
1. Introduction 

Power networks are very complex systems formed by 
generation units, transmission and distribution networks. 
The main goal of all power utilities is to supply highly 
reliable power to the customer at lowest cost. At the same 
time, the boundaries and restrictions of the generating units 
should be also taken into account. This is known as 
“Economic Dispatch(ED)” problem [1].  Economic 
dispatch is useful to determine the best combination 
between the interconnected power plants, and the system 
load (demand) to minimize the fuel prices satisfying 
equality and inequality restrictions. Several techniques 
such as gradient search, lambda iteration, base point 

method, dynamic programming etc. are available for 
solving problems related to economic dispatch. The last 
one is widely used but there are problems regarding 
dimensionality. There exists significant non-linearity and 
lack of smoothness, due to multiple fuels and ramp rates, 
in the input-output characteristics of practical power plants. 
It is problematic to solve through both ordinary and 
classical ways. So, the wide variety of heuristic methods 
such as Bacterial Foraging Algorithm (BFA), Genetic 
Algorithm (GA) and Particle Swarm Optimization (PSO) 
are general methods to solve these problems. 

In past few years, hybrid techniques are observed to be 
more proficient to solve non-convex problems. They 
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diminish the search space to locate optimal solution in a 
satisfactory computational time. Furthermore, they can 
facilitate number of constraints to solve both small and 
large scale problems with better quality of solution. 

2. Literature Review 

The bacterial foraging optimization algorithm was first 
proposed by K.M Passino to solve un-constrained 
optimization problems [2]. Now a days, the Swarm 
optimization techniques  are  drawn the attention of 
researchers  considering the fact that they've information 
sharing and conveying mechanisms to remedy real world 
optimization problems .Amongst swarming based 
techniques, bacterial foraging is very promising with set of 
advantages related to regional minima, randomness, 
direction of movement, attraction/repelling, swarming and 
so on. The stand-alone bacterial foraging (BF) experiences 
poor convergence attributes for high dimensional issues. 
To handle the non-linear and multi-dimensional ED issue, 
this disadvantage ought to be treated with the reconciliation 
of other EA's. If Economic dispatch is taken in to account, 
there are few research papers published on BFA to solve 
the ED problem since 2008. Ahmed .Y. Saber, et al. [3], in 
order to solve economic dispatch problem, an adaptive 
methodology is introduced for the sake of improvement of 
searching skill ability of BFA, PSO has been offered. 
Ultimately, a standard test system from IEEE is used to 
demonstrate the ability of the proposed strategy and the 
effects are contrasted with different methods from recent 
literature. K. Vaisakh, et al. [4] presented a hybrid 
approach consisting on differential evolution, particle 
swarm optimization (DE-PSO) and BFA to treat DED 
problem of multiple generating units involving valve-point 
effects. The proposed method has been contrasted with 
others and seemed expert in two test cases comprising of 
five and ten units test models.  I.A Farhat et al. [5] 
presented an improved bacterial foraging algorithm (IBFA) 
to remedy the ED problem on the grounds of the valve-
point effects and transmission losses. To beat the poor 
convergence and dimensionality dilemma of BFA, the 
basic chemo-tactic step is tuned to have a dynamic 
behavior for enhancement of exploration and exploitation 
capabilities. Based upon the solution development, BFA 
can be more reliant and adaptive. The proposed algorithm 
is verified utilizing various test techniques. P.K Hota, et al. 
[6] proposed a modified bacterial foraging optimization 
algorithm (MBFOA) involving fuzzy logic methodology to 
obtain the best promising solution for economic and 
emission dispatch and validated on Taiwan power system 

