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1 Introduction 
There are many phenomena that develop in one 

direction and this is what we call the monotony of 

evolution. The evolution of these phenomena is 

described and governed by differential equations 

and their solutions give us an accurate description of 

these developments. The most known developments 

are exponential. Here in this work, we try to shed 

light on the most important phenomena that are 

increasing exponentially in one direction and those 

that are decreasing exponentially in one direction. 

Such phenomena are common. We also give some 

of the mathematical properties of these phenomena. 

A differential equation is an equation that relates 

one or more unknown variables (functions) and their 

derivatives, [1], [2]. In applications, the variables 

generally represent physical quantities, the 

derivatives represent their rates of change and the 

differential equation defines the evolution. 

Differential equations can be classified according to 

their order, which is determined by the highest 

derivative that appears in the equation. Historically, 

the concept of the differential equation first came 

into existence with the invention of calculus in the 

late 17th century by the mathematicians Isaac 

Newton and Gottfried Wilhelm Leibniz 

independently of each other, [3], [4], [5]. Thereafter, 

the development of calculus and its uses have 

continued to the present day. Differential equations 

play a prominent role in many disciplines including 

physics, engineering, biology, and even economics 

and sociology. The beauty in the study of 

differential equations is how solvable explicit 

formulas are; as well, many properties of its 

solutions may be determined without calculating 

them intricately. Differential equations play an 

important role in modelling virtually every 

biological process or physical technical, from 

celestial motion to an interaction between particles. 

In general, several techniques and approaches have 

been developed to solve differential equations, 

including undetermined coefficients and separation 

of variables methods, and numerical approaches 

such as Runge-Kutta and Euler's methods, [2]. 

However, in particular, differential equations such 

as those used to solve physical problems and 

describe complicated phenomena may not 

necessarily be directly solvable. Instead, solutions 

can be approximated using numerical methods. 

Among the most important physicists who were 

credited with the application of differential 

equations in physics, were the following scientists: 

Jean le Rond d'Alembert, Leonhard Euler, Daniel 

Bernoulli, Joseph-Louis Lagrange, and Joseph 

Fourier. Now, as practical examples in physics 

about differential equations since their discovery, 

we mention: (i) the problem of a vibrating string 

such as that of a musical instrument, [6]. (ii) 

D’Alembert as well, discovered the one-dimensional 

wave equation in 1746, and later within ten years 

the 3D wave equation was discovered by [7]. (iii) 

The Euler–Lagrange equations, [8], [9], which are a 

system of second-order ordinary differential 

equations, were developed in 1750 by Euler and 

Lagrange in connection with their studies of the 

tautochrone problem, [10]. This later led to the 

development of Lagrange's method and applied it to 

mechanics, which yielded the formulation of 
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Lagrangian mechanics. (iv) The work on the heat 

flow in the analytic theory of heat by Fourier in 

1822, [11], which was about heat equation for 

conductive diffusion of heat. This last partial 

differential equation has become an essential 

equation of mathematical physics that is taught to 

students today.  

There are several monotonous developments in 

nature, and we will highlight some of these 

phenomena later. Monotonous development refers 

to a process or behavior that consistently increases 

or decreases without any significant deviation or 

reversal. The monotony here is merely an 

exponential increase or decrease in one direction. It 

is not an increase, then a decrease, or a combination 

of the two. The mathematical model that controls 

and describes these developments will be presented 

and linked to some applications in several different 

fields, including nuclear transformations, electricity, 

chemical reactions in aqueous solutions, and 

Newtonian mechanics.  

In fact, there are many other examples, 

including: population growth, which is exponential 

growth, and light intensity in optics where the 

intensity of light decreases exponentially as it 

travels through a medium (Beer-Lambert law). Also, 

the decay of the magnetic field because when a 

magnetic field is removed or disrupted, its strength 

decreases over time following an exponential decay 

curve. Such as in MRI machines, where the decay of 

magnetic fields is caused by the relaxation 

processes, which is why MRI machines must be 

calibrated regularly. Heat transfer can be also an 

example of monotonous evolution in certain cases. 

Monotonic evolution refers to a continuous change 

in a system over time that either always increases or 

always decreases, without any fluctuations or 

reversals. Heat transfer can exhibit monotonous 

evolution if the transfer of heat energy is always in 

the same direction and does not fluctuate. For 

example, when a hot object is placed in contact with 

a cooler one, heat energy will transfer from the 

hotter object to the cooler one until both objects 

reach thermal equilibrium. This transfer of heat 

energy is always in the same direction, from hot to 

cold, and does not fluctuate or reverse. As a result, 

the change in temperature over time between the hot 

object and the cool one will follow a monotonous 

trend, with the temperature of the hot object 

decreasing and the temperature of the cool one 

increasing until they reach equilibrium. 

