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Abstract: - This article presents a study that explores forecasting methods for multivariate time series data, 
which was collected from sensors monitoring CO2, temperature, and humidity. The article covers the 
preprocessing stages, such as dealing with missing values, data normalization, and organizing the time-series 
data into a suitable format for the model. This study aimed to evaluate Long Short-Term Memory (LSTM) 
networks, Convolutional Neural Networks (CNNs), Vector Autoregressive (VAR) models, Artificial Neural 
Networks (ANNs), and Random Forest performance in terms of forecasting different environmental dataset 
parameters. After implementing and testing fifteen different sensor forecast model combinations, it was 
concluded that the Long Short-Term Memory and Vector Autoregression models produced the most accurate 
results. The highest accuracy for all models was achieved when forecasting temperature data with CO2 and 
humidity as inputs. The least accurate models forecasted CO2 levels based on temperature and humidity. 
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1 Introduction 
Various environments, such as medical facilities or 
agricultural settings, necessitate monitoring, 
typically accomplished using different sensor 
devices, [16]. However, deploying these sensor 
devices in each environment is often impractical. In 
situations where only a limited number of sensor 
devices are available, machine learning-based 
models can be employed to estimate other sensor 
values with a certain level of accuracy, thereby 
potentially serving as substitutes for physical 
devices. 

This article explores a range of sensor 
forecasting techniques, explicitly addressing the 
assessment of multivariate time series forecast 
methods in environmental sensing. In this analysis, 
the forecasting capabilities were evaluated by 
comparing forecasted sensor values to actual sensor 
readings to measure the accuracy of the data 
forecasts. The method of developing forecasting 
models was used to forecast one of the three dataset 
parameters. This method was used not only to 
experimentally determine which of the chosen 
models had the highest accuracy but also to 
determine which parameter or sensor has the 
potential to be substituted with a forecast from 
sensor data trained machine learning model. 

The dataset that was used for training the models 
contains 20560 entries that were gathered from CO2 

(ppm), Temperature (°C), and Humidity (%RH) 
sensors for one month, [1]. The results of the model 
experiments and data processing are discussed in 
this article.  

Long Short-Term Memory (LSTM) networks, 
along with Convolutional Neural Networks (CNNs), 
Vector Autoregressive (VAR) model forecast, 
Artificial Neural Networks (ANN), and Random 
Forest, were used to test the forecast accuracy. To 
use the data, the following preprocessing steps of 
raw sensor data were included: 

 Measures to address missing values. 
 Ensuring temperature, humidity, and CO2 

readings were normalized. 
 Presenting time-series data in the correct 

model format. 
An initial model structure utilized CNN, 

incorporating a single convolutional layer and an 
assortment of pooled and fully established layers. 
Using 1D convolutions, the CNN model was 
effective in detecting localized patterns in the input 
data, while the pooling layers worked to decrease 
spatial proportions and computational complexity. 
Patterns were learned by utilizing post-
convolutional and fully connected layers with ReLU 
activation, facilitating the introduction of 
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nonlinearity. The sensor measurements' mean 
squared error was predicted and compared for the 
CNN and LSTM. 

The initial steps to prepare the VAR model 
included handling missing values and assessing 
stationarity. Determining the optimal lag order, 
which dictates how many previous time steps should 
be factored into predictions, was accomplished via 
the Akaike Information Criterion (AIC). After 
monitoring residuals, any signs of non-stationarity 
were handled by implementing diverse 
transformations or differencing techniques.  
 
 

2 Sensor Data Forecasting Methods 
Nowadays, there exist many sensor data forecasting 
methods. Some standard forecasting methods are: 

1. Linear regression; 
2. Random Forest; 
3. Artificial Neural Networks; 
4. Support Vector Machines; 
5. Hybrid approach. 

 
2.1 Linear Regression 
Linear regression is a widely adopted statistical 
method for predicting sensor data, relying on 
assuming a linear relationship between input and 
output variables, [2]. This method involves 
constructing a linear regression model by fitting a 
linear equation to the input data, which can be used 
to forecast the output variable, [3]. The model has 
the form: 
 

y = β0 + β1x1 + β2x2 + ... + βnxn + ε, 
 

where y is the dependent variable, x1, x2, ..., xn are 
independent variables, β0, β1, β2, ..., βn are the 
model coefficients, and ε represents the error term. 
The objective of linear regression is to determine the 
optimal values of the coefficients that minimize the 
sum of the squared errors between the predicted and 
actual values in the training data, [2]. This process is 
accomplished through the least squares method, 
which seeks to obtain the values of the coefficients 
that minimize the sum of squared differences 
between the predicted and actual values, [2]. 

Once the model has been trained, it can be 
utilized to make predictions on new data by 
inserting the values of the independent variables 
into the equation and calculating the corresponding 
value of the dependent variable, [3]. However, when 
using linear regression for predicting sensor data, it 
is crucial to consider the presence of outliers or 
nonlinear relationships between the input and output 

variables. More complex models, such as random 
forests or neural networks, may be more 
appropriate, [4]. Additionally, the data should be 
preprocessed to handle missing values, scale the 
features appropriately, and handle any categorical 
variables using techniques such as one-hot 
encoding, [5]. 