of forty generating units. B.K. Panigrahi et al. [7] presented 
a bacterial foraging meta-heuristic algorithm for multi-
purpose optimization. In this approach, the most recent 
bacterial locations are received by means of chemotaxis. 
Furthermore, Pareto optimal front (POF) is chosen through 
fuzzy logic sense based sorting. In order to verify the 
proficiency of proposed algorithm IEEE 30-bus 6-
generator standard test system is considered and the 
outcome are contrasted with the other reported outcome. 
Rahmat-Allah Hooshmand, et al. [8] proposed a hybrid 
strategy based on Bacterial Foraging Algorithm and 
Nelder-Mead technique (BF-NM). Usefulness of the 
proposed technique is presented in comparison with 
several EA techniques. Total cost obtained as a result of the 
proposed technique proved the benefit of the method. 
Nicole Pandit, et al. [9] introduced a improved bacterial 
foraging algorithm (IBFA) where crossover operation and 
parameter automation system is used to improve 
computational efficiency. The performance of IBFA is 
compared with recently released methods and seems to be 
better.  Ahmed Yousuf Saber, et al. [10] presented a 
modified particle swarm optimization (MPSO) involving 
advantages of bacterial foraging (BF) and PSO. The 
modified PSO has better exploration and exploitation 
capabilities to restrict regional minima. Finally, the results 
of present approached from literature are used to exhibit 
the effectiveness of the proposed technique. K. Vaisakh, et 
al. [11] offered BPSO-DE by the integration of BF with 
PSO and DE. The result gives the best foraging 
methodology search based on bacteria, that is then updated 
at every step of PSO. The solution produced as a result of 
BF and PSO is then regulated by the DE operator. Rasoul 
Azizipanah-Abarghooee, et al. [12] introduced a novel 
bacterial foraging (BF) approach, which involved 
initialization using opposition-based and a novel mutation 
operator. This operator is utilized in classical bacterial 
foraging (BF) to control the pre-mature convergence. In 
addition, long step size or short step size may be used for 
timely readiness of the bacteria involved in the chemo 
tactic step. Zhi Lu et al. [13] proposed a modified Bacterial 
foraging technique .In this procedure, a Lamarckian 
constraint coping with strategy established procedure is 
upgraded for upgrading of bacterial colony. Finally, IEEE 
30 Bus system was incorporated for the testing of the 
proposed system. Results suggested that this proposed 
technique came up with the advantage of catering for the 
multi-purpose and non-convex features related to thermal 
generators taking both ED and EED issues. G. Wu et al. 
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[14] presented a bacterial foraging optimization algorithm 
(BFOA). 

It performed a study of ED related to a hydropower system. 
Based upon the results that showed increased efficiency, it 
was concluded that the proposed system was better. Ehab 
E. Elattar et al [15]. Offered hybrid bacterial foraging and 
genetic algorithm. Proposed method is proven on 5, 10, 30 
generation models for non-convex ED. The outcome are 
compared with the outcome acquired by means of different 
approaches. 

The focus of this paper is to implement bacterial foraging 
and genetic algorithms based hybrid approach for non-
convex economic dispatch problem considering the ramp 
rate limits and valve point loading effects. For the sake of 
validation of the research work, the results of the research 
are compared with many other techniques.  

The paper organization as follows: Brief introduction and 
literature review in section-1. Mathematical model for non-
convex economic dispatch problem is formulated in 
Section-2. Proposed hybrid algorithm is presented in 
section-3. Results and comparison with different 
techniques are in section-4. Section-5 concludes the whole 
work. 

3. Non-convex Economic 
Dispatch Problem Formulation 

In order to determine the optimal load of all the linked 
generating units, the economic dispatch problem is 
designed. The goal is to limit the cost function subject to 
the system constraint. In order to formulate the ED 
problem, NG is defined as the number of committed units, 
PD as the total load demand, PGi as active power generation 
for unit i, Fi(PGi) and Fr  as Operational and  total cost for 
unit i over the dispatch period. 

 1
:   GN

r i Gii
Minimize F F P


                                (1) 

Subject to:  
Load balance equation 

1
0  GN

Gi Di
P P


                                                  (2) 

Generating unit capacity limits 

min max , 1 , 2, ,  Gi Gi Gi GP P P i N                         (3) 

 PGi
min and PGi

max  are upper and lower operational limits for 
generator i.                              

