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Abstract: - The utilization of conclusions from the data analysis of road traffic accidents is of high importance 

for the development of targeted traffic safety measures, which will effectively reduce the rate of road traffic 

accidents, thus promoting road safety. Considering the problems of time and money, it is not practical to 

improve road safety in all the places where road traffic accidents occur. Therefore, the process of identifying 

accident-prone locations, known as black spots, is a cost-effective and efficient way to analyze the causes of 

road accidents and reduce them. Identifying black spots is an effective strategy to reduce accidents. The core 

methods that may be used in the process of identifying the black spots of a road network are the sorting, 

grouping, and accident prediction methods. However, in practice, it is easy to overlook certain factors that 

significantly contribute to defining and characterizing a spot on the road network as black. Therefore, 

suggestions to carry out projects required to reduce security risks shall not be based on the above methods. 

Machine learning algorithms that in recent years have been widely used in the field of predicting a road traffic 

accident cover these weaknesses. They can effectively classify data sets and make a connection between factors 

and the severity of events. Machine learning algorithms include classification, regression, clustering, and 

dimensionality reduction. In this work, a study was conducted on road traffic accidents that took place on the 

national and provincial network of Northern Greece from 2014 to 2018, with the aim of determining the black 

spots. The study provided the general public access to a database of black spots on the road network of 

Northern Greece. At the same time, it created a point of reference for the recognition of the points in question 

located on the entire road network, and selected a black spot determination model, after having compared 

specific measures to determine the quality of a model, which resulted from the application of a logistic 

regression and machine learning algorithms. 
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1 Introduction 
In modern times, the improvement of human living 

standards and the economic development of a 

country undoubtedly depend on its transportation 

system, which constitutes an essential element of 

human civilization. Its improper management may 

lead to harmful situations for the citizens. One such 

situation is traffic accidents, which are included in 

the list of the most important social problems and 

form an ever-present threat to all road users. They 

are complex phenomena that researchers must deal 

with [1], given that they involve the simultaneous 

interaction of a multitude of factors. The most 

important factors are the road user, the vehicle, the 

road environment, and last but not least the road 

alignment and the various geometric characteristics, 

[2], [3], [4], [5]. The above-mentioned factors are 

inextricably linked, constituting a system with four 

hypostases, [6], [7]. In this particular system, the 

driver’s behavior occupies a dominant position, [8]. 

Some authors argue that factors related to road 

traffic accidents fall within two categories: a) the 

road environment/infrastructure and the vehicle, b) 

the human factor identified with the concept of the 

driver to whom the majority of road accidents must 

be attributed, [9], [10]. 
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In [11], the author supports that the human factor 

plays the most decisive and important role, having 

taken into account earlier studies, [12], [13], related 

to the interconnection degree of the factors that 

cause road traffic accidents (Table 1). 

 

Table 1. Participation percentage of various factors 

in road traffic accidents, [6], [11] 

Only human 65% 

Human and road 24% 

Human and vehicle  4.50% 

Human, road, and vehicle 1.25% 

Only road 2.50% 

Road and vehicle 0.25% 

Only vehicle 2.50% 

Total 100% 

 

The analysis/investigation of road traffic 

accidents is widely recognized as an important part 

of comprehensive and effective road safety 

management, [14]. Their study is a process that aims 

at developing prediction models, as well as 

formulating policies to improve road safety. The 

determination of their evolution over time is 

achieved through the development of methodologies 

that enhance the identification of road network 

locations in which an increased concentration of 

accidents is observed and the risk of collision is 

characterized as high, [15]. These specific locations 

are called "traffic accident black spots" or 

"dangerous road spots".  