 
2.1.1 Methodology for Implementing 
Linear regression can be an efficient tool for 
analyzing data sets. The following methodology 
outlines how to implement it effectively.  

Firstly, the dependent and independent variables 
must be identified. This will allow us to determine 
the correlation between them. Next, the most 
suitable regression model is chosen to align with the 
data. This will often depend on the relationship 
between the variables being analyzed. It is important 
to note that the data must be clean and outlier-free, 
[6].  

Once the appropriate regression model has been 
identified, the regression equation coefficients can 
be estimated. This can be done through manual 
calculations or software such as Excel or R, [7]. 
After this, it is vital to check the accuracy of the 
regression equation. A useful metric for doing so is 
the R-squared value. This will give insight into how 
much of the variation in the dependent variable is 
explained by the independent variable, [2]. It is also 
useful to check for autocorrelation and 
heteroscedasticity, [5]. Finally, the model is tested 
using the data collected. This will show how well 
the model fits the dataset, [8]. 

To begin linear regression, one must first 
pinpoint the independent variables (alternatively 
referred to as predictors or features) that hold 
significance in predicting the dependent variable 
(alternatively referred to as the response variable or 
target variable) based on the gathered environmental 
sensor data, [2]. Following this, the next move is to 
instruct the linear regression model with a data set, 
optimizing its algorithm to triangulate the 
coefficients that will best diminish the contrast 
between the predicted and factual values. To 
conclude, for the near-final stage, a separate test set 
of data is applied to determine the model's level of 
precision and accuracy in correctly forecasting the 
dependent variable, [9]. 
 
2.1.2 Performance of the Algorithm in Terms of 
Accuracy and Precision 
In terms of accuracy and precision, the algorithm's 
performance is noteworthy. To appraise the linear 
regression algorithm's effectiveness, one can employ 
a range of measurements, such as mean absolute 
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error (MAE), mean squared error (MSE), and R-
squared (R²) coefficient, [2]. The MAE and MSE 
determine the mean disparity between calculated 
and actual values, whereas the R² coefficient 
determines the amount of independent variable 
variation that accounts for the dependent variable. 
The linear regression algorithm's precision and 
accuracy are hinged on the sufficiency and caliber 
of the environmental sensor data, coupled with the 
relevance of the independent variables adopted for 
the model, [7]. 
 
2.1.3 Limitations and Challenges 
There exist some challenges and limitations to 
consider in this matter. In predicting environmental 
sensor data, linear regression is commonly utilized, 
yet various issues and constraints accompany it, [2]. 
Real-world environmental sensing applications may 
not always present a linear correlation between 
independent and dependent variables, which is an 
understandable limitation. Furthermore, it may not 
be competent in detecting intricate, nonlinear 
relationships within variables. Therefore, more 
advanced techniques, such as decision trees or 
neural networks, must be implemented, [3]. Lastly, 
the model's effectiveness is strongly influenced by 
the precision and soundness of the environmental 
sensor data used during the training process, [8]. 
 
2.2 Random Forest 
Random Forest is a machine learning model that has 
gained popularity in predicting sensor data, [4]. An 
ensemble learning method combines multiple 
decision trees to make forecasts. Each decision tree 
is trained on a random subset of the input features 
and a random subset of the training data, and the 
final prediction is made by averaging the predictions 
of all the trees. Random Forest is particularly useful 
for handling complex interactions between input 
variables and can handle both continuous and 
categorical input variables and can be used for both 
regression and classification problems, [6]. 

To use Random Forest for sensor data 
forecasting, the data is first collected and 
preprocessed, which may include cleaning, 
normalization, and feature engineering, [3]. Then, 
the sensor data is divided into training and testing 
sets. The Random Forest model is trained on the 
training set using the input features and output 
variables, [5]. The model's performance is evaluated 
using the testing set, and metrics such as mean 
squared error (MSE) and R-squared are calculated, 
[4]. The model can be optimized by tuning the 
hyperparameters, such as the number of trees in the 

forest, the maximum depth of the trees, and the size 
of the random subsets, [3]. 

Random Forest has several advantages for 
predicting sensor data, including high accuracy, 
robustness, and the ability to provide information on 
the importance of each input feature, [10]. This 
information can help understand the underlying 
patterns in the data, [7]. It is important to note that 
Random Forest may not be suitable for all cases, 
and the presence of outliers or nonlinear 
relationships may require more complex models, 
such as neural networks or support vector machines, 
[11]. Additionally, data preprocessing techniques, 
such as handling missing values, scaling features 
appropriately, and one-hot encoding categorical 
variables, should be applied to improve the model's 
performance, [2]. 

 
2.2.1 Methodology for Implementing 
Random Forest provides superior results by 
improving prediction precision and consistency 
using multiple decision trees in an ensemble 
learning algorithm, [4]. This environmental sensor 
data prediction tactic yields quantifiable gains in 
accurately forecasting air or water quality based on 
sensor outputs, [12]. 

