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Abstract: - Two-point boundary value problems for second-order ordinary differential equations of Lie´nard 
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in both cases are obtained. These estimates are based on considering the equation of variations around the 
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1 Introduction 
Two-point boundary value problems (BVP) often 
arise in various types of mathematical models of 
real-world phenomena. Consequently, the literature 
on BVP for ordinary differential equations (ODE) is 
im- mense. We refer to the books and chapters in 
the books, [1], [3], [10], [11], where BVPs for ODE 
were studied. Numerous articles are devoted to this 
subject. 
The first results on BVP for ODE were focused on 
the existence of solutions and uniqueness. The 
Dirichlet and the Neumann problems shared the 
main attention. Then the following issues were 
studied: dependence of solutions on parameters; 
different boundary conditions; periodic boundary 
conditions; multipoint boundary conditions; 
functional boundary conditions; BVP for higher 
order ODE; BVP for systems of ODE; BVP for 
fractional differential equations; BVP for time 
scales; the multiplicity of solutions. 
The last issue is of great importance. It is a 
remarkable feature of nonlinear ODE to have 
multiple solutions. Estimates of the number of 
solutions were the focus of study in many papers. 
In this article, we wish to contribute to the special 
approach that is applied in the studies of multiple 
solutions to BVP. In the early papers of [10], the 
following idea was used. 

Imagine that the boundary value problem has a 
solution ξ(t). Suppose the variational equation 
around ξ(t) is oscillatory. If some other solution, 
satisfying the first of boundary conditions exists, 
and it is not oscillatory, then between those two 
solutions may exist other solutions of the same 
BVP. 
More precisely, suppose that the problem 

x´´+ g(x) = 0, g ∈ C1   (1) 
x(a) = 0, x(b) = 0  (2) 

is to be studied. Let g (0) ≡ 0. Then there is the 
trivial solution ξ(t) ≡ 0 for the problem. Suppose 
that: 

 (A1) There exist solutions x+(t) (resp.: x−(t)) to 

the Cauchy problem x´´+g(x) = 0, x(a) = 0, x´(0) 

> 0 (resp.: x´´(0) < 0) such that x±(t) do not vanish 

in the interval (a, b]. 

Does this problem have a solution other 
than the trivial one? 
It has, if the equation of variations 

y´´ + gx (0) y = 0   (3) 

is oscillatory. 
To be definite, the following is true: if 

solutions 
y+(t) and y−(t) of the Cauchy problems 
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y´´ + gx (0) y = 0, y(a) = 0, y´(a) = ±1 (4) 

have i zeros in the interval (a, b), and the condition 
(A1) holds, then the BVP (1), (2) has at least 2i 
more solutions. 

The conditions hold for the problem 

x´´ + ax − bx3 = 0, x(a) = 0, x(b) = 0, (5) 
for instance. 

This approach was used in the study of 
BVPs in the articles, [5], [6], [7], [8], [9]. 

In the recent work, [4], the two-point BVPs 
were considered for the equation 

x´´ + f (x)x´2 + g(x) = 0,  (6) 

which can be classified as the Liénard equation with 
the quadratic dependence on x´. The function g(x) = 
ax − bx3 was specified. Several choices of f (x) were 
tested. The conclusion was that for the problem (6), 
(2) the number of solutions is not less than that for 
the problem (5). 

The method of investigation was based on 
the variable transformation proposed by M. Sabatini 
in [12]. After applying this transformation the 
equation (6) reduces to the conservative equation of 
the form u´´ + h(u) = 0. Sabatini’s approach is 
briefly described below. 

It seems natural to consider the formally 
similar equation 

x´´ + f (x)x´ + g(x) = 0  (7) 

and to compare the results, concerning the 
multiplicity of solutions to BVPs (6), (2) and (7), 
(2). This is the main thrust of this paper. In our 
considerations functions f(x) and g(x) are 
continuously differentiable in [a, b]. 

After the introduction brief description of 
Sabatini’s transformation and the results for 
equation (6) follow. 

Then the BVP (7), (2) is considered and the 
multiplicity results are formulated. 

In the Examples section, several BVPs are 
studied for different choices of f(x). The function 
g(x) is cubic, that is, g(x) = ax − bx3, where a and b 
are constants. 