After identifying the black spots, short-term and 

long-term countermeasures are suggested for their 

restoration. Identifying them is a cost-efficient and 

effective way of analyzing the causes of road traffic 

accidents and reducing them, [16]. In addition, their 

further analysis and treatment are widely considered 

an effective approach to the prevention of road 

traffic accidents, [17], given that it may lead to the 

identification of problems concerning the design of 

the road network (such as wrong slope, lack of street 

lighting, incomplete vertical and horizontal 

markings), but also driving behaviors (such as 

distraction, excessive speed) that demonstrably lead 

to traffic accidents.  

The identification of black spots is difficult due 

to:  

a) the lack of data and specifically the limited 

number of accidents in certain geographical 

areas,  

b) the low quality of data due to their incorrect 

recording by competent government agencies,  

c) the limitations of the applied methods to 

determine the black spots (e.g. GIS and statistical 

analyses), when it comes to the accuracy and 

completeness of the information provided, and  

d) the road environment which, being dynamic, is 

constantly changing. 

 

In general, improving road safety by eliminating 

or improving road network black spots involves the 

following three stages:  

i. detection of black spots (known as dangerous or 

accident-prone locations),  

ii. diagnosis of the factors that make the identified 

sites hazardous, and  

iii. addressing the identified problems by 

establishing and implementing effective 

countermeasures. 

 

 

2 Definition of a Black Spot and 

Identification Criteria  
The black spots of road traffic accidents, also 

known as "blackspots", are spots on the road 

network where the frequency and consequences of 

road traffic accidents are significant for a certain 

period of time, [18]. So far, there is no globally 

accepted definition of a black spot. In the 

international literature, they are also called 

"hotspots", "accident-prone locations", "sites with 

promise", and "hazardous road locations". The most 

common assumption for identifying a blackspot is 

the environmental or road geometry issues that 

result in repeated accidents. 

Officially, the criteria used and the methods 

applied to determine black spots vary from country 

to country. A summary can be found in Table 2, 

[19]. 

The conventional method used to identify black 

spots on road networks is based on fixed lengths of 

road segments, where the total length is divided into 

road segments of 300, 500, and 1,000 meters. The 

number of accidents that take place on every road 

section is then calculated and compared to the black 

spot criteria. However, the method is not precise, 

because the segment length is stable where 

accidents in each segment may not be related to 

each other. In addition, the method tends to 

overlook hazardous locations in which the section 

lengths must be large enough to cover all continuous 

accidents that may be related to each other. 

 

 

3 Black Spots Identification Derived 

from Primary Data Sources 
The Road Traffic Accident Reports (DOTA) are 

forms filled out by the Hellenic Police personnel 
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after an autopsy on the accident scene. Copies of the 

DOTA are sent to the Hellenic Statistical Authority 

(ELSTAT), where they are coded and registered in a 

database. Based on the above, DOTAs are the 

primary data sources of road traffic accidents. 

 

Table 2. Summary presentation of criteria and 

methods for the identification of black spots 

Country Methodology 

Sliding 

window  

(meters) 

Threshold 

(accidents 

number) 

Severity 

included 

Time 

period 

(years) 

Denmark Poisson 
Variable 

length 
4 No 5 

Croatia 
Segment 

ranking 
300 12 Yes 3 

Switzerland 
Weighted 

method 
100 3 Yes 3 

Hungary 
Accident 

Indexing 

100 

(spot)/ 

1,000 

(segment) 

4 No 3 

Switzerland 
Accident 

indexing 

100 

(spot)/ 

500 

(segment) 

Statistical 

and 

critical 

values 

Yes, 

with 

different 

critical 

values 

2 

Austria 
Accident 

Rate 
250 3 Yes 3 

Germany 
Weighted 

indexing 

Traffic 

accident 

maps 

4 No 5 

Portugal 
Weighted 

method 
200 5 Yes 5 

Norway 

Poisson, 

statistical 

testing 

100 

(spot)/ 

1,000 

(segment) 

4 (spot), 

10 

(segment) 

Accident 

cost 
5 

Scotland 
Accident 

frequency 
200 3 No 3 

Greece 
Absolute 

count 
1,000 2 No N/A 

 

For the purposes of this research, the collection 

of data on road traffic accidents that resulted in 

either the injury or the death of some of the persons 

involved and that took place on the national and 

provincial road network of Northern Greece 

(Nomenclature of Territorial Units for Statistics 

(NUTS) EL51, EL52, and EL53, according to 

Eurostat, Fig. 1) from 2014 to 2018 was required. 