To put the Random Forest model into practice, 
one must start by choosing the appropriate 
independent and dependent variables according to 
the data given by the environmental sensor, [4]. 
Next, the training phase of the model begins by 
taking a subset of the features and data points and 
using them to set up multiple decision trees, [4]. The 
impurity of these trees is evaluated to optimize the 
selection of thresholds and features used to split the 
data. The model is estimated using a different 
testing set to analyze and measure its precision and 
accuracy in predicting the dependent variable. 

 
2.2.2 Performance of the Algorithm in Terms of 
Accuracy and Precision 
Depending on the data being used, there are 
different ways to evaluate the Random Forest 
algorithm. Three standard metrics include the mean 
absolute error (MAE), mean squared error (MSE), 
and R-squared (R²) coefficient, [4]. For this 
algorithm to be effective, it relies on accurate and 
plentiful data that can be measured by 
environmental sensors, [3]. Additionally, the choice 
of independent variables partially influences the 
model's success. If there are nonlinear correlations 
between the independent and dependent variables, 
Random Forest tends to be a better choice than 
linear regression, [4]. 
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2.2.3 Limitations and Challenges 
Several limitations and challenges exist for the 
Random Forest machine learning algorithm. One of 
these challenges is the potential for overfitting the 
training data resulting in poor generalization 
performance on the test data. It can also be 
computationally expensive when there is a 
significant number of features or data points, 
leading to limited scalability in some applications, 
[9]. Lastly, environmental sensor data quality and 
accuracy significantly affect the algorithm's 
performance, [6]. 
 
2.3 Artificial Neural Networks 
Artificial Neural Networks (ANNs) are a popular 
machine learning technique for predicting sensor 
data inspired by the structure and function of the 
human brain. ANNs consist of interconnected 
nodes, or neurons, arranged in layers, which process 
information and make predictions. ANNs are 
particularly useful for handling complex and 
nonlinear relationships between input and output 
variables and can handle continuous and categorical 
input variables. 

The steps for using ANNs to predict sensor data 
are as follows: 

 Data preparation: This involves collecting 
and preprocessing the sensor data, including 
cleaning, normalization, and feature 
engineering. 

 Splitting the data: The sensor data is divided 
into training and testing sets. 

 Model training: The ANN model is trained 
on the training set using backpropagation, 
which updates the weights between the 
neurons to minimize the error between the 
predicted and actual output. 

 Model evaluation: The model's performance 
is evaluated using the testing set, and metrics 
such as mean squared error (MSE) and R-
squared are calculated. 

 Model optimization: The model can be 
optimized by tuning the hyperparameters, 
such as the number of hidden layers, the 
number of neurons per layer, and the 
learning rate, [5]. 

ANNs offer several advantages for predicting 
sensor data, including their ability to model 
nonlinear relationships between input and output 
variables, their robustness to noise and missing data, 
and their adaptability to changing environments. 
Additionally, ANNs can be used for regression and 
classification problems, [7]. 

 

2.3.1 Methodology for Implementing 
ANNs find frequent use in predicting environmental 
information, such as air quality, [13], and water 
quality, [12], using sensor data. 

Selecting the relevant independent and 
dependent variables based on environmental sensor 
data is the initial step in implementing ANNs. A 
training set of data is utilized to create and train the 
ANN model, requiring adjustments to the neural 
network's weights and biases to reduce the 
discrepancy between actual and predicted values of 
the dependent variable. Utilizing backpropagation, 
the algorithm updates the weights and biases of the 
neural network in response to the error gradient 
during the training process. A distinct test set of data 
is assessed to examine the ANN model's accuracy 
and precision in anticipating the dependent variable. 

 
2.3.2 Performance of the Algorithm in Terms of 
Accuracy and Precision 
Using metrics like the R-squared (R²) coefficient 
and mean absolute error (MAE), the effectiveness of 
the ANN algorithm is assessed, [7]. The accuracy 
and precision of this algorithm are contingent on the 
quality and quantity of environmental sensor data, in 
addition to proper independent variable selection, 
[7], [12]. When there are nonlinear connections 
between independent and dependent variables, 
ANNs can outperform the Random Forest and linear 
regression algorithms, [7], [9]. Mean squared error 
(MSE) is another metric used to evaluate the 
performance of the ANN algorithm. 
 
2.3.3 Limitations and Challenges 
ANNs, while a productive machine learning 
algorithm, come with certain limitations and 
obstacles. Despite their strength, they can lead to a 
lack of generalizability when overfitted to the 
training data. They also require much training data 
and computational resources, limiting their 
applicability, [9]. Lastly, a daunting task lies in 
expertly selecting architecture and hyperparameters 
for the ANN model through experimentation, [5]. 
 