Transmission Losses For energy systems: Mostly electrical 
energy is transmitted over long transmission lines, the 
values of the network losses must be monitored, as these 
affect the output of the generator. It is estimated that for 
practical systems the losses can be 5% to 10% of the total 
energy generation [16]. So the function is expressed in 
equation (1) must be minimized while satisfying the 
equilibrium equation (4) of the energy.  

1
0 GN

Gi D Li
P P P


                                           (4) 

PL is the actual power loss of the system which is calculated 
by equation (5), known as George's formula [17]. 

1 1
G GN N

L Gi ij Gji J
P P B P

 
                                       (5)                                                                                    

In order to obtain the most accurate losses, a constant and 
a linear and must be added to the equation (5) known as 
Kron loss formula [17] in equation (6). 

0 001 1 1
G G GN N N

L Gi ij Gj i Gii J i
P P B P B P B

  
     (6) 

The B-coefficients vary with the condition of the system 
operation. Although it is considered that they are constant 
parameters.  

Valve Point Loading Effects: The actual input-output 
characteristics are highly non-convex due to opening and 
closing of fuel valve. In order to represent the valve points 
are included in the fuel cost function as follows: 

 

  

2

min

* *

sin  

i Gi i i Gi i Gi

i i Gi Gi

F P a b P c P

e f P P

   


               (7) 

Where ai, bi and ci  are fuel cost coefficient of generator 
i. ei, fi are valve point loading effects, PGi

min, PGi
max are upper 

and lower limits for generator i. 

Ramp Rate Limits (RRL): 

 1it ii tP P UR


                                                     (8)                                                                                                                                                                   

   1 it ii tP P DR

                                                    (9)                                                                                         

Where URi and DRi  are the ramp-up and ramp-down rate 
for the ith generator. So, the limits of the capacity of the 
unit are modified as: 

  min
1max ,Gi i Gii tP P DR P

                              (10) 
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  max
1min ,  Gi Gi ii tP P P UR


                             (11) 

4. Essential Background of 
Hybrid Techniques

  

4.1 Bacterial Foraging 

Bacterial foraging algorithm (BFA) which is inspired by 
the foraging behavior of Escherichia coli (E. coli) was first 
proposed by K.M. Passino.  

In the nature, the living organisms try to maximize ingested 
energy (E) due the measure of time (T) they spend seeking 
wild food assets. The foraging species also perform an 
optimization task to maximize the function E/T. This is 
important for the survival of the species. Foraging task 
involves the search of a food source, make the decision to 
enter and find wild food and determinate which is the best 
moment for seeking a better and a new food source. These 
tasks vary between one specie to another and affected by 
different internal aspects of the organisms such as food 
type, metabolic qualities. They are affected by external 
aspects like the weather and geography. Such tasks are also 
carried out at the same time with other tasks like seeking 
of safe shelter or territory. As indicated by ideal foraging 
theory, foraging can be planned as an optimization 
problem.  

Commonly the animals that live in groups perform 
cooperative tasks. In this activity, the individuals share 
information with other group members. The information 
sharing can be possible through sound signals, chemical 
signals or body language. Through social foraging an 
individual may obtain higher rates of energy gain. Other 
advantages of grouping individuals are the ease of driving 
and the facility of protecting each other from predators. 
Some examples of social foraging are: Wolves, fishes, and 
ants. The food search strategy is the biggest part of the 
foraging and many foragers follow the same strategy used 
by predators. A bacterial foraging operates through 
locomotion, chemotexis and evolution process. 

Locomotion is the nonstop rotation alternates between two 
modes: swimming and tumbling. During swimming, the 
counterclockwise rotation of the flagellum pushes the body 
forward. When it propels clockwise, the bacteria tumbles 
and moves in random direction. The displacement is small 
during tumbling.  

Chemotexis is the movement of a bacterium in a direction 
corresponding to a gradient concentration of a particular 
substance. E. coli swim to head to nourished places. They 
have been observed to be attracted to serine or aspartate. 