This paper is outlined as follows. In Section 2, 

the monotonous evolution model is presented. In 

Section 3, some applications and illustrations are 

proposed and presented. In sub-section 3.1, we 

study radioactive decay. Then in sub-sections 3.2 & 

3.3, as an illustration of the proposed model in both 

electricity and mechanics, we present a resistance-

capacitor circuit and the motion of a real fall of a 

solid object in the air, respectively. Sub-section 4 is 

devoted to the application in chemistry, in which the 

proposed model is associated with the way 

quantities of the substance are formed or reacted 

during chemical reactions in an aqueous solution. 

We present our conclusion in Section 4.  

 

 

2 Monotonous Evolution Model 
The pattern of monotonous developments we 

present in this work is of two types: one is an 

exponential increase, and the other one is an 

exponential decrease, both in one direction. We start 

with the following differential equation 

 

𝑑𝑋

𝑑𝑡
+

1

𝜏
𝑋 =

𝑋0

𝜏
,                               (1) 

 

(1) 

where 𝑋 is the physical variable (function in time); 

𝑋0 is the maximum value of 𝑋 and 𝜏 is the time 

constant, which will be interpreted as the image of 

the crossing of the tangent of the function curve 𝑋 =
𝑓(𝑡) at the zero point with the asymptote 𝑋 = 𝑋0. It 

has the dimension of time and its unit is the second 

(s). Note that the resolution of equation (1) yields 

 

𝑋(𝑡) = 𝑋0 (1 − 𝑒−
𝑡

𝜏).                               (2) 

 

Figure 1 illustrates the given function in equation 

(2) as follows: 

 

Fig. 1: Plot of 𝑋 = 𝑓(𝑡) for 𝑋0 = 10 and 𝜏 = 2. 

 

We say that equations (1) and (2) constitute a 

system of evolution of the exponential increase in 

one direction. From the graph, we note that there are 
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two phases during the evolution of the proposed 

system, one of them is transitional, in which the 

system develops exponentially, while in the second 

phase, the system is constant at a specific value. 

Now for the completely decreasing evolutions in 

one direction, we have the following differential 

equation 

 
𝑑𝑋

𝑑𝑡
+

1

𝜏
𝑋 = 0,                               (3) 

thus the resolution of equation (3) gives 

 

𝑋(𝑡) = 𝑋0𝑒−
𝑡

𝜏.                               (4) 

 

Figure 2 illustrates the given function in equation 

(4) as follows: 

 

 
Fig. 2: Plot of 𝑋 = 𝑔(𝑡) for 𝑋0 = 10 and 𝜏 = 2. 

 

We may add certain characteristics such as:  

 

1. The constant 𝜆: it is the reciprocal of 𝜏 (in 𝑠−1), 

sometimes referred to as simply increasing or 

decreasing rate. Thus, we have the expression 

 

𝜆 =
1

𝜏
.                                  (5) 

 

2. The half-life 𝑡1/2: it is the time taken for the 

increasing or decreasing of a given amount of 𝑋 

to half of its initial value 𝑋0, which means it is 

the time that correspond to 𝑋0/2. So from 

equation (2) or equations (4), we have 

 

𝑡1/2 = 𝜏𝑙𝑛2.                               (6) 

 

   It is easy to deduce that for 𝑡n = 𝑛𝑡1/2, we 

have 𝑋𝑛 =
𝑋0

2𝑛. 

  Last but not least, it can be concluded that: (i) 

𝜏 is defined as twenty percent of the time of 

reaching the permanent system. It can be used to 

indicate how rapidly an exponential function 

increase or decreases. Physically, in a decreasing 

system, 𝜏 represents the elapsed time required for 

the system response to decay to zero, it is 
1

𝑒
  of 𝑋0. 

In an increasing system, 𝜏 is the time for the 

system's step response to reach (1 −
1

𝑒
)  of 𝑋0. (ii) 

The systems of monotonous exponential increase (or 

even decrease) that we study consist of a transitional 

regime and a permanent one. The beginning of the 

permanent regime is always at 𝑡 = 5𝜏. 

 

 

3 Applications 
 

3.1 The Radioactive Decay 
As known about nuclear transformations, there are 

two types of transformations: Stimulated (non-

spontaneous) nuclear transformations, namely 

nuclear fission, and thermonuclear fusion; and 

spontaneous nuclear transformations, namely 

radioactivity. In this part of the article, we will focus 

on spontaneous nuclear reactions known as 

radioactivity.  

