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Abstract: During the past decade, many scholars have investigated the dynamic behaviors of the ecosystem with
Michaelis-Menten-type harvesting; however, most of them assume that the harvesting effort does not change with
time. Such an assumption has its drawbacks. Generally speaking, the rate of increase in  harvesting  effort  
changes with the density of the species. Inspired by this, we put forth a novel form of single-population feedback
control model, in which the feedback control variable is of the Michaelis-Menten-type. Sufficient conditions that
ensure the permanence and global attractivity of the system are obtained.
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1 Introduction
Throughout this paper, for a continuous and

bounded function, we let f l = inft∈R f(t) and fu =
supt∈R f(t).

This paper aims to investigate the dynamic behav-
ior of the following model:

dx

dt
= x

(
a(t)− b(t)x

)
− q(t)x(t)u(t)

k1(t)u(t) + k2(t)x(t)
,

du

dt
= −e(t)u+ f(t)x.

(1)

In system (1), we always assume:

(H1) a(t), b(t), q(t), k1(t), k2(t), e(t), and f(t)
are all continuous and strictly positive functions that
satisfy

min{al, bl, ql, kl1, kl2, el, f l} > 0,

max{au, bu, qu, ku1 , ku2 , eu, fu} < +∞.

During the past two decades, ecosystems with
feedback controls have become one of the main topics
in the study of population dynamics. One could refer
to [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30],[31]
and the references cited therein for more information.

Gopalsamy and Weng[23] proposed the following
single-species feedback control ecosystem:

ṅ = rn
[
1− a1n(t) + a2n(t− τ)

K
−cu(t)],

u̇ = −au(t) + bn(t).

(2)

They investigated the stability property of the positive
equilibrium of the system. For the first time, they in-
troduced the feedback control variable, which can be
implemented by means of biological control or some
harvesting procedure.

In [26], the authors studied the following single-
species feedback control ecosystem:

Ṅ = r(t)N(t)
[
1− N2(t− τ1(t))

K2(t)

−c(t)u(t− τ2(t))
]
,

u̇ = −a(t)u(t) + b(t)N(t).

(3)

Under the assumption that the coefficients of the
system are all continuous positive periodic func-
tions, they showed that the system admits at least
one positive periodic solution. For the general non-
autonomous case, Chen et al. [24] showed that the
system is always permanent.

In [31], the authors proposed the following sin-
gle species model with feedback regulation and dis-
tributed time delay:

Ṅ = N
(
a(t)− b(t)

∫+∞
0 H(s)N(t− s)ds

−c(t)u(t)
)
,

u̇ = −d(t)u(t) + e(t)
∫+∞
0 H(s)N2(t− s)ds.

(4)
They obtained a set of sufficient conditions to en-
sure the existence of a positive periodic solution to
the above system. By constructing some suitable
Lyapunov functionals, Chen [32] obtained a set of
sufficient conditions that ensure the permanence and
global stability of the positive solution of the system.

In [22], the author argued that it is necessary to
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consider the stage structure of the species, and he pro-
posed the following non-autonomous single species
system with stage structure and feedback control:

dx1(t)

dt
= b(t)x2(t)− d1(t)x1(t)

−b(t− τ)e
−
∫ t

t−τ
d1(s)dsx2(t− τ),

dx2(t)

dt
= b(t− τ)e

−
∫ t

t−τ
d1(s)dsx2(t− τ)

−a(t)x22(t)− c(t)x2(t)u(t),

du(t)

dt
= −f(t)u(t) + e(t)x2(t).

(5)
The author showed that system (5) admits at least one
positive T -periodic solution if the coefficients are all
continuous T -periodic functions. In [23], the authors
showed that for the general non-autonomous case, the
system (5) is permanent.

Recently, [29], took the stocking as a feedback
control variable, and she proposed a single species
stage-structured model with positive feedback con-
trol. The system takes the form:

dx1
dt

= αx2 − βx1 − δ1x1,

dx2
dt

= βx1 − δ2x2 − γx22 + dx2u,

du

dt
= g − eu− fx2.