2.4 Support Vector Machines 
Support Vector Machines (SVMs) are a popular 
machine learning model for predicting sensor data, 
capable of handling regression and classification 
problems, [9]. SVMs work by identifying a 
hyperplane in the input space that separates the data 
into two classes for classification or that best fits the 
data for regression. This hyperplane is chosen to 
maximize the margin between the two classes or the 
distance between the hyperplane and the data points, 
[11]. 
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SVMs are particularly useful for handling high-
dimensional data, including continuous and 
categorical input variables. The general steps for 
using SVMs to predict sensor data involve data 
preparation, splitting the data into a training and 
testing set, model training, evaluation, and 
optimization, [3]. During model training, the SVM 
model finds the hyperplane that best separates the 
data into two classes or best fits the data. The 
model's performance is evaluated using mean 
squared error (MSE) and R-squared, [11]. 

SVMs have several advantages for predicting 
sensor data, including high accuracy due to the 
optimal hyperplane and the ability to handle linear 
and nonlinear relationships between input variables 
and output variables using different kernel 
functions, [9], [11]. Additionally, SVMs are robust 
to overfitting, which can occur when a model is too 
complex and captures noise in the data. SVMs are 
also versatile, making them popular for various 
machine learning applications, [13]. 

 
2.4.1 Methodology for Implementing 
Predictive algorithms known as Support Vector 
Machines (SVMs) have their place in classification 
and regression. Often, they are implemented in 
determining environmental factors, like air and 
water quality, concerning sensor data, [14]. 
Contrastingly, they first choose which parameters 
and environmental indicators are relevant before 
continuing by using a kernel function that raises the 
information to a higher level of complexity. The 
algorithm then proceeds by using a linear 
hyperplane to differentiate the classes. Training the 
SVM model on a data set maximizes the margin 
between the classes. Then, the SVM model’s 
accuracy and precision in predicting the dependent 
variable are evaluated using a separate test set of 
data, [15]. 
 
2.4.2 Performance of the Algorithm in Terms of 
Accuracy and Precision 
Various metrics are available to evaluate the SVM 
algorithm’s performance, including mean absolute 
error (MAE), mean squared error (MSE), and R-
squared (R²) coefficient, [9]. The performance of the 
SVM algorithm depends on the proper selection of 
the kernel function and the quality and quantity of 
environmental sensor data, [9]. When working with 
high-dimensional data or nonlinear relationships 
between dependent and independent variables, 
SVMs can outperform linear regression and 
Random Forest, [2]. 
 

2.4.3 Limitations and Challenges 
For SVMs, there are a few hindrances and obstacles 
to be aware of. One issue is that their performance 
can be affected by the selection of kernel functions 
and hyperparameters – this is something to keep in 
mind. Training and optimizing SVMs can also be 
computationally demanding and may hinder their 
scalability in certain situations. Lastly, grappling 
with interpreting the SVM model is a task because it 
relies on a multifaceted objective function, [9]. 
 
2.5 SARIMA 
 
2.5.1 Methodology for Implementing 
The order of seasonal differencing (D) and seasonal 
orders for autoregressive (p), integrated (q), and 
moving average (P and Q) components must be 
selected after identifying the seasonal pattern in the 
data when implementing SARIMA. The augmented 
Dickey-Fuller test, [6], and visual inspection are 
methods for choosing appropriate values. 

Using maximum likelihood estimation, one must 
fit the SARIMA model to the data, but before that, 
one needs to establish the values for D, p, q, P, and 
Q. The idea is to determine the model parameters 
that would optimize the likelihood of observing the 
data based on the values established, [12]. 
 
2.5.2 Performance of the Algorithm in Terms of 
Accuracy and Precision 
The accuracy and precision of the SARIMA 
algorithm are contingent upon both the quality of 
data and its intended use. A strong seasonal pattern 
with stationary data post-seasonal differencing 
provides the ideal circumstances for SARIMA to 
perform well – especially regarding seasonal time 
series data predictions. For data lacking a well-
defined seasonal pattern, SARIMA was deemed 
unsuitable according to a study of various time 
series forecasting approaches. In cases where data 
displayed a distinct monthly trend, SARIMA 
surpasses other techniques. 

 
2.5.3 Limitations and Challenges 
Challenges and limitations are present in this 
scenario, causing difficulty in achieving objectives. 
In the realm of time series forecasting, SARIMA 
comes with its fair share of challenges and 
limitations, [17]. One of its challenges involves the 
data’s stationarity, which must be achieved via 
seasonal differencing. However, this task can prove 
to be difficult, especially if the data isn’t stationary 
to begin with. 

In practice, a linear process generating the data is 
not always assumed by SARIMA, presenting 
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another challenge. It is also sensitive and may not 
function effectively when the data contains 
significant anomalies or outliers. 

Interpreting the model parameters and grasping 
the dynamics behind time series data is a 
complicated feat with SARIMA, which is a notable 
drawback. This poses a challenge when trying to 
utilize SARIMA for causal inference or to seek 
comprehension of the underlying mechanisms 
producing the data. Ultimately, SARIMA falls short 
in providing easy-to-understand explanations or 
insights. 
 
2.6 Hybrid Approach 
In machine learning, a hybrid model for predicting 
sensor data involves combining multiple models to 
enhance predictions’ accuracy or address individual 
models’ limitations. For instance, one approach for 
predicting temperature sensor data is using a hybrid 
model that combines a linear regression model and a 
random forest model. 