The data came from portals available to the public, 

from government agencies, as well as from 

ELSTAT following a request for anonymized data. 

To further anonymize the data and eliminate any 

possibility of personalizing a road traffic accident, 

i.e., the possibility of a connection between a traffic 

accident and the people involved in it, we 

normalized the quantitative variables and 

categorized the qualitative ones. The creation of 

categories in the case of the "age" variable 

contributed in the same direction, as well as the 

creation of new variables (day/night) from the 

existing ones (time).  

For each road traffic accident, the following data 

were used: 

i. Accident location (kilometer point). 

ii. Data concerning the incident and road 

environment (month, S/N, week of the year, 

dead, seriously injured, lightly injured, total 

injured, number of vehicles involved in the 

accident, type of road surface, atmospheric 

conditions, road surface conditions, marking of 

directions in road centerline, lane marking, with 

side safety guard left, with side safety guard 

right, road width (including the berm), 

narrowness, turn sequence, road gradient, 

straightness, right turn, left turn, boundary line 

marking left, boundary line marking right, 

accident severity, first collision accident type). 

iii. Details of the drivers involved (gender of 

victims, age of victims). 

iv. Details of the vehicles involved (type of vehicle, 

age of vehicle, mechanical inspection of vehicle). 

 

 
Fig. 1: The study area of Northern Greece (NUTS 

EL51, EL52, and EL53) (modified by the authors) 

 

As illustrated in Table 3, 1,811 from a total of 

13,426 accidents were analyzed, after removing the 

cases involving road traffic accidents that took place 

on highways, municipal, community, or other roads, 

level crossings, road sections with a central median 

strip, or a safety bar. In these cases, the incomplete 
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data with the impossibility of assumptions were 

removed, as well as the unclear data such as street 

code with 9999 (unknown) and mileage with 999.9 

(unknown). The specific removals were made to 

ensure that the positions examined each time show 

uniformity in terms of traffic data, and the 

geometric and functional characteristics of the road 

that differ along the road axes. 

 

Table 3. Traffic accidents and black spots  

by Regional Unit of Northern Greece 

Regional  

unit 

Traffic 

accidents 

(initial 

records) 

Traffic 

accidents 

(final 

records) 

Black 

spots 

Rhodopi (EL 513) 390 108 11 

Evros (EL 511) 435 120 11 

Serres (EL 526) 379 150 12 

Pella (EL 524) 275 99 8 

Thessaloniki (EL 522) 8,852 369 32 

Grevena (EL 531, south) 51 24 1 

Kozani (EL 531, north) 220 65 4 

Pieria (EL 525) 184 46 1 

Kavala (EL 515, mainland) 513 124 4 

Drama (EL 514) 359 33 4 

Imathia (EL 521) 312 69 4 

Chalkidiki (EL 527) 557 272 21 

Florina (EL 533) 37 12 1 

Xanthi (EL 512) 346 103 13 

Kilkis (EL 523) 306 127 9 

Thasos (EL 515, inland) 115 54 5 

Kastoria (EL 532) 95 36 1 

Total 13,426 1,811 142 

 

In our case, the kilometer point where at least 

two road traffic accidents took place during the 

period in question was characterized as black spots. 

Given that in Greece, there are no specific criteria 

for classifying a spot of the road network as black, 

the threshold used by ELSTAT was adopted as the 

threshold for the above classification, which is 

nothing more than at least two accidents. By using 

the four classic methods of determining black spots 

(Poisson random distribution method, Quality 

control method, Accident frequency method, 

Severity index method) we confirmed, at a 90% 

significance level, the black spot characterization, as 

defined by the ELSTAT (two accidents at the same 

kilometer point).  

