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Abstract: Abstract: - A single species model with Allee effect and density-dependent birth rate 
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is proposed and studied in this paper, where ܽ, ܾ, ܿ, ݀, ݁ and ߚ are all positive constants. Sufficient conditions 
which ensure the system admits a unique globally stable positive equilibrium are obtained. Numeric simulations 
show that with the increasing Alee effect, the system takes a much longer time to reach its stable steady-state 
the solution, however, Allee effect has no influence on the final density of the species. 
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1 Introduction 
    
The aim of this paper is to investigate the dynamic 
behaviors of the following single-species model with 
Allee effect and nonlinear birth rate 
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where edcba ,,,,  and  are all positive constants. 

)(tx  is the densities of the species at time	ݐ, here we 
make the following assumptions: 

(a) 
cxb

a


 is the birth rate of the species, which is  

density-dependent, the birth rate of the species is de-
clining as the density of the species is increasing; 
(b) d is the death rate of the species, e is the density 
dependent coefficients; 

(c) We incor porate the Al lee effect 
x
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on the species, such an Allee effect describes the fact 
of limitations in finding mates, which is also called 
the weak Allee effect function. )(x  is the probabil-
ity of finding a mate where   is the indivi dual 
searching efficiency ([4], [8], [11],[12], [13], 
[14],[15], [16], [18]). The bigger   is the stronger 
Allee effect. 

Allee effect, which was first time observed by Al-
lee ([1]), describes a negative density dependence of 
the species, become one of the main topics on the  

ecosystem, many scholars have done works in this di-
rection, see [14 ], [16] and the references cited  
therein. 

ሷ	ଓ݊ݕ݁ݏݑܪ				 Merdan [15] proposed the followin g 
predator-prey system with Allee effect on prey spe-
cies 
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where  is a positive constant, which describes the 
intense of the Allee effect. ݕ݁ݏݑܪଓ݊	ሷ Merdan showed 
that the sy stem subject to an Allee effect takes a 
longer time to reach its steady-state solution and the 
Allee effect reduces the population densities of both 
predator and prey at the steady-state. 

Stimulated by the work of Merdan, Guan, Liu and 
Xie [8] argued that the higher the hie rarchy in the  
food chain, the more likely it is to become extinct. 
Hence, they proposed the following predator-prey 
model with predator species subject to Allee effect: 
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where ar,  are positive constants. They  obtained a 
set of sufficient conditions which ensure the exist-
ence of a unique globally asymptotically stable posi-
tive equilibrium. Their numeric si mulations showed 
that the system subject to an Allee effect takes a much 
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longer time to reach its st able steady-state solution, 
however, Allee effect has no influence on the final 
density of the predator and prey species. Such a find-
ing is very different from that of ሷ	ଓ݊ݕ݁ݏݑܪ  Merdan 
[15]. 

During the past decade, the study  of dynamic be-
haviors of mutualism  or commensalism model be-
comes one of the main topics in the study of popula-
tion dynamics ([4]-[23]), among those works, some 
of them ([4], [13], [18]) studied the influence of Allee 
effect to the commensalism model. 

Wu, Li, and Lin [18] proposed the follo wing two 
species commensal symbiosis model with Holling  
type functional response and Allee effect on the sec-
ond species 
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where ,2,1,, piba ii  and 1c are all positive con-
stants, .1p They showed by numeric simulations 
that with the increasing Allee effect, the system takes 
much more time to reach its stable steady-state solu-
tion. 

Chen [4] proposed the following two species com- 
mensal symbiosis model involving Allee effect and 
one party can not survive independently, which takes 
the form: 
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where 22111 ,,,, bacba  and u are all positive con-
stants, )(tx  and )(ty  are the densities of the first 
and second species at time	ݐ. The author investigated 
the local and global stable properties of the boundary 
equilibrium and the positive equilibrium. 

Lin [13] investigated the dynamic behaviors of the 
following two species commensal symbiosis model 
incorporating Allee effect to the first species: 
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where 2,1,, iab iii   and 12a are all positive  con-
stants. He found that with the increase of Allee effect, 
the final density of the species subject to Allee effect 
is also increased. Such a phenomenon is the first time 

observed, which is quite different from the known re-
sults ([4], [15]). 

Lin [14] proposed a single species Logistic model 
with Allee effect and feedback control 
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where bar ,,, and c are all positive constants. He 
showed that for the s ystem without Allee effect, the 
system admits a unique positive equilibrium which is 
globally attractive, however, for the system with Al-
lee effect, depending on the intense of the Allee ef-
fect, the system could admit a unique positive equi-
librium which is locally asymptotically stable or the 
species may be driven to extinction. Allee effect re-
duces the population density of the species. 