On the other hand, they tumble to avoid unpleasant areas 
usually containing metal ions Nickel, Cobalt, amino acids 
and organic acids.The foraging behavior of E.coli is 
generally observed in chemotaxis (swimming or tumbling) 
in relation to the chemicals in the medium.In general, the 
concentration of desirable chemicals is directly 
proportional to the rate of swimming and indirectly 
proportional to tumbling [2].In an impartial domain where 
neither attractive nor dangerous substances exist, the 
bacteria movement alternates between swimming and 
tumbling. In homogenous environments, where both 
desirable and toxic substances exist, the bacteria will swim 
more and will tumble less. Note that the availability of food 
source will not inhibit the organisms to seek for food hence 
they will continue to look for nourishment. They will swim 
as long as the gradient concentration is favorable. If they 
come in contact with adverse substances, they will tumble 
but will still swim to climb back to the positive 
concentration gradient. 

Evolution process in E. coli is occurred at a mutation rate 
of approximately 10-7 per gene per generation. The genes 
change through the process of conjugation where DNA 
attributed to fitness and fertility are passed on to the next 
generation. In other words, characteristics favorable to its 
survival are inherited by succeeding generations. When the 
environment is adverse or had sudden or slow changes, 
elimination, dispersion or both occurs. The population can 
be eliminated partially or totally. Dispersal drives the 
population to another part of the environment which can 
either be beneficial or disadvantageous. Either event has a 
two-sided impact on the chemotactic process.  

4.2 Genetic Algorithm (GA) 

Genetic algorithms are search strategies that utilize 
processes found in regular natural development. At every 
generation, another population is made by selecting an 
individual as per their physical fitness in the problem 
domain. Selection, crossover and mutation are the three 
fundamental operations employed in genetic algorithms. 
The selected solutions are modified through these 
operations and the most appropriate issue is selected to be 
passed on to succeeding generations. Genetic algorithms 
simultaneously consider multiple points on the search 
distance. They have been found to provide a rapid 
convergence to a near optimum solution in many cases of 
problems. 

Differential development (DE) is also belong to the class 
of genetic algorithms (GAs) which utilize bio-inspired 
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operations of selection, crossover, and mutation on a 
population to limit an objective function through the span 
of progressive generations. An initial mutant parameter 
vector is made through the selection of three random 
individuals from the population.DE utilizes real values 
rather than bit-string encoding, and arithmetic operations 
rather than logical operations in mutation compare to 
exemplary GAs. Let NP denote the number of individuals 
in the population. In order to generate the initial 
population, NP guess for the optimal values of the 
parameter vector by either choosing values between upper 
and lower limits or user defined. Every generation includes 
making of another population from the present population 
individuals {x_i | I = 1, . . . ,NP}, where i is population 
index. 

5. Hybrid Bacterial Foraging, 
Genetic Algorithm, and Differential 
Evaluation (HBFA-DE-GA) 
The Inspired movement for bacterium is accomplished 
using differential mutation as follow; an initial mutant 
parameter vector Vi is made by selecting the three 
individuals from the population, current member ( xi), and 
two random members  xi1 and xi2 from population. Then vi  
is generated as. 

 1 2.i i i iv x F x x                                         (12) 

 0 1Where F   

Genetically inspired reproduction instead of simple 
bacterial reproduction is introduced as follows; bacteria are 
kept sorted according to their fitness and split into fittest 
50% and worst 50% then fittest and worst are recombined 
using heuristic cross over operator [18] as: 

 1  1 51 *Offspring P P P                      (13) 

Where β is random value (0-1) .P1 is fittest parent and P51 
is worst parent.P2 and P52 is next pair for recombination 
vice versa. Offspring’s than mutated using dynamic 
mutation operator [19] as. 

 

 

,  , 0
    

 , ,  1  

U
j j j

j L
j j j

x k x x
x

x k x x





   
 

  

                     (14) 

Where k is generation number. L and U are lower and 
upper limits for variable𝑥𝑗, 𝜂 is random number (0, 1), G is 
the highest number of generations, b is degree of 
dependency on iteration number. 