The data provided by ELSTAT cannot be 

processed as such, in terms of statistical analysis 

methods. For this reason, preliminary work was 

performed to reflect the specific elements in an 

appropriate format. Thus, 35 variables were created 

with a predefined range of values, to reflect, as 

appropriate, the various ELSTAT data through 

categorical and quantitative variables. Table 4 

presents the variables after said pre-processing. 

During the pre-processing of data, several 

problems related to the DOTAs content were 

identified. These include: 

i. Discrepancies in the accuracy of the location of 

the accident. The specific discrepancies may be 

caused by non-updated road mileage, a lack of 

mileage markers, an undefined mileage starting 

point, or other factors that do not allow the exact 

location of the incident to be determined. 

ii. Errors in data entry. 

iii. Incorrect processing of raw data. 

iv. Incomplete data. 

 

Such problems were addressed through the 

complete removal of records, in consultation with 

the relevant Authorities for verification, as well as 

making cases. The latter was performed without 

excluding data, an action that would have led to 

fewer data available for processing, thus making 

their further analysis impossible. The on-site 

investigation was not chosen due to the objective 

difficulty of going to all the places where the road 

traffic accidents in question took place. 

 

Table 4. The variables resulting from the  

pre-processing of ELSTAT data 

Roadway type Year 

Traffic load Lane divider 

Daylight Driver’s age 

Month Road width 

Week of year Road narrowness 

Day of week Lane direction sign 

Time Sequential turns 

Serious injured Road gradient 

Deceased Straightness 

Minor injured Right turn 

Totally injured Left turn 

Weekday Right barrier 

Atmospheric conditions Left edge line 

Roadside environment  Right edge line 

Road surface conditions Accident severity 

Vehicle type Vehicle age 

Mechanical inspection  Driver’s gender 

Number of vehicles involved in the traffic accident 

 

 

4 Model Creation 
 

4.1 Logistic Regression  
The main pattern of the binary logistic regression 

model has the following form, [20]: 
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z

z z

e 1
=

1 e 1 e
f(z)

 
  (1) 

where the input variable z represents the action of a 

set of independent variables, and f(z) determines the 

probability of a certain result occurring due to the 

above action. The variable z is defined as follows: 

 

 0 1 1 2 2 i i...z b b x b x b x         (2) 

 

where β0 is the constant term (slope) of the 

regression line, and βi are the regression 

coefficients, expressing the magnitude of 

contribution to the model of the corresponding 

variable. A negative value of βi indicates that the 

independent variable reduces the probability of an 

event occurring, while a positive value of the 

explanatory variable indicates an increase in the 

above probability. A low value of the regression 

coefficient indicates a small effect of the 

independent variable on the probability of an event 

occurring or not, while a high value indicates a 

strong effect on the predicted probability. 

 

4.2 Κ-nearest Neighbors 
The most basic method of finding records that 

belong to the same class based on distance is the K-

nearest neighbors’ algorithm. In this algorithm, we 

assume that all instances correspond to spots in the 

n-dimensional space Rn. The nearest neighbors of an 

instance are defined by the Euclidean distance. 

More specifically, let’s say that an instance x which 

is described by the feature vector ((a1(x), (a2(x), …, 

(an(x)) where ar (x) defines the value of the r-th 

feature of instance x. The distance between two 

instances xi and xj is equal to [21]: 

 

 
n

2
i j r i r j

r 1

a (x ) a (x )d(x ,x )


  (3) 

 

For the case of discrete values of form f:Rn→V, 

where V is the finite set {u1, u2…, us}, the algorithm 

approximates a discrete-valued “target” f with the 

estimate f̂, which is the most common for instances f 

and k of the training set closest to x. The algorithm 

can be divided into two parts: 

 training: saving of each training instance (x, f(x)) 

in the training list, 

 sorting: to sort a random xq instance, we have: 