It brings to our attention t hat in the system (1.2) -
(1.7), without the influenc e of the othe r species or  
other factors, the species subject to Allee effect takes 
the form 
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That is, all the works of [8], [13]-[15] are based on 
the traditional single species Logistic equation 
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System (1.9) is very famous and is the cornerstone 
of population biology. Noting that system (1.9) could 
be revised as 
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where a is the birth rate of the species and d is the  
death rate of the species. Already, Brauer and Cas-
tillo-Chavez [3], Tang and Chen [17 ] and Berezan-
sky, Braverman, Idels [2] had shown that in so me 
cases, the density dependent birth rate of the species  
is more suitable. If we take the famous Beverton Holt 
function ([2]) as the birth rate, then the system (1.10) 
should be revised to 
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If we further consider the influence of Allee effect to 

the system (1.11), by adding the term
x

x


 to the 

right hand side of the above sy stem, this will lead to 
the system (1.1). 

The paper is arranged as follows. In section 2, we 
investigated the dy namic behaviors of the sy stem 
(1.1); Section 3 presents some numerical simulations 
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to show the  feasibility of the main results. We end 
this paper with a brief discussion. 
2 Dynamic behaviors of the system 
(1.1) 
The equilibrium of system (1.1) is determined by the 
equation 
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holds, then system (1.1) admits a boundary equilib-
rium 01 x and a positive equilibrium x  where 
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For the biol ogy meaning, we will focus our 

attention on the stability of the positive equilibrium, 
we have the following result. 

 
Theorem 2.1. Assume that (2.2) holds, then the sys-

tem (2.1) admits a unique positive equilibrium x  
which is globally stable. 
 

Proof. Obviously, x  satisfies the equation 
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Now let’s consider the Lyapunov function 
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One could easily see that the functionV is zero at the 
positive equilibrium x and is positive for all other 
positive values of x . By applying (2.4), the tim e 
derivative of V along the trajectories of (1.1) is 
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It then follows from (2.6) that 0)(  tVD strictly for 

all 0x except the positive equilibrium x , where
0)(  tD . Thus )(xV satisfies Lyapunov’s asymp-

totic stability theorem ([6]), and the positive  
equilibrium x of system (1.1) is globally asymptoti-
cally stable. This ends the proof of Theorem 2.1. 
 
3   Numeric simulations 
Now let’s consider the following example. 
Example 3.1 
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In this system, corresponding to system (1.1), we 
take ,1,1,1,1,2  edcba since 

,12 dba   it follows from Theorem 2.1 that for 
all , system (3.1) always admits a unique positive  

equilibrium ,4142.0x which is globa lly asymp-
totically stable. Fig.1 is the case .1  Now let’s 
take 2.0,0 and 0.5 and 1, respectively, togethe r 
with the initi al condition 1.0)0( x , Fig. 2 show s 
that with the increasing of the  (i. e., the increasing 
of the Allee effect), the solution takes much time to 
reach its steady state. 

 
Dynamic behaviors of system (3.1) with beta=1	
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Figure 1: Dynamic behaviors of the system (3.1) with
，1  the initial condition 5.1,1,4.0,1.0)0( x  and 

2, respectively. 
 
 
4 Conclusion 
Recently, many scholars investigated the dynam ic 
behaviors of the ecosy stem subject to Allee effect, 
see [4], [8], [11],[12], [13], [14],[15], [16], [18] and 
the references cited therei n. By carefully checking 
the models considered in [14], [15], we found that all 
of them are based on the traditional Logistic model. 
However, a more suitable model should consider the 
influence of density on t he birth rate. Thus, we pro -
pose a single  species model with Alle e effect and 
density-dependent birth rate, i.e., system (1.1). 

Our study shows that the conditions which ensure 
 

 
 
Figure 2: Dynamic behaviors of the system (3.1) with 
the initial condition 1.0)0( x , where a red curve i s 
the solution of 0 , green curve is the solution of

2.0 , the black curve is the solution of 5.0
and the blue curve is the solution of 1 , respec-
tively. 
 
the existence of the positive equilibrium is enough to 
ensure its global asymptotically stability, that is, once 
the positive equilibrium exists, it is globally  asymp-
totically stable. Numeric simulations show that the 
Allee effect has no influence on the final density  of 
the species, however, with the increasing of the Allee 
effect, the system takes more time to reach its steady 
state. Such  kind of property is similar to that of the 
commensalism model ([4], [18]). 

It seems interesting to consider the multi-species 
system with both the no nlinear birth rate and Allee 
effect, we leave this for future discussion. 
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