*( , ) (1 / )* b
j jk x x k G                              (15) 

5.1 Economic Dispatch using Proposed 
BFA-DE-GA Algorithm 
 

1. Initialization of parameters:  
 Number of bacteria (Nb) 
 Number of chemotexic steps(Nch) 
 Number of elimination dispersal steps(Ned) 
 Number of reproduction steps(Nre) 
 Probability of mutation(Pm) 
 Probability of crossover (Pc) 
 Scaling factor (SF) 
 Genetic algorithm iterations(GA iter) 
 Differential evolution iterations(DE iter) 

2. Initialization of system parameters:  
 Population matrix (X)  
 Machines data matrix (H)  
 Load demand matrix(Ld) 

Loop (iter: 1→T)  
3. Elimination/ dispersal  
Loop (l: 1→L)  
4. Reproduction  

Loop (k: 1→K)  
5. Chemotaxis  

Loop (j: 1→J)  
6. Bacterium population  

Loop (i: 1→I)  
 Calculate the initial fitness of the ith bacterium 

using fitness function using Eq. (16). 

1
 

FITB
FITB Penalty Function




                 (16) 

  Save as  LAST_FITB  
4. Differential Evolution inspired movement. 

  Loop (DE iter: 1→Maximum DE iter)  
 Randomly select  two bacteria from population 
 Apply differential evolution (DE) mutation using 

Eq. (12). 
 Calculate the fitness of the resultant bacterium 

using Eq. (16). 
 If resultant bacterium is better than the 𝑖𝑡ℎ 

bacterium then swim in the same direction. 
 Calculate the fitness of bacterium at new position 

using Eq. (16). 
 Save as FITB.  

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2023.22.37 Abdul Shakoor

E-ISSN: 2224-2678 342 Volume 22, 2023



 If FITB <LAST_FITB, move bacterium into same 
direction.  

      End of Loop (DE iter)  
End of Loop (j)  
5. Genetic Reproduction: 

Loop (GA iter: 1→Maximum GA iter)  
 Sort bacteria in ascending order according to their 

fitness.  
 Split bacteria in fittest 50% and worst 50%. 
 Select one bacterium from fittest population list 

and one from worst population list. 
 Apply Genetic cross-over and mutation between 

them using Eq. (13, 14). 
 Calculate the fitness of the resultant bacterium 

using Eq. (16). 
 If resultant bacterium is better than fittest 

member, replace worst with resultant. 
  Else if, resultant bacterium is not better than 

fittest member, replace worst with fittest. 
End of Loop (GA iter)  
End of Loop (k)  
6. Elimination-Dispersal:  

 Eliminate bacteria according to Ped.  
 Randomly disperse the bacteria in optimization 

domain to keep the bacteria size constant. 
End of Loop (l)  
End of Loop (iter) 

Table 1: Parameters for hybrid BFA-DE-GA 

The graphical illustration of Hybrid BFA-DE-GA is given 
in Figure 1.  

 
Figure 1: Hybrid BFA-DE-GA flow chart 

6. Experimental Setup and Case Studies 
In this research work hybrid BFA-DE-GA algorithm is 
implemented using Visual studio C++ and executed on an 
Intel ® Core ™ i5 CPU 2.50 GHz, 4GB RAM,PC. In order 
to check the consistency of algorithm 50 independent runs 
are conducted with random initial solutions for each run. 
Results are contrasted with different strategies reported in 
literature. The parameters used for various test cases have 
been shown in Table 1. 

