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differential equations. To analyze the problem numerically, we construct a discrete system using finite volume 

approximation by space with semi-implicit time approximation to decouple a system. We first simulate the 

converges of the system to the final equilibrium state for given parameters (reproductive rate, competition rate, 

and diffusion rate), boundaries, and initial conditions of population density. Then, we apply catastrophic events 

on a given geographic position with given catastrophic sizes to calculate the restoration time and final 

population densities for the system. After that, we investigate the impact of the parameters on the equilibrium 

population density and restoration time after catastrophe by gradually releasing the hold of different 

parameters. Finally, we generate data sets by solutions of a two-species competition model with random 

parameters and perform factor analysis to determine the main factors that affect the restoration time and final 

population density after catastrophic events. 
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1 Introduction 
Natural and artificial catastrophes disturb human 

and natural environments, [1], and cast impacts on 

species.  For instance, unrestrained hunting in Sabah 

(Malaysia) between 1930 and 1950 caused a drastic 

population decline of the Sumatran rhino, [2], an 

outbreak of yellow fever in Argentina between 2007 

and 2009 threatened endangered brown howler 

monkey populations, [3]. In the marine 

environment, human-caused oil spills can have 

devastating ecological effects, as evidenced after the 

Ixtoc blowout in the Gulf of Mexico during 1979-

1980, zooplankton decreased in biomass levels by 

almost four orders of magnitude more than observed 

in 1972, [4]. This work focuses on studying 

predictive factors for species restoration time after 

the catastrophe event. Finding factors impacting 

restoration time can provide better conservation 

decisions and minimize recovery time, [5]. The 

following are some factors that can affect species’ 

populations after catastrophes according to previous 

studies: species life-history strategies (i.e., the 

tradeoff between growth, survival, and reproduction.  

For example, fast-lived species are better than slow-

lived species in terms of recovering after climate or 

land-use change), spatial area of human-assigned 

natural reserves, communities’ political, social, and 

financial capitals, the age distribution of species, 

dispersal distance, connectivity, catastrophic 

mortality, initial population size, environmental 

stochasticity, demographic stochasticity, density, 

sex ratio, harvest, genetic variation, etc., [6], [7], 

[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], 

[18], [19]. 

In this paper, we study the key factors that 

influence population dynamics. With the 

improvement of computational power, more factors 

can be included in the prediction model. However, 
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the increased number of factors creates complexity 

and difficulty in the simulation of the species 

restoration process. Furthermore, we also need to 

have methods that allow us to identify which factors 

are the most important in species recovery so that 

we can allocate our conservation resources and 

minimize costs. This search for key factors has been 

intensively studied via the combination of field data, 

[20], and simulation techniques such as population 

viability analysis (PVAs), [21]. The PVAs include 

various key habitat factors to predict the population 

dynamic and risk of extinction of species using 

mathematical models, [22].  The PVA approach has 

been a core methodology in conservation science 

over the last three decades. It can utilize at least 

three types of models, [23]: (1) simple occupancy 

models for metapopulation, which are parameterized 

using data on the presence or absence of a species in 

habitat patches but ignoring demographic data (sex, 

age, stage, etc.); (2) structured population models, 

which incorporate the spatial structure of habitat 

patch and species’ internal dynamic (age structure, 

immigration, density, etc.), [24]; (3) most complex 

individual-based population models, in which 

individual dispersal, survival, and reproduction vary 

with respect to their demographic characteristics, 

[25], [26]. Multiple PVA packages can serve the 

simulation purpose. For example, the ZooRisk 

package supports faster analysis of ex-situ 

populations, while the VORTEX package can be 

used when the data, expertise, and time is adequate 

to explore complex individual-based metapopulation 

models, [27].  After PVA simulation using data of 

species, sensitivity analysis is applied to determine 

the key factors that affect species' survival, [28], 

[29], [30], [31], [32]. However, there are some 

criticisms of the PVA approach, for instance, 

significant differences were noticed in terms of 

prediction by different PVA packages, [33], 

although catastrophe is verified to have a strong 

effect on PVA outcome, the proportion of studies 

that examined this effects did not increase over 

time, [34], additionally, PVA is effective for 

evaluating the relative extinction risks of different 

species, but it shouldn’t be used to estimate the 

likelihood that a certain species would become 

extinct, [35]. 