(6)

The author showed that if the positive feedback con-
trol is large enough, the species will finally live in the
long run.

In [27], the authors proposed the following single-
species discrete model with feedback control:

N(n+ 1) = N(n) exp
{
r(n)

(
1− N(n−m)

K

−c(n)µ(n)
}
,

∆µ(n) = −a(n)µ(n) + b(n)N(n−m).
(7)

They investigated the positive periodic solution of the
system. In [28], the author gave sufficient conditions
to ensure the permanence of the system (7).

Recently, in [2], the authors argued that in some
cases, species may have the Allee effect, since en-
dangered species may have difficulties finding mates
when population density is low; hence, they proposed
the following single-species feedback control system:

dx
dt

= x(1− x)(x−m)− axu,

du
dt

= −bu+ cx,
(8)

where a,b,c are all positive constants and 0 < m <
1, m represents the Allee constant. They showed
that the system may have saddle-node bifurcation and
Bogdanov-Takens bifurcation of codimension 2.

In [1], the authors proposed the following Logistic
model with additive Allee effect and feedback con-
trol:

dx
dt

= x(1− x− m

x+ a
)− bxu,

du
dt

= −u+ cx.
(9)

The authors showed that the system may have
saddle-node bifurcation and transcritical bifurcation.
The dynamical behaviors of the system are richer
and more complex than those in the traditional
logistic model with feedback control. Both the Allee
effect and feedback control can increase the species’
extinction property.

It brings to our attention that in systems (2)-(9),
the feedback control variable represents the harvest-
ing effect of human beings or biological control, such
an idea comes from the pioneering work of [23]. The
idea of [23], comes from linear harvesting. However,
such a kind of harvesting is not a sound one. As we
know, nonlinear harvesting is more realistic from
biological and economic points of view. In [33], the
author first proposed a harvesting term h =

qEx

cE + lx
,

which is named Michaelis-Menten type functional
form of catch rate. Recently, many scholars have
investigated the dynamic behaviors of the ecosys-
tem with Michaelis–Menten-type harvesting. For
example, in [34], the authors proposed a two-species
amensalism model with Michaelis-Menten-type
harvesting and a cover for the first species:

dx

dt
= a1x(t)− b1x

2(t)− c1(1− k)x(t)y(t)

− qE(1− k)x(t)

m1E +m2(1− k)x(t)
,

dy

dt
= a2y(t)− b2y

2(t).

(10)
Chen[35] studied the following Lotka-Volterra
commensal symbiosis model of two populations
with Michaelis-Menten-type harvesting for the first
species:

dx

dt
= r1x

(
1− x

K1
+ α

y

K1

)
− qEx

m1E +m2x
,

dy

dt
= r2y

(
1− y

K2

)
.

(11)
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They showed that there are two saddle-node bifurca-
tions and two transcritical bifurcations under suitable
conditions. One could refer to [34], [35], [36], [37],
[38], [39], for more works in this direction.

It brings to our attention that in systems (10)-(11),
the authors all assume that the harvesting effectE is a
constant, such an assumption has its drawbacks. Gen-
erally speaking, the rate of increased harvesting effort
changes with the density of the species. Now, if we
take the harvesting effort as the feedback control vari-
able, the Logistic equation with nonlinear feedback
control could be proposed:

dx

dt
= x(a− bx)− qux

k1u+ k2x
,

du

dt
= −eu+ fx.

(12)

It is well known that a non-autonomous system is
more suitable since circumstances change with time.
This stimulated us to propose the system (1).

This paper’s goal is to investigate the dynamic be-
haviors of the system (1). In the next section, we will
investigate the persistent property of the system, and
then, in Section 3, by constructing some suitable Lya-
punov functions, we will investigate the global attrac-
tivity of the system. Some numeric simulations are
carried out to show the feasibility of the main results
in Section 4. We end this paper with a brief discus-
sion.