6.1 Non-convex Systems 

Proposed algorithm is tested on standard IEEE test system 
compromise of 5, 10 and 30 generation units,the ramp rate 

Start

Initialize variables and 
generate initial 

population

If
FITB>LAST_FITB

l=l+1

K=k+1

j=j+1

i=i+1

D

C

B

A

A

B

C

D

Elimination dispersal 
loop counter

l=1

Reproduction loop 
counter 

k=1

Chemotaxic loop counter
J=1

For each bacterium
i=1

Compute fitness value of 
current bacterium
Save as LAST_FITB

Move the bacterium in
 the direction whose bias

 is determined by DE

Calculate fitness of 
bacterium

Save as FITB

Save the bacterium in the 
list of healthy bacterium

If
i=Nb

If
J<Nc

Reproduction biased on 
Genetic cross-over and 

mutation

If
K<Nre

Elimination and dispersal

If
L<Ned

End

E

E

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Parameter Value 
Number of bacteria  120 
Number of 
reproduction steps  

4 

Elimination-dispersal 
steps  

2 

Generation of  GA  100 
Generation of DE  300 
Scaling factor for DE  0.8 
Crossover probability 
of DE  

0.8 

Elimination/dispersal 
probability 

0.25 

Adaptive parameters 5-Units 10-Units 30-Units 
Number of 
chemotexic steps  

50 100 200 

Crossover probability  0.8 0.8 0.9 
Mutation probability  0.1 0.15 0.15 
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limits and valve point loading effects are considered for all 
test cases.  

6.1.1 Case-1: 5-Generation Units Test System 

This case provides the solution for a 5 generation units test 
system by taking into account the transmission losses as 
well. Unit data and load demand pattern for case-1 is 
adapted from [18] and transmission loss coefficients from 
[19]. 

Table 2: Cost & computational time comparison for case-
1. 

 

Table 2 shows the cost & computational time for 5-
generation units test system. The proposed technique has 
achieved reduction in cost of $3243.65/day as compared 
with CGNM, $820.47/day as compared with GA, 
$343.48/day as compared to AIS, and $211.29/day as 
compared to PSO. However if compared to ABC 
$3.88/day. Proposed technique 

 
Figure 2: Cost Comparison for 5-units Test Case. 

Figure 2 gives a graphical comparison of the optimal costs, 
the cost of proposed hybrid algorithm are far less than the 
existing AI techniques. The best scheduling for 5-units test 
case is given in Table 3. Figure-3 provides a distribution of 
the cost function for 50 independent runs for 5-unit test 
system. 

Table 3: The best generation schedule of 5-unit system 
using Hybrid BF-DE-GA approach.  

Figure-3 Distribution of the cost function for 50 
independent runs for 5-unit test system. 

 

Hr. P1 P2 P3 P4 P5 PL 
1 10.02 20.04 30.02 124.50 229.41 3.99 
2 34.97 20.02 30.00 124.91 229.51 4.41 
3 64.96 30.76 30.00 124.94 229.52 5.19 
4 75.00 26.75 30.22 174.94 229.55 6.45 
5 75.00 20.51 30.33 209.83 229.55 7.21 
6 75.00 31.41 70.32 209.83 229.57 8.13 
7 64.75 20.01 110.30 209.81 229.51 8.38 
8 74.99 36.00 112.75 209.82 229.53 9.10 
9 75.00 66.00 119.68 209.84 229.55 10.07 
10 66.61 95.98 112.66 209.78 229.52 10.55 
11 75.00 103.97 112.74 209.82 229.52 11.04 
12 74.97 124.68 112.68 209.82 229.58 11.72 
13 64.03 98.54 112.66 209.82 229.52 10.56 
14 49.62 98.55 112.66 209.83 229.52 10.17 
15 19.62 92.26 112.63 209.21 229.50 9.21 
16 10.01 75.79 112.67 159.21 229.52 7.20 
17 10.02 87.77 112.52 124.86 229.53 6.68 
18 40.00 108.67 112.68 125.01 229.52 7.89 
19 70.00 125.00 113.25 125.32 229.55 9.13 
20 74.99 122.08 112.66 175.31 229.50 10.55 
21 45.00 92.94 112.61 209.81 229.52 9.88 
22 15.00 96.01 112.54 159.81 229.48 7.84 
23 10.00 96.34 72.56 124.77 229.49 6.16 
24 10.05 70.86 32.66 124.90 229.51 4.98 
Total Cost = 44041.952539($) 

Method Cost($/24h) Time(min) 
CGNM [18] 47285.6 NA 
GA [20] 44862.42 3.32 
AIS [21] 44385.43 4.00 
PSO [20] 44253.24 3.55 
ABC [20] 44045.83 3.29 
HBFA-DE-GA 44041.95 0.40 
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6.1.2 Case Study 2: 10-Generation Units Test System 
without Network Losses 

The ten-unit test system with non-smooth fuel cost function 
is used for DED problem. Unit data is taken from [18] and 
load demand pattern for case-2 is given in Table 3.  