 

  
k

q i
u V i 1

δ u,f (x )f̂(x ) argmax
 

   (4) 

 

where xi, …, xk indicate the shortest k distances at xq 

from instances in the training list, and d(a, b)=1 

when a=b, otherwise δ=0. If we choose k=1, the 

algorithm inserts in f̂(xq) the value f(xi) where xi is 

the closest training instance at xq. For larger k 

values, the algorithm inserts the most common value 

among the closest k instances of the training list.  

 

4.3 The Gaussian Process 
The Gaussian Process (GP) is a non-parametric 

Bayesian method used in machine learning to 

perform regression and classification. A GP 

represents a potentially infinite set of random 

variables ordered in space or time each finite subset 

of which jointly follows a Gaussian distribution. If 

we consider a function as an infinite set of spots in 

space, then we must say that a Gaussian Process is a 

distribution of functions over space.  

A GP is uniquely described by a mean value 

function m(x) and a covariance (or kernel) function 

k (x, x′). The choice of kernel determines the 

smoothness of the function. The best-known kernel 

functions are RBF and Matérn kernel. We consider 

that we have a data set (xi, yi) consisting of N 

observations and assume that each observation yi is 

derived from a function f(x) with the addition of 

some Gaussian noise, i.e., yi =f(xi) + Ei, with Ei∼ N 

(0, σ2).  

A GP can be used as the prior distribution and 

can be combined with our data to give us the 

posterior distribution of the function. Thanks to the 

posterior distribution we can predict the value of the 

function f at new x∗.  

The main disadvantage of the Gaussian Process 

Regression is its cubic complexity. To solve this 

problem, many different approximate methods have 

been generally developed. For the purposes of our 

analysis, we will focus on such an approximate 

approach. 

 

4.4  Extra Trees Classifier 
Extremely Randomized Trees Classifier (Extra 

Trees classifier) is a type of ensemble learning 

technique that aggregates the results of multiple de-

correlated decision trees collected in a “forest” to 

output its classification result. In concept, it is very 

similar to a Random Forest classifier and only 

differs from it in the manner of construction of the 

decision trees in the forest. 

Each Decision Tree in the Extra Trees Forest is 

constructed from the original training sample. Then, 

at each test node, each tree is providing a random 

sample of k features from the feature set from which 

each decision tree must select the best feature to 

split the data based on some mathematical criteria 
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(typically the Gini Index). This random sample of 

features leads to the creation of multiple de-

correlated decision trees. 

To perform feature selection using the above 

forest structure, during the construction of the 

forest, for each feature, the normalized total 

reduction in the mathematical criteria used in the 

decision of feature of split (Gini Index if the Gini 

Index is used in the construction of the forest) is 

computed. This value is called the Gini Importance 

of the feature. To perform feature selection, each 

feature is ordered in descending order according to 

the Gini Importance of each feature and the user 

selects the top k features according to his/her 

choice. 

 

4.5 Multilayered Perceptron (MLP) 
It is a neural network where the mapping between 

inputs and output is non-linear. A Multilayer 

Perceptron has input and output layers and one or 

more hidden layers with many neurons stacked 

together. While in the Perceptron the neuron must 

have an activation function that imposes a threshold, 

like ReLU or sigmoid, neurons in a Multilayer 

Perceptron can use any arbitrary activation function.  

Multilayer Perceptron falls under the category of 

feed-forward algorithms because inputs are 

combined with the initial weights in a weighted sum 

and subjected to the activation function, just like in 

the Perceptron. However, the difference is that each 

linear combination is propagated to the next layer. 

Each layer is feeding the next one with the result of 

their computation, their internal representation of 

the data. This goes all the way through the hidden 

layers to the output layer. 