 
 

2 Equation x´´ + f(x)x´2 + g(x) = 0 
 

2.1 Reduction to Shorter Equation 
It is known that this equation by the variable 
change 

𝑢 = ∫ 𝑒𝐹(𝑠)𝑑𝑠, 𝐹(𝑥) = ∫ 𝑓(𝑠)𝑑𝑠
𝑥

0

𝑥

0
 (8) 

is reduced to the conservative equation 

u´´ + h(u) = 0, h(u) = g(x(u)) eF (x(u)). (9) 

The differential equation (9) is of the same form as 
equation (1). The boundary conditions (2) in the 
new variable are the same 

u(a) = 0, u(b) = 0. (10) 
The BVP (9), (10) can be qualitatively studied by 
the same method, making use of the fact that zeros 
of x(t) and the respective u(t) coincide. 

The result of this study is the main 
conclusion: BVP 

x´´ + f (x)x´2 + g(x) = 0, x(a) = 0, x(b) = 0, (11) 
generally, has at least the same number of solutions, 
as the BVP 

x´´ + g(x) = 0, x(a) = 0, x(b) = 0 (12) 
had. 
 
2.2 Alternative Approach 
The problem (11) could be studied directly. It has 
the trivial solution ξ(t) ≡ 0. The variational equation 
around the trivial solution is 

y´´ + gx (0) y = 0.                     (13) 

Suppose that the solution y(t) with the initial 
conditions y(a) = 0, y´(a) = 1 has exactly i zeros in 
the interval (a, b) and y(b) ≠ 0. Assume also that 
there exist 
solutions x+(t) (resp.: x−(t)) to the Cauchy problem 
x´´ + f (x)x´2 + g(x) = 0, x(a) = 0, x´(a)>0 (resp.: 
x´(a)< 0) such that x±(t) do not vanish in the interval 
(a, b] (refer to this assumption as A1quadr.) Then 
there exist at least 2i nontrivial solutions of the BVP 
(11). The condition A1quadr. fulfils for g(x) = ax − 

bx3. 
 

 

3 Dissipative Equation 
Equation (9) is conservative, so equation (6) also is. 
Our intent now is to consider the dissipative 
equation 

x´´ + f (x)x´ + g(x) = 0,                  (14) 

together with the boundary conditions (2). 
 Suppose that g (0) = 0, so the problem has the 
trivial solution ξ(t) ≡ 0. The variational equation at 
ξ(t) is  

y´´ + (fxx´ + gx) |x≡0y + f |x≡0y´ = 0 (15) 

or, the same, 

y´´ + f (0) y´ + gx (0) y = 0. (16) 

Formulate the condition: 

(B1) There exist solutions x+(t) (resp.: x−(t)) to the 

Cauchy problem x´´ + f (x)x´ + g(x) = 0, x(a) = 0, 
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x´(a) > 0 (resp.: x´(a) < 0) such that x(t) is positive 

(resp.: negative) in the interval (a, b]. 

 The following result can be proved. 

Theorem 1 Let the condition (B1) hold. Suppose 

that the solution y(t) of the Cauchy problem 

y´´ + f (0) y´ + gx (0)y = 0, y(a) = 0, y´(a) = 1    (17) 

has n zeros in the interval (a, b). Then the BVP (14), 

(2) has at least 2n nontrivial solutions. 

 
Scheme of the proof. To avoid many technicalities 
and discussion about types of non-extendibility of 
solutions of the second order equations, we make 
one additional assumption: solutions of (14), x(a) = 

0, x´(a) = α, α ∈ [0, αmax] extend to the interval [a, 

b], where αmax is the initial value for the first 
derivative of a solution x(t) from the condition (B1). 
 Consider the set S of solutions of the problem 
(14), x(a) = 0, x´(a) = α, α ∈ [0, αmax]. Due to the 
extendibility of solutions, this set is bounded in 
C1[a, b] (Theorem 15.1 in [10]). Then there exists a 
number δ > 0 such that for any solution x(t) of S the 
arbitrary consecutive t1 and t2 are separated by this 
δ, that is, |t1 − t2| > δ. The number δ is dependent on 
S only, not on the choice of a solution. This was 
proved in [2], with reference to Valle`e Poussin 
Theorem, [13]. All solutions in S cross the zero 
solution transversally. From these facts and the 
continuous dependence on the initial data follows 
that zeros ti(α) of solutions in S are continuous 
functions of α. Any zero escapes the interval (a, b] 
when α goes from zero value to αmax. On any 
occasion, ti(αi) = b, a new solution to the boundary 
value problem (14), (2) emerges. This process, when 
performed up and down (for α positive and 
negative) yields at least 2n nontrivial solutions. 
 