In this work, instead of using the PVA approach 

considering multiple habitat factors, we simulate 

multispecies competition based on the Lotka–

Volterra model, which is used to describe the 

population dynamics of species competing for some 

common resource, [36]. We also combine the 

multispecies model with the simulation of the effect 

of catastrophe. In this way, we can study the 

dominant factors of species recovery after the 

catastrophe event. Population viability analysis 

(PVA) and Lotka–Volterra multispecies competition 

model are methods for simulating population 

dynamics, but they differ in their goals, 

assumptions, and complexity.  PVA is designed to 

predict population persistence or extinction under 

different scenarios. In contrast, the Lotka–Volterra 

model is designed to simulate species interactions 

and the potential for extinction due to competition.   

The Lotka-Volterra competition model uses an 

interaction matrix to describe the dynamics of 

multiple species interacting pairwise. It has been 

used in many areas: Industry Competition, Genetic 

Drift, Ecology, Epidemiology, Game Theory, 

Sociology, etc., [37], [38], [39], [40], [41].  In the 

Population Dynamic of species, this model has been 

intensively used to study the impact of the shift of 

environment, [42], [43], [44], [45], [46], [47], [48], 

[49], [50].  It’s a powerful tool for studying the 

dynamic of species after the catastrophe in that it 

can model population recovery, [51], the connection 

between climate feedback and mass extinction under 

the competition for limited resources, [52], the 

connection between spatial heterogeneity and 

robustness of ecosystem after catastrophe, [53], 

feedback loops, [54], etc. 

In the simulation result analysis, statistical 

techniques such as factor analysis and sensitivity 

analysis are used to identify the main factors that 

affect the restoration time or equilibrium population 

after the catastrophe. However, they differ in 

purpose and approach. While sensitivity analysis is 

used to identify the most important input variables 

that affect the output or response of a particular 

model or system, [55], factor analysis is used to 

identify underlying factors that explain the variation 

in a set of measured variables, [56]. Note that 

sensitivity analysis is widely used in analyzing 

ecosystem datasets, but applying factor analysis on a 

nonlinear system is rarely studied. Therefore, in this 

work, we first numerically investigated the post-

catastrophe ecosystem from a perspective of species 

competition, then we used numerical simulation to 

generate a dataset with random values of different 

factors, at last, we Therefore, this work applies 

factor analysis to simulated nonlinear system 

datasets and interprets the simulated dataset in a 

new way. In this paper, we employed a four-stage 

methodology to investigate the dynamics of a two-

species competition model and the impact of 

catastrophic events on system recovery. First, we 

simulated the convergence of the system to its final 

equilibrium state using given parameters, 

boundaries, and initial population densities. Next, 
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we introduced catastrophic events at specific 

locations with specific geographic sizes and 

calculated restoration time and final population 

densities. We then analyzed the effect of model 

parameters on equilibrium population density and 

restoration time by gradually releasing their hold. 

Lastly, we generated data sets using random values 

of factors and performed factor analysis to identify 

key factors influencing restoration time and final 

population density after catastrophes. 

The paper is organized as follows. Section 2 

describes our problem formulation, introduces the 

mathematical model used for simulation, and 

presents numerical results with some fixed sets of 

parameters. In Section 4, we make factor analyses of 

simulated datasets. Section 6 concludes the work 

and discusses future works. 

 

 

2 Problem Formation 
We consider a two-species competition model in 

one-dimensional domains Ω = [0, 1]. The 

mathematical model is described by the following 

coupled system of equations, [57], [58]: 

 

∂𝑢1

∂𝑡
− ε1

∂2𝑢1

∂𝑥2
= 𝑟1𝑢1(1 − 𝑢1) − α12𝑢1𝑢2,  

𝑥 ∈ Ω,  𝑡 > 0, 
∂𝑢2

∂𝑡
− ε2

∂2𝑢2

∂𝑥2
= 𝑟2𝑢2(1 − 𝑢2) − α21𝑢1𝑢2,  

𝑥 ∈ Ω,  𝑡 > 0 
( 1 ) 

 

with some given initial condition 

𝑢1 = 𝑢10,  𝑢2 = 𝑢20,  𝑥 ∈ Ω,  𝑡 = 0 
 

and fixed boundary conditions for both species, 

𝑢1 = 𝑢2 = 0,  𝑥 ∈ ∂Ω,  𝑡 > 0. 
 