2 Permanence
To investigate the persistent and extinct properties of
the system, we need the following lemmas, which are
Lemma 2.2 and 2.3 of [30], respectively.
Lemma 2.1. If a > 0, b > 0 and ẋ ≥ b− ax, when
t ≥ 0 and x(0) > 0, we have

lim inf
t→+∞

x(t) ≥ b

a
.

If a > 0, b > 0 and ẋ ≤ b− ax, when t ≥ 0 and
x(0) > 0, we have

lim sup
t→+∞

x(t) ≤ b

a
.

Lemma 2.2. If a > 0, b > 0 and ẋ ≥ x(b − ax),
when t ≥ 0 and x(0) > 0, we have

lim inf
t→+∞

x(t) ≥ b

a
.

If a > 0, b > 0 and ẋ ≤ x(b − ax), when t ≥ 0 and
x(0) > 0, we have

lim sup
t→+∞

x(t) ≤ b

a
.

Concerned with the persistent property of the sys-
tem (4), we have the following result.
Theorem 2.1. Assumes that

al >
qu

ml
1

(13)

holds, then system (1) is permanent.
Proof. From the first equation of the system (1), one
has

dx

dt
= x

(
a(t)− b(t)x

)
− q(t)x(t)u(t)

k1(t)u(t) + k2(t)x(t)

≤ x
(
au − blx

)
.

(14)

Applying Lemma 2.2 to inequality (14) leads to

lim sup
t→+∞

x(t) ≤ au

bl
def
= M1. (15)

For ε > 0 enough small, from (15) there exits a T1 >
0 such that

x(t) <
au

bl
+ ε for all t ≥ T1. (16)

From the second equation of (1) and (16), for t > T1,
one has

du

dt
= −e(t)u+ f(t)x.

≤ −elu+ fu
(au
bl

+ ε
)
.

(17)

Applying Lemma 2.1 to inequality (17) leads to

lim sup
t→+∞

u(t) ≤
fu

(au
bl

+ ε
)

el
. (18)

Since ε is an arbitrary small positive constant, setting
ε → 0 in (18) leads to

lim sup
t→+∞

u(t) ≤ fuau

blel
def
= M2. (19)

From the first equation of the system (1), we also have

dx

dt
= x

(
a(t)− b(t)x

)
− q(t)x(t)u(t)

k1(t)u(t) + k2(t)x(t)

≥ x
(
a(t)− b(t)x

)
− q(t)x(t)u(t)

k1(t)u(t)

≥ x
(
al − qu

kl
1
− bux

)
.

(20)
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Applying Lemma 2.2 to inequality (20) leads to

lim inf
t→+∞

x(t) ≥
al − qu

kl
1

bu
def
= m1. (21)

For ε1 > 0 enough small, without loss of generality,
we may assume that ε1 < 1

2m1, from (21) there exits
a T3 > T2 such that

x(t) > m1 − ε1 for all t ≥ T3. (22)

From the second equation of (1) and (22), for t > T3,
one has

du

dt
= −e(t)u+ f(t)x.

≥ −euu+ f l
(
m1 − ε1

)
.

(23)

Applying Lemma 2.1 to inequality (23) leads to

lim inf
t→+∞

u(t) ≥
f l
(
m1 − ε1

)
eu

. (24)

Since ε1 is an arbitrary small positive constant, setting
ε1 → 0 in (24) leads to

lim inf
t→+∞

u(t) ≥ f lm1

eu
def
= m2. (25)

(15), (19), (21) and (25) show that under the assump-
tion (13) holds, the system is permanent.

This ends the proof of Theorem 2.1.

3 Global attractivity
The following lemma is from [40], and will be em-
ployed in establishing the global asymptotic stability
of (1).