 
4 Conclusion 
The estimations of the number of solutions to the 
BVP for equations 

x´´ + f (x)x´2 + g(x) = 0                (18) 
and 

x´´ + f (x)x´ + g(x) = 0               (19) 
can be produced using the equations of variations (at 
the trivial solution ξ(t) ≡ 0)  

y´´ + gx (0) y = 0,           (20) 

for equation (18), and 

y´´ + f (0) y´+ gx (0) y = 0,       (21) 

for equation (19). 

Since equations of variations are different, the 

estimates of the number of solutions to both 

BVPs are also different. 

 

 

5 Examples 
In this section, examples are constructed for the 
specific choice of g(x) = ax − bx3. 
 
5.1 Conservative Equation 
Consider the problem 

x´´ + µx´2 + (ax − bx3) = 0,     (22) 
x (0) = 0, x (1) = 0.     (23) 

The phase portrait of equation (22), a = 50, b = 25, 
µ = 1 is depicted in Fig. 1. It corresponds to f (x) =µ 
and g(x) = ax – bx3 in (18).  

 
Fig. 1: The phase portrait of x´´+µx´2 + (ax − 

bx3) =0, a = 50, b = 25, µ = 1. 
 
The equation of variations around the trivial 
solution ξ(t) ≡ 0 is 

y´´ + ay = 0.                          (24) 

Let a = 50, b = 25. The equation of variations is  
y´´ + 50y = 0. The solution of y (0) = 0, y´ (0) = 1 is 
𝑦(𝑡) =

1

√50
𝑠𝑖𝑛 √50 𝑡. It has exactly two zeros in the 

interval (0, 1) and it is not zero at t = 1. The 
condition (A1) is fulfilled also ([4]) and BVP (18), 
(2) has at least four nontrivial solutions: three 
nontrivial solutions for the initial conditions (see 
Fig.2, α ≈ −3.11, α ≈ −3.6605, α ≈ 3.1) in the region 
bounded by a homoclinic trajectory and one solution 
outside this region (see Fig.2, α ≈ 16.4802). 
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Fig. 2: Graphs x(t) for solutions of the problem 
x´´+x´2 + (50x − 25x3) = 0, x (0) = 0, x (1) = 0, α 

≈ 16.4802, α ≈ 3.1, α ≈ −3.11, α ≈ −3.6605. 

Consider the equation 

x´´ + µ (x2 − 1) x′2 + g(x) = 0,    (25) 
 
with the conditions (23), where µ = 1 and g(x) 

=50x − 25x3. The phase portrait is depicted in 
Fig.3. 

For equation (25) the number of solutions 
for the Dirichlet problem is the same as for 
equation x´´ + µx´2 + (ax − bx3) = 0. The Dirichlet 
problem (25), (23) has three solutions in the 
region bounded by a homoclinic trajectory (α ≈ 

3.367, α ≈ 4.214, α ≈ −3.378) and one solution 
outside this region (α ≈ −12.3317, see in Fig. 4). 
 

 
Fig. 3: The phase portrait of x´´ + (x2 – 1) x´2 

+50x−25x3 = 0. 

 

 
Fig. 4: Graphs x(t) for solutions of the x´´ + (x2 – 

1) x´2 +50x−25x3, x (0) = 0, x (1) = 0, α ≈ 3.367, α 

≈ 4.214, α ≈ −3.378, α ≈ −12.3317. 