Here 𝑢1(𝑥, 𝑡) and 𝑢2(𝑥, 𝑡) are the population of the 

first and second species, ε1  andε2  are the diffusion 

coefficient, 𝑟1   and 𝑟2   are the first and second 

species reproductive growth rate, α12  and α21   are 

the interaction coefficient due to competition. 

We define a uniform mesh: 

Ωℎ = {𝑥𝑖 = 𝑖ℎ,  1 ≤ 𝑖 ≤ 𝑁}, 
where 𝑁  is a positive integer and ℎ =  1/𝑁 .   Let τ 

be a time step, and 𝑡𝑛 = τ𝑛 for 𝑛 ≥ 0 .   For 

numerical solution, we use a finite difference 

approximation by space with a semi-implicit scheme 

for time approximation, Then, for 𝑢1(𝑥𝑖, 𝑡𝑛) = 𝑢1,𝑖
𝑛  

and 𝑢2(𝑥𝑖, 𝑡𝑛) = 𝑢2,𝑖
𝑛 , we obtain the following 

discrete form 

𝑢1,𝑖
𝑛 − 𝑢1,𝑖

𝑛−1

τ
− ε1

𝑢1,𝑖+1
𝑛 − 2𝑢1,𝑖

𝑛 + 𝑢1,𝑖−1
𝑛

ℎ2

= 𝑟1𝑢1,𝑖
𝑛−1(1 − 𝑢1,𝑖

𝑛−1)

− α12𝑢1,𝑖
𝑛−1𝑢2,𝑖

𝑛−1,  2 ≤ 𝑖 ≤ 𝑁 − 1, 

𝑢2,𝑖
𝑛 − 𝑢2,𝑖

𝑛−1

τ
− ε2

𝑢2,𝑖+1
𝑛 − 2𝑢2,𝑖

𝑛 + 𝑢2,𝑖−1
𝑛

ℎ2

= 𝑟2𝑢2,𝑖
𝑛−1(1 − 𝑢2,𝑖

𝑛−1)

− α21𝑢1,𝑖
𝑛−1𝑢2,𝑖

𝑛−1,  2 ≤ 𝑖 ≤ 𝑁 − 1, 

with 𝑢1,1 = 𝑢1,𝑁 = 𝑢2,1 = 𝑢2,𝑁 = 0. 

( 2 ) 

To simulate pre and post catastrophic cases, we 

have the following algorithm: 

 Pre-catastrophic case: Solve the system (2) 

with some given constant initial condition: 

𝑢1 = 𝑠1,  𝑢2 = 𝑠2,  𝑡 = 0, 
to find an equilibrium state (𝑢1(𝑥, 𝑇𝑝𝑟𝑒) and 

𝑢2(𝑥, 𝑇𝑝𝑟𝑒)) and the time needed to reach it 

(𝑇𝑝𝑟𝑒). 

 

 Post-catastrophic case: We use the previous 

(pre-catastrophic) solution and apply 

catastrophic events in some subdomain 

Ωcat  ∈  Ω 
 

𝑔1 = {
0, 𝑥 ∈  Ωcat 

𝑢1(𝑥, 𝑇𝑝𝑟𝑒), 𝑥 ∈  Ω/Ωcat 
 

 

 

𝑔2 = {
0, 𝑥 ∈  Ωcat 

𝑢2(𝑥, 𝑇𝑝𝑟𝑒), 𝑥 ∈  Ω/Ωcat 
 

 

Then solve the system (2) with the initial 

condition: 

𝑢1 = 𝑔1,  𝑢2 = 𝑔2,  𝑡 = 𝑇𝑝𝑟𝑒 , 
until the system reaches an equilibrium state 

(𝑢1(𝑥, 𝑇𝑝𝑜𝑠𝑡) and 𝑢2(𝑥, 𝑇𝑝𝑜𝑠𝑡)) and records 

the restoration time ( 𝑇𝑝𝑜𝑠𝑡 ).  When the 

change in population density is less than 

𝑡𝑜𝑙 = 10−3 , the equilibrium is considered 

reached. 