Lemma 3.1. Let h be a real number and f be a non-
negative function defined on [h; +∞) such that f is
integrable on [h; +∞) and is uniformly continuous
on [h; +∞), then lim

t→+∞
f(t) = 0.

Theorem 3.1 Let (x∗(t), u∗(t)) be a bounded posi-
tive solution of system (1). If

bl > fu +
quku2M2

(kl1m2 + kl2m1)2
(26)

and
el >

quku2M1

(kl1m2 + kl2m1)2
(27)

hold, where m1,m2,M1,M2 are defined by (15),
(19), (21) and (25) respectively. Then (x∗(t), u∗(t))

is globally asymptotically stable.
Proof. Conditions (26) and (27) imply that for a
sufficiently small positive constant ε > 0 (with-
out loss of generality, we may assume that ε <
1
2 min{m2,m1}), the following inequality holds:

bl >
quku2 (M2 + ε)(

kl1(m2 − ε) + kl2(m1 − ε)
)2 (28)

and

el >
quku2 (M1 + ε)(

kl1(m2 − ε) + kl2(m1 − ε)
)2 . (29)

Let (x(t), u(t))T be any solution of (1) with a positive
initial value. It then follows from condition (26) and
Theorem 2.1 that for above ε > 0, there exists a T >
0 such that for all t ≥ T ,

m1 − ε < x(t), x∗(t) < M1 + ε,
m2 − ε < x(t), x∗(t) < M2 + ε.

(30)

Consider a Lyapunov function defined by

V (t) = | ln{x(t)} − ln{x∗(t)}|

+|u(t)− u∗(t)|, t ≥ 0.
(31)

Nowwe are calculating and estimating the upper right
derivative of V (t) along the solutions of system (9),
for t > T , it follows that:

D+V (t)

= sgn(x(t)− x∗(t))
[
a(t)− b(t)x(t)

− q(t)u(t)

k1(t)u(t) + k2(t)x(t)
−a(t) + b(t)x∗(t)

+
q(t)u∗(t)

k1(t)u∗(t) + k2(t)x∗(t)

]
+sgn(u(t)− u∗(t))

[
e(t)u∗(t)− f(t)x∗(t)

−e(t)u(t) + f(t)x(t)
]
.

(32)
Noting that for t > T , by applying (30), one has

q(t)u∗(t)

k1(t)u∗(t) + k2(t)x∗(t)

− q(t)u(t)

k1(t)u(t) + k2(t)x(t)
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=
q(t)u∗(t)∆2 − q(t)u(t)∆1

∆1∆2

=
q(t)k2(t)(u

∗(t)x(t)− u(t)x∗(t))

∆1∆2

=
q(t)k2(t)(u

∗(t)x(t)− u(t)x(t))

∆1∆2

+
q(t)k2(t)(u(t)x(t)− u(t)x∗(t))

∆1∆2

≤ quku2 (M1 + ε)|u∗(t)− u(t)|
∆2

3

+
quku2 (M2 + ε)|x(t)− x∗(t)|

∆2
3

,

(33)

where
∆1 = k1(t)u

∗(t) + k2(t)x
∗(t),

∆2 = k1(t)u(t) + k2(t)x(t),

∆3 =
(
kl1(m2 − ε) + kl2(m1 − ε)

)2
.

(34)

Hence,

D+V (t)

≤ −
(
bl − fu − quku2 (M2 + ε)

∆2
3

)
|x(t)− x∗(t)|

−
(
el − quku2 (M1 + ε)

∆2
3

)
|u∗(t)− u(t)|

≤ −µ(|x(t)− x∗(t)|+ |u(t)− u∗(t)|),
(35)

where

µ = min
{
bl − fu − quku2 (M2 + ε)

∆3
,

el − quku2 (M1 + ε)

∆3

}
.

(36)

Hence, for t ≥ T , one has

D+V (t) ≤ −µ
(
|x(t)− x∗(t)|+ |u(t)− u∗(t)|

)
.

