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Abstract: The problem of controlling a one-dimensional Markov chain until is leaves a given setC is considered.
The optimizer tries to minimize the time spent by the Markov chain inside C. The control variable can take two
different values. An exact formula is obtained for the value function, from which the optimal control is deduced.

Key-Words: Markov chain, homing problem, value function, difference equations, absorption problems.

Received: July 12, 2022. Revised: March 7, 2023. Accepted: March 19, 2023. Published: April 26, 2023.

1 Introduction
Assume that the controlled discrete-time stochastic
process {Xn, n = 0, 1, . . .} is such that X(0) = x
and

Xn+1 = Xn + un + ϵn, (1)
where un is the control variable and ϵn is a random
variable. We assume that both un and ϵn can take
a finite number of integer values. Thus, {Xn, n =
0, 1, . . .} is a controlled one-dimensional Markov
chain.

In [4], the authors considered the following prob-
lem: find the value of the control variable that mini-
mizes the expected value of the cost function

J(x) =

T (x)−1∑
n=0

(u2n + λ), (2)

where

T (x) := inf{n > 0 : Xn ∈ D | X0 = x ∈ C}, (3
in which D is a subset of Z and λ is a non-zero con-
stant. The random variable T (x) is a called a first-
passage time in probability theory. The set D is the 
stopping region, which is the complement of the con-
tinuation region C.

This type of problem, in which the optimizer tries 
to either minimize (if λ > 0) or maximize (if λ < 0) 
the time spent by a controlled stochastic process in a 
given region, while taking the control costs into ac-
count, is known as a homing problem. [6], 
considered this problem for n-dimensional diffusion 
processes. In [7], the author treated the case when the 
cost criterion is risk-sensitive; see also [1], [5]. Re-
cent papers on homing problems include the follow-
ing ones by the author: [2], [3].

 In [4], authors found the exact solutions to two 
particular problems. They also considered the 
following case: assume that the set C is {−k + 
1, . . . , k − 1}, where k ≥ 2, un ∈ {−2, −1, 1, 2} 
and ϵn = ±1 with probability 1/2. Moreover, the 
parameter λ in the cost function is strictly positive 
and

T (x) := min{n > 0 : |Xn| ≥ k | X0 = x ∈ C}.(4) 
Next, we define the value function

F (x) = min
un, n=0,...,T (x)−1

E[J(x)]. (5)

Using dynamic programming, we can state the fol-
lowing lemma (see, [4]).
Lemma 1.1. The function F (x) satisfies the dynamic 
programming equation

F (x) = min
u0

{
u20 + λ+

1

2
[F (x+ u0 − 1)

+F (x+ u0 + 1)]} . (6)

Moreover, we have the boundary condition
F (x) = 0 if |x| ≥ k. (7)

By symmetry, we only have to consider the case
when x ∈ {0, 1, . . . , k − 1}. Moreover, because λ
is positive, it is clear that the optimal control is equal
to either +1 or +2 for any x ≥ 0. It follows that
Equation (6) becomes

F (x) = min
{
1 + λ+

1

2
[F (x) + F (x+ 2)] ,

4 + λ+
1

2
[F (x+ 1) + F (x+ 3)]

}
. (8)
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In [4], the authors showed how we can compute
the optimal control u∗0(x) first for x = k− 1, then for
x = k−2 and x = k−3. However, as theymentioned
in their paper, it is not easy to give a general formula
for any x ∈ {0, 1, . . . , k−1} in terms of the parameter
λ. In the current paper, we will show that we can give
a general expression for the value function F (x) for
any fixed value of λ. We can also then deduce the
value of the optimal control u∗0(x).

2 An explicit expression for the value
function

Let us denote the function F (x) by Fi(x) if the opti-
mizer chooses u0 = i, for i = 1, 2. We deduce from
Eq. (8) that we have

F1(x) = 1 + λ+
1

2
[F1(x) + F1(x+ 2)] (9)

and

F2(x) = 4 + λ+
1

2
[F2(x+ 1) + F2(x+ 3)] . (10)

We can find the general solution of both difference
equations. First, Eq. (9) is a second-order linear dif-
ference equation with constant coefficients:

F1(x+ 2)− F1(x) + 2(1 + λ) = 0. (11)

Its general solution can be written as follows:

F1(x) = c1 (−1)x + c2 − (1 + λ)x, (12)

where c1 and c2 are arbitrary constants. To deter-
mine the values of c1 and c2, we impose the condi-
tions F1(k) = F1(k + 1) = 0. Moreover, we set
F1(k + 2) = 0.

Next, Eq. (10) is a third-order linear difference
equation with constant coefficients:

F2(x+3)+F2(x+1)−2F2(x)+2(4+λ) = 0. (13)

We find that

F2(x) = d1 + d2

(
−1

2
+

√
7i

2

)x

+ d3

(
−1

2
−

√
7i

2

)x

− 4 + λ

2
x, (14)

where d1, d2 and d3 are constants that are determined
from the boundary conditions F2(k) = F2(k + 1) =
F2(k + 2) = 0.
Remarks. (i) Even though the expression for the func-
tion F2(x) contains complex terms, it is actually real
for any integer x ∈ {0, 1, . . . , k − 1}.
(ii) The function Fi(x) corresponds to the expected
cost if we choose u0(x) ≡ i, for i = 1, 2.

We can state the following proposition.