 

Next, we performed numerical simulations based 

on the presented algorithm. Before we release 

control of values of all parameters during 

simulation, we first controlled the value of all 

parameters (reproductive rate, competition rate, 

diffusion rate, boundaries, initial conditions of 

population density, and catastrophic size) in section 

2.1. 

We consider two cases: 
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 Case 1 (one species survive) 

𝐷1 = 0.035,  𝐷2 = 0.014,  

𝑟1 = 0.074,  𝑟2 = 0.084,  

α12 = 0.074,  α21 = 0.013. 
 Case 2 (both species survive) 

𝐷1 = 0.016,  𝐷2 = 0.014,  
𝑟1 = 0.083,  𝑟2 = 0.081,  
𝛼12 = 0.053,  𝛼21 = 0.049. 

 

with regular diffusion ε =  𝐷  and small diffusion 

ε =  𝐷/10 .  In simulations, we used a grid with 

𝑁 =  100 nodes and performed simulations with 

𝜏 =  1  with initial conditions 𝑠1 = 𝑠2 =  0.5 for 

pre-catastrophic cases. 

After that, we gradually released the control of 

catastrophe size (section 2.2) and diffusion rate 

(section 2.3) to understand the dynamic of the 

system. Finally, we released control of all 

parameters and simulated catastrophic events 

(section 3). 

 

2.1 Solution and Dynamic for Two-Species 

Competing Model Pre- and Post-Catastrophe 
 

2.1.1 Case 1 (One Species Survives)  

Figure 1 presents the case in which only one species 

survives when we control all parameters. We 

observed that, in comparing regular diffusion with 

small diffusion, the latter takes more time to reach 

equilibrium, both before and after the catastrophe. 

Specifically, species with small diffusion take 

876-time steps to reach equilibrium before the 

catastrophe, whereas species with regular diffusion 

take only 269-time steps. After the catastrophe, 

species with small diffusion take 2689 − 876 = 

1813-time steps to reach equilibrium, while species 

with regular diffusion take only 637 − 269 = 368-

time steps, which is five times faster. 

Furthermore, the boundary constraint has less 

effect on small diffusion. If diffusion is small, at the 

final equilibrium state, the central highly populated 

area is larger than with regular diffusion. At 

equilibrium, around 40% of the central geographic 

domain has a population density above 0.8 with 

regular diffusion, while around 80% has a 

population density above 0.8 with small diffusion 

for surviving species. 

 

2.1.2 Case 2 (Two Species Survive)  

We also examined the case in which both species 

survive, as is shown in Figure 2.  We observed that 

small diffusion leads to a shorter time to reach 

equilibrium compared to regular diffusion, both 

before and after the catastrophe. This situation is the 

opposite of what we observed in case 1, where 

species with small diffusion take more time to reach 

equilibrium. 

Specifically, before the catastrophe, species with 

small diffusion reached equilibrium in 226-time 

steps, slightly faster than species with regular 

diffusion, which took 276-time steps. After the 

catastrophe, species with small diffusion reach 

equilibrium in 488 − 314 = 174-time steps, which is 

twice as fast as species with regular diffusion, 

reaching equilibrium in 637 − 276 = 361-time steps. 

Same as in case 1, the boundary constraint has 

less effect on small diffusion. At equilibrium, 

around 20% - 50% of the central geographic domain 

has a population density above 0.5 with regular 

diffusion, while around 80% - 85% has a population 

density above 0.5 with small diffusion for surviving 

species. 

 

2.2 Effect of the Catastrophic Size 
As is shown in Figure 3, we controlled all other 

parameters and only released the control of 

catastrophe size. We found that as the catastrophe 

size becomes larger, the restoration time slightly 

increases, both in case 1, and case 2. 

Specifically, we observed that under case 1, 

when we place a catastrophe to the system after the 

system has reached its pre-catastrophe equilibrium 

(at time step 269), the number of time steps to reach 

equilibrium after a catastrophe is 368, no matter 

what the size of the catastrophe is (5, 25, 50, 75%). 

Under case 2, when we place a catastrophe to the 

system after the system has reached its pre-

catastrophe equilibrium (at time step 276), the time 

steps for the system to reach equilibrium slightly 

increase from 345 (when the size of the catastrophe 

is 5) to 387 (when the size of the catastrophe is 75). 