 

 

5 Prediction of Black Spots Through 

Pattern Recognition and Deep 

Learning Architectures  
According to the literature, the phenomenon of 

black spots is complex and cannot be clearly 

defined. Usually, a black spot results from the 

accumulation of accidents in a “spot” over time. 

Identifying black spots is an effective strategy to 

reduce accidents. The core methods that can be used 

while identifying the black spots of a road network 

are the sorting, grouping, and accident prediction 

methods, [22]. However, in practice, it is easy to 

overlook certain factors that significantly contribute 

to the definition and characterization of a road 

network spot as black. Therefore, proposals to carry 

out projects required to reduce security risks shall 

not be based on the aforementioned methods. In 

addition, current research on road safety shows that 

applied statistical modeling fails when dealing with 

complex and highly non-linear data, [23], which 

could suggest that the relationship between 

influencing factors and outcomes of road traffic 

accidents is more complex and cannot be simply 

identified with the help of a single statistical 

approach. Most statistical methods are based on 

several strong assumptions, such as a priori 

determination and error distribution. In addition, a 

problematic issue is multi-co-linearity, namely a 

high degree of correlation between two or more 

independent variables. Furthermore, statistical 

models struggle when dealing with outliers, and 

missing or noisy data, [24]. 

The aforementioned weaknesses and limitations 

are covered and addressed by machine learning 

algorithms. These include Artificial Neural 

Networks (ANN), as well as deep learning models 

that have been applied to various traffic safety 

problems and have been used as data analysis 

methods due to their ability to work with huge 

amounts of multi-dimensional data. Due to its 

modeling flexibility, learning and generalization 

ability, as well as good predictive ability, machine 

learning has been considered a set of convenient and 

accurate mathematical models in the field of road 

safety. 

In this study, it is attempted to analyze the 

spatiotemporal phenomenon called a road traffic 

accident, to predict black spots without the 

accumulation of accidents or over time using pattern 

recognition and deep learning methods learning. 

Initially, four well-known machine learning 

methods were tested on the vectors resulting from 

the DOTA pre-processing, namely Nearest 

Neighbors, Gaussian Process, Extremely 

Randomized Trees, and Multilayer Perceptron 

Neural Network. 

The results widely varied, thanks to the ability of 

each algorithm to find correlations and patterns in 

the data. Among these algorithms, some tend to 

perform better on linear data while others on data 

with non-linear correlations. Nevertheless, the main 

problem identified is that, in general, most methods 

cannot perform operations on categorical variables. 

The input vectors resulting from the DOTA pre-

processing in many cases contain categorical 

variables with value fields, which are numeric but 

have no placement in the Euclidean space. For 

example, the variable 'road surface conditions' has a 

range of values [1 (Normal), 2 (Wet-wet), 3 (Slick, 

oils), 4 (Icy), 5 (Snowy), 6 (Other)]. This is 

problematic for methods that use vector distances to 

function, since there is no distance between the 
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"Wet-Wet" and "Other" values, while there are 

between 2 and 6. Thus, the distance between vectors 

is false and therefore algorithms that implemented 

such operations are not reliable. 

This has led to the development of a method that 

represents vectors in a non-linear latent space, but 

has the meaning of properties in the projected space, 

even if it is not linear. This implies that 

transformation can be used by the above algorithms 

without questioning the correctness of their 

application and the results. Figure 2 illustrates the 

proposed method of this study in discrete steps. 

 

 
Fig. 2: Proposed methodology steps 

 

The framework of self-supervised learning of 

autoencoders was used in order to represent vectors 

that have arisen during pre-processing of data from 

the primary DOTA source in a space that is 

appropriate for training pattern recognition and 

machine learning classifiers.  

Autoencoders are closely related to the Principal 

Component Analysis (PCA) method. If the 

activation function used in the autoencoder is linear 

at each level, the hidden variables that are present at 

the bottleneck (the smallest level in the network) 

directly correspond to the principal components 

from the PCA. Generally, the activation function 

used in autoencoders is non-linear typical activation 

functions are ReLU (Corrected Linear Unit) and 

sigmoid. 