 
5.2 Dissipative Equation 
Consider the problem 

x´´ + µx´+ (ax − bx3) = 0, x (0) = 0, x (1) = 0. (26) 

It corresponds to f (x) = µ and g(x) = ax − bx3 in 
equation (19). The equation of variations around 
the trivial solution ξ(t) ≡ 0 is 

y´´ − µy´ + ay = 0.            (27) 

Let again a = 50, b = 25, and µ be an arbitrary 
positive number. The solution y(t) of (27) is 

y(t) =C1 𝑒𝜆1𝑡+ C2𝑒𝜆2𝑡,               (28) 

where λ´ s are solutions of the characteristic 
equation 

λ2 − µ λ + a = 0.  (29) 

The roots of (29) are 

λ = 
1

2
 µ ± √

1

4
µ2 −  𝑎.   (30) 

The complex roots (then 1

4
 µ2 − a < 0) correspond 

to the oscillatory solutions 

y(t) =C1 𝑒0,5µ𝑡 sin √𝑎 −
1

4 
µ2 t+ 

C2𝑒0,5µ𝑡 cos √𝑎 −
1

4 
µ2 𝑡. (31) 

The solution of (31) with the initial conditions 
 y (0) = 0, y´ (0) = 1 is 

y(t) =C1 𝑒0,5µ𝑡 sin √𝑎 −
1

4 
µ2t,        (32) 

where C1 is the appropriate positive constant. 
The estimate for the number of solutions to 

the BVP (25) depends on the number of zeros of the 
function (32) in the interval (0, 1). 

Lemma 2 The number of zeros of the function (32) 

in the interval (0, 1) is not greater than the number 

of zeros of the function sin √𝑎 𝑡. 
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This means that the estimate of the number 
of solutions to BVP for the dissipative equation is 
not better (better=more solutions) than the estimate 
for the conservative equation. 
On the other hand, it may be worst.  Since µ in (32) 

can be chosen so that √𝑎 −
1

4 
µ2 is arbitrarily 

small, it is possible that 

√𝑎 −
1

4 
µ2 < 𝜋.                    (33) 

Then the function (32) does not vanish in (0, 1]. 
If additionally, the condition (B1) holds, the BVP 
may have no nontrivial solutions. 

Theorem 3 Suppose that 

𝑖
𝜋

√𝑎
< 1 < (𝑖 + 1)

𝜋

√𝑎
               (34) 

for some positive integer i. Then problem (22), and 

(23) has at least 2i nontrivial solutions.  

Suppose that 
𝜋

√𝑎−
1

4 
µ2

> 1                     (35) 

Then problem (26) may have less nontrivial 

solutions than problems (22), (23) with the same a, 

µ. 

 

If a = 50, then to satisfy the inequality (33), choose 
12.67129 < µ < 14.14215.  Suppose µ = 14. It 
appears (look at the phase portrait in Fig. 5) that the 
condition (B1) for the dissipative equation holds. 
Fig. 6 shows that there are no nontrivial solutions 
for the BVP. 
 

 
Fig. 5: The phase portrait of x´´ + µx´ + 50x − 

25x3 = 0, µ = 14. 

 

 
Fig. 6: Graphs x(t) for solutions of the problem x´´ 

+ µx´ + 50x − 25x3 = 0, µ = 14, α ≈ 3.367, α ≈ 

4.214, 0.1 < α <6.1, step 0.5. 

 
Consider the example where in problem (26) a = 50, 

b = 25, µ = 1. The phase portrait is depicted in Fig. 
7. The variational equation 

y´´ − y´ + ay = 0             (36) 

along with the initial conditions y (0) = 0, y′ (0) = 1 
has a solution y (t) with exactly two zeros in the 
interval (0,1) and y (1) ≠ 0. Therefore, by Theorem 
3, the corresponding BVP (22), (23) must have at 
least 4 nontrivial solutions. It has four, as may be 
concluded, looking at Fig. 7. 

All four nontrivial solutions are depicted in Fig. 8. 

 

 
Fig. 7: The phase portrait of x´´ + x´ + 50x − 25x3 

= 0 
 

 
Fig. 8: Graphs x(t) for solutions of the problem x´´ 
+ x´ + 50x − 25x3 = 0, α ≈ 5.951, α ≈ 8.0183, α 
≈ −5.951, α ≈−8.0183 
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