(37)
Integrating on both sides of (37) from T to t produces

V (t) +µ

∫ t

T

(
|x(s)− x∗(s)|+ |u(s)− u∗(s)|

)
ds

≤ V (T ) < +∞, t ≥ T.

Then ∫ t

T

(
|x(s)− x∗(s)|+ |u(s)− u∗(s)|

)
ds

≤ µ−1V (T ) < +∞, t ≥ T,

and hence,

|x(t)− x∗(t)|+ |u(t)− u∗(t)| ∈ L1([T,+∞)).

The boundedness of x∗(t) and u∗(t) and the ultimate
boundedness of x(t) and u(t) imply that x(t), x∗(t),
u(t), and u∗(t) all have bounded derivatives for t ≥
T (from the equations satisfied by them). Then it fol-
lows that |x(t)− x∗(t)|+ |u(t)− u∗(t)| is uniformly
continuous on [T,+∞). By Lemma 3.1, we have

lim
t→+∞

(
|x(t)− x∗(t)|+ |u(t)− u∗(t)|

)
= 0.

The proof is completed.

4 Numeric simulations
Now let’s consider the following example:
Example 4.1

dx

dt
= x

(
5− x

)
−

(1 + 1
2 sin(t))x(t)u(t)

(2 + sin(t))u(t) + x(t)
,

du

dt
= −e(t)u+ f(t)x,

(38)

where corresponding to system (1), we take a(t) =
5, b(t) = 1, q(t) = 1 + 1

2 sin(t), k1(t) = 2 +
sin(t), k2(t) = 1, e(t) = 6+cos(t), f(t) = 2−sin(t).
Then, by simple computation, one has

M1 = 1,M2 =
3
5 ,m1 =

7
2 ,m2 =

1
2 . (39)

Thus

bl = 5 > 3 +
9

160
= fu +

quku2M2

(kl1m2 + kl2m1)2
(40)

and
el = 5 >

3

32
=

quku2M1

(kl1m2 + kl2m1)2
(41)

hold. Hence, it follows from Theorems 2.1 and
3.1 that the system is permanent and the positive
solutions of the system are globally attractive. Fig.
1 shows the globally asymptotically stable of the
species x and Fig. 2 shows the the globally asymp-
totically stable of the feedback control variable u.

5 Discussion

Over the last two decades, two topics in popula-
tion dynamics have received a lot of attention: the
feedback control ecosystem and the system with
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Figure 1: Dynamic behaviors of the first compo-
nent x in system (38) with the initial condition
(x(0), y(0)) = (1.2, 0.4), (1, 0.2), (0.8, 0.8), and
(0.6, 0.6), respectively.

Figure 2: Dynamic behaviors of the second com-
ponent u in system (38) with the initial condition
(x(0), y(0)) = (1.2, 0.4), (1, 0.2), (0.8, 0.8), and
(0.6, 0.6), respectively.

Michealis-Menten-type harvesting. However, there
are some drawbacks in these two areas. Firstly, the
study of the feedback control ecosystem comes from
the pioneering work of [23], whose study was based
on linear harvesting. Since then, most of the studies
on the feedback control ecosystems are based on the
linear harvesting of the system. Seldom did scholars
consider the other types of harvesting. Secondly, re-
cently, many scholars argued that Michaelis-Menten
type harvesting is more suitable, and they investi-
gated the dynamic behaviors of the ecosystem with
nonlinear harvesting. However, all of their works as-
sume that the harvesting coefficient is constant, which
is unrealistic since, generally speaking, the harvest-
ing effect will change according to the density of the
species. To overcome those two drawbacks, we pro-
posed the system (1). Sufficient conditions that en-
sure the permanence and global attractivity of the sys-
tem are obtained.

We mention here that for species with generation
overlap, it is appropriate to model them with discrete

systems. We will try to propose a discrete single-
species model with nonlinear feedback control, and
investigate the dynamic behavior of the system.
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