The mathematics behind these networks is fairly 

self-explanatory and is presented briefly below. The 

main idea is that the network is divided into two 

parts: the encoder and the decoder. The encoder 

function, denoted by ϕ, maps the original data X 

into a hidden space F that exists at the bottleneck. 

The decoder function, denoted by ψ, maps the 

hidden space F to the output bottleneck. The output, 

in this case, is the same as the input function. Thus, 

the original input is regenerated after some 

generalized non-linear compression, [25]: 

 

 

 2

φ,ψ

ψ

φ,ψ arg min Χ (ψ φ)Χ

φ:Χ F

:F X

 



  (5) 

 

The encoding network can be represented by the 

standard neural network function passed through an 

activation function, where z is the hidden 

dimension: 

 

 z = σ(Wx +b)  (6) 

Similarly, the decoding network can be 

represented in the same way, but with different 

weights, biases, and possible activation functions 

used: 

 

 x = σ (W z +b )     (7) 

 

The error function can then be written in terms of 

these network functions. This is the loss function we 

will use in order to train the neural network through 

the standard backpropagation process, [25]:  

 
22

x x =L(x,x ) = x σ (W (σ(Wx b)) b       (8) 

 

Since the input and output are the same vectors, 

it is not really supervised or unsupervised learning, 

therefore we usually call it self-supervised learning. 

The goal of the autoencoder is to choose our 

encoder and decoder functions in such a way that 

we need the minimum information to encode the 

input vector so that it is reproduced on the other 

side. 

 

 

6 Results 
Having a two-valued categorical variable as a 

dependent variable, to analyze its relationship with a 

set of independent variables, a binary logistic 

regression was qualified. This was performed using 

the statistical program IBM SPSS 25. Since logistic 

regression tends to violate the principle of co-

linearity, a check was conducted at first by applying 

linear regression analysis. From the latter, co-

linearity emerged between several variables. For 

this reason, an analysis of the core components was 

conducted, proving that the above variables are not 

capable of creating reliable factors. The final 

analysis resulted in the exclusion from the five-

variable model. Then, because of the need to create 

a parsimonious and optimal model that will include 

the statistically significant variables, a binary 

DOTA pre-processing 
and export of X vectors

Autoencoders’ training

Extraction of hidden 
space F vectors

Classifiers’ training with 
hidden space vectors 
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logistic regression was performed using the 

Backward LR (likelihood ratio) method. 

The machine learning models and the 

corresponding experiments were carried out on a 

common platform, using Keras and Python in the 

context of deep learning. 

To compare the performance of binary logistic 

regression with that of machine learning algorithms, 

three metrics were computed for the evaluation of 

models such as Accuracy, Recall, and F1 Score, 

[26].  

Accuracy is an efficiency metric that calculates 

the fraction of total correct forecasted values 

divided by the total number of test examples 

(dataset): 

 

 Accuracy
TP TN

(TP FP) (TN FN)
=



  
 (9) 

 

where: 

TP: the number of values correctly predicted as 

positive (true positive), 

TN: the number of values correctly predicted as 

negative (true negative) 

FP: the number of values wrongly predicted as 

positive (false positive), 

FN: the number of values wrongly predicted as 

negative (false negative), 

 

Recall or Sensitivity measures how many of the 

positive values of the dataset were correctly 

identified by the model: 

 

 Recall
TP

TP FN
=


 (10) 

 

Precision is a measure of how many of the 

positively predicted values are actually positive and 

is determined as: 

 

 Precision
TP

TP FP
=


 (11) 

 

Finally, F1 Score is the harmonic mean of 

precision and recall and calculates how much a 

model perfectly classifies every value of the dataset 

in the right category: 

 