Table 4: Cost & computational time comparison for case-
2. 

Table 4 shows that cost and computational time 
comparison for case-2.The cost $13303/day, $10392/day, 
$8891/day, $3537/day, and $30.38/day less than EP-
SQP,DGPSO,PSO-SQP,AIS, and HIGA respectively. 
Computational time for 10-units test case is smallest as 
compared to all other Techniques. 

 

Figure 4: Cost Comparison for 10-units Test Case 2. 

The graphical representation for optimal cost is shown in 
figure 4, evident that costs are reduced by significant 
amount. Distribution of cost function for 50 independent 
runs for case-2 is given in figure 5, which demonstrate that 
$ 1018443/day is minimum cost and $ 1020915.20/day is 
maximum cost. Best generation scheduling for case-2 at 
optimal cost of $ 1018443/day is given in Table 7.detail of 
power generation by each generator toward economical 
operation is also given in table 7. 

 

Table 5: Hourly load demand for test cases. 

 

Figure 5 Distribution of the cost function for 50 
independent runs for 10-unit test system. 

6.1.3 Case Study 3: 30-Generation Units Test System  

The data of the thirty-unit test system are obtained by 
tripling the ten-unit system of Case-2, and Non convexity 
of the test system is enhanced by varying the system 

Method Cost ($/24h) Time(min) 
EP-SQP [22] 1031746.00 20.51 
DGPSO [23] 1028835.00 15.39 
PSO-SQP [24] 1027334.00 16.37 
AIS [25] 1021980.00 19.01 
HIGA [26] 1018473.38 3.53 
HBFA-DE-GA 1018443.00 0.79 

Hours 5-Units 10-Units 30-Units 
1 410 1036 3108 
2 435 1110 3330 
3 475 1258 3774 
4 530 1406 4218 
5 558 1480 4440 
6 608 1628 4884 
7 626 1702 5106 
8 654 1776 5328 
9 690 1924 5772 

10 704 2072 6216 
11 720 2146 6438 
12 740 2220 6660 
13 704 2072 6216 
14 690 1924 5772 
15 654 1776 5328 
16 580 1554 4662 
17 558 1480 4440 
18 608 1628 4884 
19 654 1776 5328 
20 704 2072 6216 
21 680 1924 5772 
22 605 1628 4884 
23 527 1332 3996 
24 463 1184 3552 
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parameters. Load demand pattern for case 3 can be found 
in Table 5. 

 Table 6: Cost and Computational Time Comparison for 
30-units Test System. 

 
Table 6 shows that when proposed technique applied 
to 30-generators test system gives very favorable results as 
compared to other AI techniques. A reduction of 
$43307/day is visible when proposed algorithms is 
compared to IPSO, $38846.59/day as compared to CE, 
$17234/day reduction when compared with ICPSO, 
$8172.068/day as compared to HIGA, $7698/day and 
$2972/day cost reduction as compared with EAPSO and 
HGABFA respectively. 

Figure 6: Cost compression for 30-units test case without 
losses. 

The graphical representation of 30-generation test system 
is shown in figure-6, which evident that results obtained 
using proposed methods are much better than other 

reported methods. Distribution of cost function for 50 

independent runs for case-3 is given in figure 7. 

Figure 7: Distribution of the cost function for 50 
independent runs for 30-unit test system. 

7. Conclusion 
A novel hybrid methodology is proposed in this paper, 
which is based upon HBF, GA and DE .for the solution of 
a non-convex DED problem is solved considering the valve 
point loading effects and the ramp rate limits. The proposed 
technique is tested on IEEE standard test systems in order 
to verify the proficiency. Finally proposed method is 
compared with the other evolutionary computational 
techniques for 5, 10 and 30 units.  