 

2.3 Effect of the Diffusion 
As is shown in Figure 4, we controlled all 

parameters and only released control of diffusion, 

and we observed that diffusion is the key factor for 

determining the survival status groups. 

Specifically, similar diffusion rate combinations 

before and after the catastrophe lead to similar 

survival statuses for both species.  Borderline 

combinations require more time steps to reach 

equilibrium.  After the catastrophe, diffusion rates 

still determine survival status, with little change 

except for borderline combinations. 
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3 Factor Analysis for Random 

Parameters 
We performed 100k simulations with random input 

parameters, with the following scale for 

reproduction rate, competition rate, diffusion rate, 

and initial condition of population density. 

0.01 < 𝑟𝑘 , α𝑘𝑙 , 𝐷𝑘 < 0.1,  0.01 < 𝑢0
(𝑘)

< 0.99, 
Next, we take a simulation that leads to the cases 

where at least one species survives (73k). Table 1 

presents the proportion of the survival group before 

the catastrophe stroke. In more than 80 % of the 

scenario, only one species survives.  Finally, we 

apply catastrophic events with random length: 0.1 <
𝐿𝑐𝑎𝑡 < 0.6. 

 

Table 1.Proportion of the survival group before the 

catastrophe stroke. In more than 80 % of the 

scenario, only one species survives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regular diffusion, 𝐿𝑐𝑎𝑡 = 50% 

 

 

Small diffusion, 𝐿𝑐𝑎𝑡 = 50% 

 

 

Fig. 1: Case 1: One species survives. Solutions at the final time in the first and second columns, the 

solution average over the domain versus time in the third column, under regular diffusion with ε =
𝐷 (first row) and small diffusion with ε = 𝐷/10 (second row). Solid lines represent before the 

catastrophe, while dashed lines represent after the catastrophe with a size of the catastrophe 𝐿𝑐𝑎𝑡 =
50%. The red line represents species 1, and the blue line represents species 2. 
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Regular diffusion, 𝐿𝑐𝑎𝑡 = 50% 

 

 

Small diffusion, 𝐿𝑐𝑎𝑡 = 50% 

 

 

Fig. 2: Case 2:  Both species survive. Solutions at the final time in the first and second columns, the 

solution average over the domain versus time in the third column, under regular diffusion with ε =
𝐷 (first row) and small diffusion with ε = 𝐷/10 (second row). Solid lines represent before the 

catastrophe, while dashed lines represent after the catastrophe with the size of the catastrophe 

𝐿𝑐𝑎𝑡 = 50%. The red line represents species 1, and the blue line represents species 2. 
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Case 1 

 

Case 2 

 

Fig. 3: Restoration time for different catastrophic sizes 𝐿𝑐𝑎𝑡 = 5,25,50,75% under regular diffusion 

(which means it has the same scale as other parameters such as birth rate and competition rate). Case 1 

(only one species survives) is presented in the first row, and case 2 (both species survive) is presented 

in the second row. 

Pre Catastrophe Post Catastrophe Pre Catastrophe Post Catastrophe 

 

 

 

 

(a) Case 1 (b) Case 2 

Fig. 4: Each scatter plot compares 𝐷1 and 𝐷2 diffusion rates for two species.  The size of the 

catastrophe is set at 𝐿𝑐𝑎𝑡 = 50%. Column 1 and 3 is pre-catastrophe, while columns 2 and 4 show 

post-catastrophe with different stopping thresholds (for example. Row 1 shows the time to reach 

equilibrium, while rows 2 show the final survival groups and changed survival groups after the 

catastrophe: 00 (grey), 01 (blue), 10 (red), and 11 (green). Here 00 means no species survive, and 01 

means only the second species survive. In Row 2, the red dots on the boundaries of groups show the 

change in survival groups after the catastrophe. 
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3.1 Mean and Standard Deviation of Time 

Until Equilibrium by Categories 
Table 2 and Figure 5 show the mean and standard 

deviation of time steps until equilibrium after 

categories. 

From Table 2, we observed that the restoration 

time varies with catastrophe size, with larger 

catastrophes leading to longer restoration times and 

higher variability. 

From Figure 5, we observed that when the 

catastrophe size is larger than 0.3, the variation of 

restoration time experiences a surge. 

In summary, restoration time varies with 

catastrophe size, with larger catastrophes leading to 

longer restoration times and higher variability, 

especially when catastrophe size is larger than 0.3. 