Proposition 2.1. The value function F (x) can be ex-
pressed as follows:

F (x) = min
{
1 + λ+

1

2
[min{F1(x), F2(x)}

+min{F1(x+ 2), F2(x+ 2)}], 4 + λ

+
1

2
[min{F1(x+ 1), F2(x+ 1)}

+min{F1(x+ 3), F2(x+ 3)}]
}

(15)

for x = 0, 1, . . . , k − 1.
Let

G(x) := 1 + λ+
1

2
[min{F1(x), F2(x)}

+ min{F1(x+ 2), F2(x+ 2)}] (16)

and

H(x) := 4 + λ+
1

2
[min{F1(x+ 1), F2(x+ 1)}

+ min{F1(x+ 3), F2(x+ 3)}], (17)

so that
F (x) = min{G(x),H(x)}. (18)

To determine the optimal control u∗0(x) for any x in 
{0, 1, . . . , k − 1}, we can compare the value of G(x) 
with that of H(x).
   In [4], the authors proved that the value 
function satisfies a non-linear difference equation.
Proposition 2.2. The value function F (x) satisfies 
the non-linear third-order difference equation

0 = 2F 2(x)− F (x)[F (x+ 1) + 2F (x+ 2)

+F (x+ 3) + 12 + 6λ]

+2(4 + λ)F (x+ 2) + 2(1 + λ)[F (x+ 1)

+F (x+ 3)] + F (x+ 1)F (x+ 2)

+F (x+ 2)F (x+ 3) + (5 + 2λ)2 − 9 (19)

for x = 0, 1, . . . , k− 1. The boundary conditions are
F (x) = 0 if x = k, k + 1, k + 2.

Remark. There are a few misprints in [4].

2.1 A particular problem
Assume that k = 4. We find that

F1(x) = −1

2
(1 + λ)(−1)x +

9

2
(1 + λ)− (1 + λ)x

(20)
and that the constants d1, d2 and d3 in Eq. (14) are
given by

d1 =
19

8
(4 + λ), d2 = (4 + λ)

(3i−
√
7)
√
7

56i
√
7 + 168

(21)
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Table 1: Functions F (x), F1(x), F2(x), G(x) and
H(x), and optimal control u∗0(x) for x = 0, 1, 2, 3
when λ = 1

x F (x) F1(x) F2(x) G(x) H(x) u∗
0(x)

0 8 8 11.875 8 11 1
1 7 8 8.75 8 7 2
2 4 4 7.5 4 7 1
3 4 4 5 4 5 1

Table 2: Functions F (x), F1(x), F2(x), G(x) and
H(x), and optimal control u∗0(x) for x = 0, 1, 2, 3
when λ = 2

x F (x) F1(x) F2(x) G(x) H(x) u∗
0(x)

0 12 12 14.25 12 14.25 1
1 9 12 10.5 11.25 9 2
2 6 6 9 6 9 1
3 6 6 6 6 6 1 or 2

and

d3 = −(4 + λ)
i
√
7

56
. (22)

Table 1, Table 2, Table 3, Table 4 give the value
functionF (x), F1(x), F2(x),G(x),H(x) and the op-
timal control u∗0(x) for x = 0, 1, 2, 3 for various val-
ues of the parameter λ. Notice that, as expected, when
λ is large, the optimal control ismost oftenu∗0(x) = 2.

To conclude this section, we will check that the
values of the function F (x) given in Table 1 (and
using the fact that F (x) = 0 for x ≥ 4) are such
that Eq. (19) with λ = 1 is indeed satisfied for x =
0, 1, 2, 3. First, when x = 0, we have

0 = 2× 82 − 8(7 + 2× 4 + 4 + 12 + 6) + 10× 4

+4(7 + 4) + 7× 4 + 4× 4 + 40. (23)

Similarly, for x = 1, x = 2 and x = 3 we have

Table 3: Functions F (x), F1(x), F2(x), G(x) and
H(x), and optimal control u∗0(x) for x = 0, 1, 2, 3
when λ = 5

x F (x) F1(x) F2(x) G(x) H(x) u∗
0(x)

0 21.375 24 21.375 22.6875 21.375 2
1 15 24 15.75 18.375 15 2
2 12 12 13.5 12 13.5 1
3 9 12 9 10.5 9 2

Table 4: Functions F (x), F1(x), F2(x), G(x) and
H(x), and optimal control u∗0(x) for x = 0, 1, 2, 3
when λ = 10

x F (x) F1(x) F2(x) G(x) H(x) u∗
0(x)

0 33.25 44 33.25 38.125 33.25 2
1 24.5 44 24.5 30.25 24.5 2
2 21 22 21 21.5 21 2
3 14 22 14 18 14 2

respectively

0 = 2× 72 − 7(4 + 2× 4 + 0 + 12 + 6) + 10× 4

+4(4 + 0) + 4× 4 + 4× 0 + 40, (24)

0 = 2× 42 − 4(4 + 2× 0 + 0 + 12 + 6) + 10× 0

+4(4 + 0) + 4× 0 + 0× 0 + 40 (25)

and

0 = 2× 42 − 4(0 + 2× 0 + 0 + 12 + 6) + 10× 0

+4(0 + 0) + 0× 0 + 0× 0 + 40. (26)

3 Conclusion
In this note, we gave an explicit and exact expres-
sion for the value function F (x) in an optimal con-
trol problem for a discrete-time and discrete-state
Markov chain that was considered by Lefebvre and
Kounta [4]. From this expression, it is possible to de-
termine the optimal control u∗0(x) for any value of x
in the set {0, 1, . . . , k − 1}. Moreover, by symmetry,
we can write that u∗0(−x) = −u∗0(−x).

We saw that the function F (x) satisfies a non-
linear third-order difference equation. Solving such
equations directly is a very difficult task. However,
we checked in a particular case that the values ob-
tained for F (x) are indeed such that the difference
equation is satisfied.

The results presented in this note can be general-
ized to the case when the control variable can take
more than two values. We could also consider this
type of problem in two or more dimensions.
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