For 5-units test system, results are compared with SA, GA, 
AIS, PSO and ABC. 

For 10-units test system results are compared with EP-
SQP, DGPSO, PSO, SQP, AIS and HIGA. 

For 30-units test system results are compared with IPSO, 
CE, ICPSO, HIGA, EAPSO and HGABF. 

The results assured that the proposed hybrid approach 
outperform the other techniques in term of cost and 
significant reduction of computational time in all the test 
cases. 

Future work can involve the efforts to solve the economic 
dispatch problems with security restraints and the restricted 
operation areas. Moreover, RE resources like wind and 
solar plants can also be taken into consideration.

 

 

 

Method Cost($/24h) Time(min) 
IPSO [27] 3090570.00 NA 
CE [28] 3086109.59 NA 
ICPSO [29] 3064497.00 NA 
HIGA [26] 3055435.068 NA 
EAPSO [30] 3054961.00 NA 
HGABF [15] 3050235.00 9.35 
HBFA-DE-GA 3047263.00 4.52 
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Table 7: Best scheduling of 10-generation units test system

 
 

Hour P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 PT 
1 150.01 135.03 193.62 60.10 122.89 122.65 129.67 47.03 20.01 55 1036 
2 226.63 135.01 191.41 60.02 122.88 122.45 129.60 47.00 20.01 55 1110 
3 303.24 214.98 182.88 60.01 122.87 122.43 129.59 47.00 20.01 55 1258 
4 379.87 222.26 196.88 60.01 172.73 122.63 129.58 47.02 20.01 55 1406 
5 456.53 222.27 194.31 60.04 172.77 122.48 129.59 47.01 20.01 55 1480 
6 456.52 222.27 274.30 60.05 222.60 140.64 129.60 47.01 20.02 55 1628 
7 456.48 302.16 286.71 60.01 222.58 122.44 129.60 47.02 20.01 55 1702 
8 456.53 309.55 303.19 109.99 222.60 122.51 129.59 47.00 20.04 55 1776 
9 456.50 389.54 323.31 120.43 222.63 159.98 129.60 47.00 20.01 55 1924 
10 456.49 460.00 320.86 170.42 222.64 159.99 129.60 47.00 50.00 55 2072 
11 456.95 459.99 339.98 220.41 224.98 159.99 129.63 47.00 52.07 55 2146 
12 456.49 459.97 339.99 267.34 222.60 159.99 129.59 76.99 52.06 55 2220 
13 456.48 396.83 302.51 241.48 222.60 159.99 129.67 85.35 22.08 55 2072 
14 456.48 396.80 294.21 191.49 172.70 122.40 129.60 85.31 20.02 55 1924 
15 379.86 396.79 283.37 180.81 122.81 122.45 129.59 85.31 20.00 55 1776 
16 303.25 316.80 317.75 130.81 73.01 122.47 129.59 85.31 20.01 55 1554 
17 226.62 309.52 288.26 120.36 122.87 122.45 129.60 85.32 20.00 55 1480 
18 303.27 309.55 309.55 120.41 172.76 122.47 129.64 85.32 20.03 55 1628 
19 379.88 389.55 300.91 120.44 172.73 122.58 129.59 85.32 20.02 55 1776 
20 456.57 460.00 312.49 170.43 222.60 159.98 129.59 85.32 20.01 55 2072 
21 456.51 396.80 315.21 120.43 222.60 122.53 129.60 85.31 20.00 55 1924 
22 379.88 316.81 275.72 70.48 172.76 122.44 129.67 85.24 20.02 55 1628 
23 303.25 236.85 196.62 60.02 122.87 122.47 129.59 85.32 20.01 55 1332 
24 226.70 222.28 189.25 60.11 73.21 122.48 129.62 85.32 20.03 55 1184 

Total Cost = 1018142.725815($/24h) 
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