This indicates that it is more difficult to predict the 

restoration time as the catastrophe size increases. 

 

3.2 Mean and Standard Deviation of 

Equilibrium Population Density Solution 

Differences pre- and post-catastrophe 
Table 3 and Figure 6 show the mean and standard 

deviation of solution differences before and after 

categories. 

In Table 3, we observed that mean solution 

differences are consistent across catastrophic sizes, 

but standard deviation and maximum values vary 

greatly.  Catastrophe sizes between 0.3 and 0.4 lead 

to the highest standard deviation, making it difficult 

to predict equilibrium population density in specific 

scenarios. 

In Figure 6, we observed that there is an extreme 

outlier in the interval [0.3,0.4]. This might account 

for the high standard deviation in this catastrophic 

group. Yet we can still see that when catastrophe 

size is larger, the variation of solution difference is 

larger, hence harder to predict. 

In summary, the mean solution differences are 

consistent across catastrophic sizes, but standard 

deviation and maximum values vary greatly. 

Catastrophe sizes between 0.3 and 0.4 lead to the 

highest standard deviation, making it difficult to 

predict equilibrium population density in specific 

scenarios. 

 

3.3 Regrouping 
Table 4 shows the percentage of regrouping of 

survival status after the catastrophe. Survival group 

changes occur at a consistently low rate of 2.5-3%. 

The probability of regrouping is highest in 

catastrophe sizes between 0.3-0.4 and 0.5-0.6, 

making predicting species’ survival status 

challenging. 

Table 2. Mean and standard deviation of time steps 

until equilibrium after categories. N = number of 

simulations 

 
 

Table 3. Box plots of equilibrium population density 

solution differences of pre vs. post catastrophe 

(𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = √(𝑢𝑝𝑟𝑒1 − 𝑢𝑝𝑜𝑠𝑡1)
2

+ (𝑢𝑝𝑟𝑒2 − 𝑢𝑝𝑜𝑠𝑡2)
2
), 

under different catastrophe sizes 

 
 

 
Fig. 5: Post Catastrophe Restoration time steps, under 

different catastrophe sizes 

 

Table 4. Post Catastrophe Percentage of regrouping of 

survival status 
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Fig. 7: Factor Analysis of restoration time steps in two species systems. Dominant (threshold: corr > 0.7) 

parameters in each factor are highlighted in yellow. The number of factors is determined by the number of 

eigenvalues greater than 1. Left: case 1. Right: case 2. 

 

 

 

  

Fig. 8: Factor Analysis of final population density in two species systems after the catastrophe. Domi- nant 

(threshold: corr > 0.7) parameters in each factor is highlighted in yellow.  The number of factors are 

determined by the number of eigenvalues greater than 1. Left: case 1. Right: case 2. 
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3.4 Factor Analysis of Time Steps in Two 

Species System 
Factor analysis is used to reveal any latent variables 

that cause the manifest variables to covary and can 

help us to see the trend driving the system, [59]. A 

survey of over 1700 PsycINFO studies, including 

Factor Analysis, suggested that over 50% of 

surveyed researchers used Varimax rotation and 

decided the number of factors to be retained for 

rotation by Kaiser criterion (all factors with 

eigenvalues greater than one), [60]. In this case, the 

observed variables are the various factors that 

contribute to the species’ restoring time steps.  

Factor analysis can help identify the most important 

factors driving the variation in the observed 

variables. 

Figure 7 shows the Factor Analysis of restoration 

time steps in two species systems.  In both survival 

cases, the reproduction rate, diffusion rate, and the 

equilibrium population density before the 

catastrophe are the most dominant factors. It can be 

indicated that to impact the restoration time of 

species in the aftermath of a catastrophe, it is 

important to examine the diffusion rate and the level 

of species population density before the catastrophe. 

However, other dominant factors differ between the 

two cases.  In case 1, the reproductive rate of 

species 1 is more important than the diffusion and 

equilibrium population density of species 1. 

Additionally, competition efficiency is not among 

the dominant factors in case 1. This suggests that the 

underlying mechanisms driving the species’ 

restoration time steps may differ in each survival 

case. When both species are to survive together, 

competition efficiency matters. 