The sensor data is first prepared by cleaning, 
normalizing, and engineering features to create this 
hybrid model. The data is then split into training and 
testing sets, and two models are trained on the 
training set: a linear regression model that uses 
previous temperature readings to predict the next 
reading and a random forest model that incorporates 
additional features like time of day, day of the week, 
and season. 

The predicted values from both models are then 
combined using a weighted average, with weights 
determined based on each model’s performance on 
the training set. Finally, the performance of the 
hybrid model is evaluated using the testing set, with 
metrics like mean squared error and R-squared 
calculated. 

Another example of a hybrid approach for 
predicting sensor data is the combination of 
Random Forest and Artificial Neural Network 
models for predicting air quality using 
environmental sensor data, [13]. The Random Forest 
model was used to select essential features from the 
sensor data, which were then used as inputs to the 
Artificial Neural Network model for air quality 
prediction. The hybrid approach outperformed both 
individual models in terms of prediction accuracy. 

The advantages of using a hybrid model for 
sensor data prediction include the ability to capture 
both linear and nonlinear relationships between 
input and output variables, as well as the ability to 
incorporate additional features that can improve 
prediction accuracy. Moreover, combining multiple 
models can help reduce the risk of overfitting and 
improve prediction robustness. However, the 

specific hybrid model that is most appropriate will 
depend on the nature of the data and the problem 
being addressed. 

 
2.6.1 Methodology for Implementing 
To enhance the precision and accuracy of 
environmental sensor data forecasts, a hybrid 
strategy fuses numerous machine learning 
algorithms, including artificial neural networks, 
support vector machines, Random Forest, and linear 
regression. A hybrid approach selection process 
requires evaluating the specific combination of 
algorithms best suited for the type of data and 
prediction issue at hand. A widely adopted hybrid 
approach merges the strengths of Random Forest 
and linear regression for improved efficacy. To 
assess the accuracy and precision of the hybrid 
model’s prediction of the dependent variable, it 
must first undergo training with a data set and then 
evaluation through an alternative test set. 
 
2.6.2 Performance of the Algorithm in Terms of 
Accuracy and Precision 
By considering the strengths of different algorithms, 
hybrid models can achieve greater accuracy and 
precision compared to individual algorithms, which 
can be assessed through various metrics such as 
mean absolute error (MAE), mean squared error 
(MSE), and the R-squared (R²) coefficient. The 
success of the hybrid approach is primarily 
determined by the quality and quantity of the 
environmental sensor data, the relevance of the 
chosen algorithms for the hybrid model, and the 
techniques utilized to integrate the results of various 
algorithms. 

 
2.6.3 Limitations and Challenges 
Optimal algorithm combinations can be complicated 
when implementing a hybrid approach for 
forecasting. The cost of computing during hybrid 
model training and optimization can also prove 
pricier than with solo algorithms. Furthermore, 
hybrid models can intensify model complexity, thus 
rendering result interpretation and revision a bit 
trickier. 
 
 

3 Comparison of Methods 
This study compared five methods for forecasting 
sensor data: random forest, artificial neural 
networks, convolutional neural networks, and 
autoregression. Each method has its strengths and 
weaknesses, which we summarize below: 

Random forest is an ensemble method that 
combines multiple decision trees to improve 
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accuracy and reduce overfitting. It can handle 
continuous and categorical input variables and 
capture nonlinear relationships between input and 
output variables, [18]. However, training can be 
slow and requires more computational resources. 

Artificial neural networks can handle complex 
nonlinear relationships between input and output 
variables and can handle both continuous and 
categorical input variables. However, they can be 
prone to overfitting if the model is too complex and 
requires a large amount of data for training. 
Artificial neural networks can also be trained slowly 
and require more computational resources. 

Convolutional Neural Networks (CNNs) are 
highly effective for tasks involving spatial patterns 
and hierarchical features in data, such as image and 
time-series analysis. They can handle both 
continuous and categorical input variables and 
manage complex relationships between inputs and 
outputs. CNNs consist of convolutional layers that 
detect local patterns, pooling layers that reduce 
spatial dimensions, and fully connected layers that 
integrate learned features. These networks are adept 
at capturing intricate structures in data and can 
generalize well, although careful architecture design 
and hyperparameter tuning are required to optimize 
performance and prevent overfitting. 

Ultimately, the choice of method for predicting 
sensor data will depend on the nature of the data and 
the specific problem at hand. For simple problems 
with linear relationships, linear regression may be a 
good choice, while more complex issues may 
require methods like random forests or artificial 
neural networks. Therefore, this study aims to 
experiment with multiple methods and compare 
their performance to choose the best one for sensor 
data forecast. 

 
3.1 Model Configurations 
Hyperparameters for the developed models are 
chosen based on hyperparameter optimization 
techniques, including random search, [19], [20], and 
grid search, [21], [22], to identify the optimal 
parameter set which gives the highest accuracy. The 
parameters and their boundaries are described as 
follows. 
 
3.1.1 LSTM Model 
In the given example, LSTM hyperparameter 
optimization was performed using a random search 
approach with the Keras Tuner. The objective was 
to minimize the loss while searching for the best 
combination of hyperparameters. 