 F1 Score
Recall Precision

Recall Precision
= 2




  (12) 

 

Table 5 summarizes the results of binary 

regression, as well as those obtained after training 

well-known machine learning algorithms using the 

vectors extracted by the autoencoder. The encoding 

of the input vectors resulted in: 1) the improvement 

of the accuracy of all algorithms except MLP, which 

drops from 79.61% to 28.65%, 2) the worsening of 

the Recall measure for all algorithms with the 

exception of MLP which rises from 10.67% to 

91.93%, and 3) the improvement of the F1 Score 

measure for all algorithms. Especially, we remark 

that the logistic regression presents a better accuracy 

compared to the other machine learning algorithms, 

as opposed to the other indicators. The very low 

values of Recall and F1 Score for logistic regression 

show that the results of this particular model are not 

qualitative. On the other hand, although machine 

learning algorithms show slightly lower accuracy 

values compared to logistic regression, they excel 

by far in the rest of the model quality evaluation 

measures. In addition, it seems that decision-making 

algorithms that operate in non-linear spaces, such as 

Perceptron-type neural networks and decision-

making trees, perform better than those that search 

for linear correlations in the data. That is to be 

expected because at the same time, the factors vary 

and it is complicated to ascertain the degree of 

participation of the variables that lead to the 

definition of an accident spot as a black spot. 

Nevertheless, with 81.26% success (Xtra Trees) it is 

possible to predict if a spot under certain conditions 

can be characterized as a black spot, without the 

accumulation of accidents over time. 

 

Table 5. Comparative performance between binary 

logistic regression and machine learning algorithms 
 

Methodology Accuracy Recall 
F1 

Score 

O
ri

g
in

a
l 

 

d
a

ta
se

t 

Nearest neighbors 68.31% 27.74% 16.05% 

Gaussian process 69.14% 17.74% 16.41% 

Xtra Trees 77.96% 29.03% 31.03% 

Multilayered 

Perceptron (MLP) 
79.61% 10.67% 13.96% 

Binary logistic 

regression  
82.90% 2.20% 4.25% 

O
n

e-
h

o
t 

en
co

d
ed

 

d
a

ta
se

t 

Nearest neighbors 71.62% 16.12% 16.26% 

Gaussian process 79.33% 17.75% 19.54% 

Xtra Trees 81.26% 25.81% 32.32% 

Multilayered 

Perceptron (MLP) 
28.65% 91.93% 30.56% 

Binary logistic 

regression  
82.90% 2.20% 4.25% 

 

 

7 Conclusions 
In conclusion, the identification of the black spots in 

the road network is decisive for the reduction of 

traffic accidents and, thus, the promotion of road 

safety. The thorough study of the spatiotemporal 
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phenomenon called road traffic accidents requires 

the collection of a large number of reliable data, as 

well as advanced analysis methods. This paper 

collected data related to road traffic accidents that 

took place on the provincial and national road 

network of Northern Greece from 2014 to 2018. 

This data, after being organized, cleaned, and 

anonymized, formed a database of factors that can 

lead to road traffic accidents and involve the 

characteristics of the driver, the vehicle, and the 

road environment. To solve the binary class 

problem, the study ended up proposing a four-step 

approach:  

i. encoding of each variable,  

ii. training an autoencoder,  

iii. extracting hidden space vectors, and  

iv. training and using a classifier.  

 

The process of identifying the black spots of a 

road network is a difficult, complex, and demanding 

task, in terms of improving methodologies and 

continuous research. Nonetheless, the study 

overcomes difficulties related to the identification of 

black spots, such as the impossibility of evaluating 

the individual factors that contribute to causing road 

traffic accidents and the limited and at the same 

time poor quality data on road traffic accidents.  

In conclusion, the study offers a database 

accessible to the public for further research, as well 

as a reliable method for the identification of black 

spots, but with room for improvement through the 

application of data enrichment techniques with 

virtual samples. 
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