 

Case 1 top factors: 

 Diffusion of species 2 

 Reproduction of species 2 

 Diffusion of species 1 

 Pre-catastrophe population of species 1 

 Restoration time 

 

Case 2 top factors: 

 Diffusion of species 2 and Pre-catastrophe 

population of species 2 

 Pre catastrophe population of species 1 

 Reproduction of species 1 

 Reproduction of species 2 

 Competition Efficiency of species 1 

 Competition Efficiency of species 2 

 

 

3.5 Factor Analysis of Final Population 

Density in Two Species System 
Figure 8 shows the Factor Analysis of the final 

population density in two species systems.  We 

observed that there is a difference in the dominant 

factors between the two survival cases. While in 

both cases, the most important driving factor is the 

pre- and post-population density, followed by 

diffusion and reproductive rates, competition 

efficiency is not among the dominant factors in case 

1, whereas it is a dominant factor for both species in 

case 2. It can be indicated that to ensure the survival 

of both species in the aftermath of a catastrophe, it 

is important to examine the competition efficiency. 

 

Case 1 top factors: 

 Pre and Post catastrophe population of 

species 1 

 Pre and Post catastrophe population of 

species 2 

 Diffusion of species 2 

 Reproduction of species 1 

 

Case 2 top factors: 

 Pre and Post catastrophe population of 

species 2 

 Pre and Post catastrophe population of 

species 1 

 Reproduction and Diffusion of species 1 

 Reproduction and Diffusion of species 2 

 Competition Efficiency of species 1 

 Competition Efficiency of species 2 

 

 

4 Conclusions 
In our simulation study, we numerically investigated 

the impact of various parameters (reproductive rate, 

competition rate, and diffusion rate) on the 

restoration time and final population densities of a 

two-species competition model after catastrophic 

events. This research holds positive repercussions 

for the scientific and academic communities, as it 

not only enhances understanding of the post-

catastrophe driving factors of species survival and 

recovery dynamics but also presents a methodology 

of applying factor analysis to ecosystem restoration 

process analysis, instead of applying the sensitivity 

analysis. 

We first compared the time dynamic and final 

population density solutions between two survival 

cases (case 1: only one species survives; case 2: 

both species survive) under regular and small 

diffusion rates. We found that the restoration time is 

different for the two survival statuses. For case 1, it 
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takes more time to reach equilibrium when both 

species have small diffusion. For case 2, it takes 

more time to reach equilibrium when both species 

have regular diffusion. We also observed that 

boundary constraints have less effect on small 

diffusion for both survival statuses. 

We then investigated the impact of catastrophic 

event size and diffusion rate on the restoration time 

and final population densities. We found that as the 

catastrophic event size increases (especially when 

greater than 0.3), the restoration time and final 

population density do not change much, but the 

variation increases, making it potentially harder to 

predict. The diffusion rate is the key factor for 

determining the survival status group. Similar 

diffusion rate combinations before and after the 

catastrophe lead to similar survival statuses for both 

species. After the catastrophe, diffusion rates still 

determine survival status, with little change except 

for borderline combinations. 

Finally, we performed factor analysis on the 

restoration time and final population density data 

sets generated by solutions of a two-species 

competition model with random values of 

parameters. We observed that for different survival 

statuses, the dominant factors and the order of the 

factors are different. The dominant factor is usually 

reproduction rate, diffusion, and population density 

before the catastrophe. However, competition 

efficiency is an important factor to consider if both 

species are to survive together (case 2), while it is 

not the main factor under case 1. This observation 

suggested that if our goal is to have both species 

survive together, we need to pay attention to the 

competitive rates. 

In future works, we will study more about the 

modeling of catastrophic events. In the real world, 

events such as hurricanes, oil spills, disease 

outbreaks, hypoxic events, harmful algal blooms, 

and coral bleaching all can cause massive species 

mortality, [7], [61], however, their simulation may 

differ due to variations in spatial patterns. We plan 

to randomize catastrophe locations within the spatial 

domain, rather than keeping them centralized. 

Additionally, we will model various catastrophe 

scenarios, accounting for differing species mortality 

rates. Lastly, as our current study indicates that 

predicting equilibrium population density and 

restoration time is more challenging for catastrophes 

of larger size, we will employ deep neural networks 

to forecast the final state and recovery time of 

competing species systems, [62], [63]. 
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