The hyperparameters that were optimized, and 
their respective search ranges include: 

 units_1: The number of units in the first 
LSTM layer. It was tested with values 
ranging from 30 to 100 with a step of 10. 

 units_2: The number of units in the second 
LSTM layer. It was tested with values 
ranging from 30 to 100 with a step of 10. 

 max_trials: The maximum number of 
hyperparameter combinations to try. It was 
set to 5. 

 executions_per_trial: The number of times to 
execute each trial with the same 
hyperparameters. It was set to 2. 

The LSTM model was built with two LSTM 
layers followed by a dense output layer. The model 
was compiled using the Adam optimizer and the 
mean squared error (MSE) loss function. The 
random search explored various combinations of 
hyperparameters within the specified ranges, 
evaluating the performance of each combination 
using a 20% validation split on the training data. 
 
3.1.2 VAR Model 
For VAR model implementation, the primary 
hyperparameter to optimize is the number of lags (p) 
included in the model. The selection of the optimal 
lag order can significantly impact the model's 
forecasting performance. Selecting the optimal lag 
order based on an information criterion like AIC 
(Akaike's Information Criterion), [23]. For the given 
dataset, the AIC value was identified as 15. 
 
3.1.3 CNN Model 
The CNN hyperparameter optimization was carried 
out using a grid search approach. The "Keras 
Regressor" was utilized to create a compatible 
model for a grid search. The model's parameters are 
explored within a specified range, and the optimal 
combination of these parameters is determined to 
provide the best performance, [24]. 

Here are the hyperparameters being optimized 
and their respective search ranges: 

 filters: The number of filters in the 
convolutional layer. It was tested with 16, 
32, and 64 filters. 

 kernel_size: The size of the convolutional 
kernel (window). It was tested with kernel 
sizes of 2, 3, and 4. 

 pool_size: The size of the pooling window in 
the max-pooling layer. It was tested with 
pool sizes of 1, 2, and 3. 

 dense_units: The number of units in the 
dense (fully connected) layer. It was tested 
with 30, 50, and 100 units. 
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The grid search method performed a search over 
the specified parameter ranges, evaluating the 
performance of each combination. 

 
3.1.4 ANN Model 
Artificial Neural Network (ANN) hyperparameter 
optimization was performed using a random search 
approach with the "Keras Tuner". The objective was 
to minimize the validation loss while searching for 
the best combination of hyperparameters: 

 units_input: The number of units in the input 
layer. It was tested with values ranging from 
32 to 512 with a step of 32. 

 units_hidden: The number of units in the 
hidden layer. It was tested with values 
ranging from 32 to 512 with a step of 32. 

 learning_rate: The learning rate for the 
Adam optimizer. It was tested with values of 
0.01, 0.001, and 0.0001. 

The random search was configured with the 
following settings: 

 max_trials: The maximum number of 
hyperparameter combinations to try. It was 
set to 5. 

 executions_per_trial: The number of times to 
execute each trial with the same 
hyperparameters. It was set to 3. 

The random search explored various 
combinations of hyperparameters within the 
specified ranges, evaluating the performance of each 
combination. The best combination of 
hyperparameters was selected based on the lowest 
validation loss. 

 
3.1.5 Random Forest Model 
Random forest model hyperparameter optimization 
was carried out by using a grid search approach by 
experimenting with different numbers of decision 
trees. The hyperparameters that were optimized, and 
their respective search ranges include: 

 n_estimators: The number of decision trees 
in the forest. It was tested on 10, 50, 100, 
and 200 trees. It was observed that there was 
no significant decrease in the prediction error 
with more decision trees beyond the tested 
values, which informed the decision to limit 
the number of decision trees in the Random 
Forest model to these ranges. 

 max_depth: The maximum depth of each 
decision tree. It was tested with no limit 
(None), 10, 20, and 30 levels. 

 min_samples_split: The minimum number of 
samples required to split an internal node. It 
was tested with values of 2, 5, and 10. 

 min_samples_leaf: The minimum number of 
samples required to be at a leaf node. It was 
tested with values of 1, 2, and 4. 

 max_features: The number of features to 
consider when looking for the best split. It 
was tested with 'auto' (equivalent to 'sqrt') 
and 'sqrt' options. 

The models were trained and evaluated with each 
of these configurations to determine the optimal 
values of parameters that would yield the best 
performance in terms of error reduction, [22]. 

For predicting environmental sensor data, 
selecting the optimal number of layers in a neural 
network and the number of trees in a random forest 
model is dependent on different variables, like the 
size of the dataset, the available computation 
resources, the complexity of the problem, and the 
quality of the data. The below points are some 
general rules to keep in mind. 

Models employing the random forest approach 
have the following characteristics: 

For determining how many trees are optimal for 
a given problem and dataset, cross-validation 
techniques like k-fold cross-validation come in 
handy, [25]. Based on the amount of data available 
and the complexity of the problem, it is possible to 
determine the number of layers to use. 

