of the virus, such as human behavior and 
social dynamics. In conclusion, while breakthrough 
infections do occur, vaccination remains an essential 
tool in the fight against COVID-19. Vaccines are 
highly effective in preventing severe illness and 
death, and they can help to reduce the spread of the 
virus. Additional measures, such as booster shots, 
masks, and social distancing, can also help to reduce 
the risk of breakthrough infections and protect 
individuals who are not yet vaccinated. Individuals 
must continue to follow public health guidelines and 
get vaccinated to help bring an end to the pandemic. 
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