While a small dataset with rudimentary designs 
may only require one or two hidden layers, a more 
extensive dataset with complicated patterns might 
demand more hidden layers. If one were to make the 
model more intricate, it might increase one's 
capacity to grasp ambiguous patterns. Still, if the 
model becomes overly complicated, it could also 
heighten the chance of overfitting. 

A given problem and the dataset's ideal layers 
can be found using early stopping and cross-
validation techniques, [25]. 

For optimal performance, it's crucial to properly 
tune the hyperparameters of the models, like 
learning rate, regularization, and activation 
functions, among other things. 

 
 

4 Data Processing and 
Experimentation 
The accuracy of the sensor forecasting data was 
evaluated by comparing the error between actual 
sensor readings and forecasted sensor values. The 
experiment included comparing forecast accuracy 
with models such as Random Forest, Convolutional 
Neural Networks (CNNs), Artificial Neural 
Networks (ANN), Vector Autoregressive (VAR) 
model forecast, and Long Short-Term Memory 
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(LSTM) networks. Several models were developed 
to compare the forecast accuracy and performance 
(Fig. 1). 

  

 
Fig. 1: The implemented sensor data forecasting 
models 

 
Each model has 2 inputs or sensor parameters, 

such as Humidity and CO2, and the output of the 
models is a forecast, for example, temperature. 
 
4.1 Experiment Preparation 
Handling missing values and normalizing the 
temperature, humidity, and CO2 readings were 
initial preprocessing steps for raw sensor data. 
Additionally, the time-series data was transformed 
into a proper format for model input. As a result, 
sensor measurements are converted into individual 
variables in a multivariate time-series organization. 

A basic model was developed using CNN, 
consisting of a single convolutional layer followed 
by several pooling layers, and then completed with 
fully connected layers. The convolutional layers are 
designed to identify local patterns within the input 
data, while the pooling layers serve to decrease 
spatial dimensions and reduce computational 
complexity. The highly established layers remap the 
extracted distinctive attributes to dictate the 
conclusive prediction. Concerning the time-series 
information, the model applies 1D convolutions 
instead of the standard 2D convolutions in image 
processing. Sensor measurements are subjected to 
local pattern recognition by sliding convolutions 
over input data. Filters are utilized to capture 

multiple patterns, followed by merging resultant 
outputs to form feature maps. ReLU (Rectified 
Linear Unit) activation is applied to post-
convolutional and fully connected layers to 
introduce nonlinearity, which enables the model to 
learn intricate relationships and patterns, [26], [27], 
[28]. 

The CNN and LSTM models were rigorously 
evaluated, with the forecast and actual sensor 
readings being compared using the Mean Squared 
Error (MSE) as the loss metric. To adjust the 
network's weights during training, "Adam," an 
optimization algorithm, was called to minimize the 
loss function. The final predictions are mapped via 
the fully connected layer following two LSTM 
layers in the LSTM network model. Temporal 
dependencies are captured by the LSTM layers 
while extracting features.  

Recognition of local patterns in the time-series 
data was possible using 1D convolutions. At the 
same time, introducing the ReLU activation 
function was integral in enabling the learning of 
complex patterns with nonlinearity. The LSTM 
model utilized the dense layer to generate final 
predictions from the data with captured temporal 
dependencies. For the VAR model, coefficients 
were estimated to forecast upcoming sensor 
measurements after data preprocessing and 
determining the lag order using AIC. Measuring the 
distinction between forecasted and actual 
measurements was done with the loss function mean 
squared error. The "Adam" optimization algorithm 
was implemented to minimize the loss function. 

To use the VAR model, missing values must be 
taken care of, followed by a check for stationarity. 
In the event of non-stationarity, different 
transformations or differencing must be applied. 

The process of selecting the ideal lag order for 
the VAR model, which determines how many prior 
time steps should be considered when forecasting 
future values, is known as model selection. The 
Akaike Information Criterion (AIC) is utilized for 
this purpose. After confirming that the residuals are 
acceptable, the VAR model can be utilized to 
anticipate future sensor readings. The forecasts are 
generated using the past temperature, humidity, and 
CO2 data values in conjunction with the estimated 
coefficients, [29]. 
 
4.2 Running Experiments 
Having conducted several trials on each model, 15 
sensor forecast models were compared based on 
their ability to forecast the latest 100 entries in the 
dataset. The most accurate results for LSTM and 
CNN were obtained after 10 epochs. To ensure the 
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credibility of the results, each model underwent 
training at least 30 times, and the outcome was 
determined by calculating the average error value. 
The processing time of each model was also 
recorded using the same methodology. The models 
were trained using a hardware configuration of 
20GB RAM and a 1.60GHz Intel Core i5-8250U 
CPU. 
 
 

4 Results 
To evaluate the performance of developed forecast 
models, Mean Squared Error (MSE) and Mean 
Absolute Error (MAE) were used (Table 1.). Also, 
the training time was noted when training different 
models. 
 

Table 1. Comparison Of Forecast Errors 
  Forecasted sensor 

  

Temper
ature 

(humidi
ty and 
CO2 as 
inputs) 

Humidity 
(temperatu

re and 
CO2 as 
inputs) 

CO2  
(humidity 

and 
temperatu

re as 
inputs) 

M
od

el
 

L
S

T
M

 

MAE: 
0.0696, 
MSE: 

0.00712, 
Time: 

134.88 s 

MAE: 
1.019, 
MSE: 
1.516, 
Time: 

108.65 s 

MAE: 
95.952, 
MSE: 

15529.301, 
Time: 

109.17 s 

V
A

R
 

MAE: 
0.0696, 
MSE: 

0.00675, 
Time:0.6

9s 

MAE: 
27.074, 
MSE: 

733.033, 
Time:0.70 s 

MAE: 
1424.80, 

MSE: 
2030813.5, 

Time: 
0.70s 

C
N

N
 

MAE: 
0.147, 
MSE: 

0.0289, 
Time: 

11.256 s 

MAE: 
0.533, 
MSE: 

0.4006, 
Time: 

11.377 s 

MAE: 
264.951, 

MSE: 
86007.97, 

Time: 
11.301 s 

A
N

N
 

MAE: 
0.378, 
MSE: 
0.293,  
Time: 

25.869 s 

MAE: 3.30, 
MSE: 
17.87,  
Time: 

25.494 s 

MAE: 
184.35, 
MSE: 

61684.87,  
Time: 
26.01s 

R
an

d
om

 
F

or
es

t 

MAE: 
0.1607, 
MSE: 
0.132,  
Time: 

3.989 s 

MAE: 
1.178, 
MSE: 

5.4687,  
Time: 

3.841 s 

MAE: 
32.582, 
MSE: 

6651.02,  
Time: 

2.803 s 
 

The Mean Absolute Error result for all models is 
provided in "Fig. 2". 

 

 
Fig. 2:  MAE indicators 
 
 The Mean Squared Error results for all models 
are provided in "Fig. 3". 
 

 
Fig. 3:  MSE indicators 
 

Model performance result for all models is 
provided in "Fig. 4". 
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Fig. 4:  Time indicators 
 
 Based on the results in the chart provided, we 
can gain a few insights about the ability of various 
machine learning models to predict environmental 
factors such as CO2 levels, humidity, and 
temperature. In terms of Mean Absolute Error 
(MAE) and Mean Squared Error (MSE), it is 
generally observed that LSTM and VAR models are 
superior to the other models across all three 
categories. CO2 levels were found to have the lowest 
value on the VAR model. In contrast, the LSTM 
model recorded the lowest MAE and MSE values 
for humidity and temperature. ANN and CNN 
models poorly forecast CO2 levels, while 
temperature and humidity perform moderately. 
Mostly, the Random Forest model forecasts the 
temperature and humidity with high accuracy, 
although not when it comes to CO2 forecasts. Other 
models have performed better in this regard. 

 
 

5 Conclusion 
Multiple techniques for predicting time series exist 
depending on the data and problem. Some popular 
options include Artificial Neural Networks (ANNs), 
Convolutional Neural Networks (CNNs), Long 
Short-Term Memory (LSTM) networks, Vector 
Autoregressive (VAR) models, and Random 
Forests. Particularly useful with large datasets, the 
CNN method excels at recognizing localized 
patterns and acquiring knowledge of hierarchical 
feature representations, thus being highly efficient 
in computation. Despite these benefits, it may not be 
well-suited to handling distant dependencies in time 
series data, and one must be cautious of overfitting 
if proper regularization is not implemented. 

Training the LSTM model could be 
computationally expensive, requiring additional 
time and resources, particularly for extensive input 
sequences or large datasets. Nonetheless, the LSTM 

is crucially outfitted to manage time series data with 
long-range dependencies and can memorize and 
learn patterns over extended durations, providing 
the most precise outcomes. When forecasting 
temperature from humidity and CO2 data, LSTM 
can be used to achieve the highest accuracy if the 
training time is not a constraint.  

Though the VAR model can efficiently 
implement and catch linear relationships among 
numerous time series, its dependency on stationarity 
and assumption of linearity may need to be revised 
for complex or nonlinear situations. While it 
functions optimally during constant correlation over 
time, problems surface when handling vast 
quantities of data or high-dimensional inputs. 

The results reveal that the environmental sensor 
data can be forecasted using VAR or LSTM models. 
Across all three temperature, humidity, and CO2 
levels categories, these models outperformed the 
others in both mean absolute and squared errors. For 
temperature and humidity predictions, the LSTM 
model proves most effective. The least error was 
achieved when forecasting temperature from CO2 
and humidity inputs, thereby potentially serving as 
substitutes for physical temperature sensor devices. 
When it comes to CO2, however, the forecast 
accuracy was low in comparison to other 
parameters.  

Among the models tested, CNN and ANN show 
acceptable results regarding temperature and 
humidity, but they fared poorly regarding CO2 
levels. Although Random Forest performed well for 
temperature and humidity, its CO2 forecast accuracy 
was less accurate than the other models. Regarding 
computation time, VAR and Random Forest stood 
out as the quickest, while LSTM and ANN proved 
to be the slowest. 
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