Radioactivity, [12], [13], [14], is the 

phenomenon of the spontaneous disintegration of 

unstable (i.e., radioactive) atomic nuclei, so in the 

process of decay, one or more types of energetic 

ionizing radiation (particles or electromagnetic 

radiation) are emitted. However, in the random 

process of radioactive decay, a nucleus loses energy 

by emitting radiation, where the nature of the 

produced radiation depends first on if the unstable 

nucleus is heavy or not, in the case of heavy nuclei 

the produced radiation Is usually in the form of 𝛼  

particles (Helium nuclei 𝐻𝑒2
4 ). If the emitted 

radiation is 𝛽−or 𝛽+ particles, namely electrons 𝑒−1
0  

and positrons 𝑒1
0 , respectively. This is done 

according to the number of neutrons and protons 

present inside the unstable nucleus, where if the 

number of protons is greater, the radioactive 

transformation is according to the 𝛽+ decay pattern 

i.e., 𝑝1
1 → 𝑛0

1 + 𝛽+, while if the number of neutrons 

is greater, the radioactive transformation pattern is 

according to 𝛽− i.e., 𝑛0
1 → 𝑝1

1 + 𝛽−. There are also 

gamma rays 𝛾0
0  (high-energy photons), which 

automatically accompanies the previous emissions, 

and it occurs at the energy level, rather than at the 

particle level of the nucleus. Knowing that the 

nucleu’' energy reduces, making it more stable. In 

all decay processes mass, charge, and lepton number 

are conserved. Once 𝛼-decay occurs the radioactive 

nucleus changes into a different more stable one, 

with two fewer protons and two fewer neutrons, and 

𝛼 particle is emitted. On the other hand, when 𝛽−or 
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𝛽+-decay occurs, the number of nucleons in the 

nucleus remains the same, so the mass number does 

not change, but as a neutron is converted into a 

proton the atomic number increases by one, and as a 

proton is converted into a neutron the atomic 

number decreases by one. 

Radioactive decay is a random process, which 

means that it is impossible to predict when a 

particular radioactive nucleus will decay. It is also 

spontaneous; you cannot cause or influence the 

decay. However, with large numbers of nuclei, it is 

possible to predict statistically the behavior of the 

entire group through radioactive decay. So le’'s 

consider the case of a nuclide 𝐴 that decays into 

another one 𝐵 through some radioactivity 𝐴 → 𝐵 . 

e.g., 𝛽-decay, which is the emission of positrons 𝑒  

or electrons 𝑒−or 𝛼-decay or 𝛾-decay. Statistical 

study of the behavior of several unstable nuclei 

together yields the suggested model. The decay of 

an unstable nucleus is completely random in time so 

according to quantum theory, it is not possible to 

predict when a particular nucleus will decay, 

regardless of how long the nucleus has existed. 

Thus, for this reason, it appears in the equation later 

on the so-called probability of disintegration per 

second 𝜆. Therefore, given a sample of a particular 

radioisotope, the number of decay events −𝑑𝑁  

expected to occur in a small interval of time 𝑑𝑡  and 

is proportional to the number of radioactive present 

nuclei 𝑁, which means −𝑑𝑁 ∝ 𝑑𝑡 and −𝑑𝑁 ∝ 𝑁. 

Thus, −𝑑𝑁 ∝ 𝑁𝑑𝑡 and this yields −𝑑𝑁 = 𝜆𝑁𝑑𝑡 

(negative because the number of nuclei decreases 

over time), which means that the rate of change of 

radioactive nuclei is proportional to the number of 

remaining radioactive nuclei 𝑁 . Therefore, we have 

 
𝑑𝑁

𝑑𝑡
+ 𝜆𝑁 = 0,                               (7) 

 

the differential equation above is similar to equation 

(3) presented in the monotonous evolution model, 

and as well its solutions are 

 

𝑁(𝑡) = 𝑁0𝑒−𝜆𝑡,                                (8) 

 

which is the radioactive decay law, where 𝑁(𝑡) is 

the quantity of remaining radioactive (undecayed) 

nuclei at time 𝑡, 𝑁0 is the initial quantity (at time 

𝑡 = 0), and the constant 𝜆 is called the decay 

constant or disintegration constant, or even 

transformation constant. So 𝐴 = 𝜆𝑁 is the activity 

of radioactive nuclei, which is the number of decays 

per second. Its unit is the Becquerel (𝐵𝑞) in SI, 

where 1𝐵𝑞 = 1 disintegrations/Sec, also the Curie 

(𝐶𝑖) and Rutherford (𝑅𝑑) in a non-SI, where 1 𝐶𝑖 =
3.7 × 1010 𝐵𝑞 and 1𝑅𝑑 = 106 𝐵𝑞, [15]. Since the 

activity is proportional to the number of radioactive 

atoms, it decreases exponentially with time as well 

 

𝐴(𝑡) = 𝐴0𝑒−𝜆𝑡.                               (9) 

 

The decay rate of a radioactive substance is 

characterized by the following time-independent 

parameters:  

 

1. The half-life 𝑡1/2 of a particular species of 

nuclei is the time that it would take for the 

number of nuclei 𝑁0 in a given sample to decay 

to halve. The larger the half-life of a nuclei, the 

less likely it is to decay in a given time. 

2. Mean lifetime 𝜏, which is the average lifetime 

of a radioactive particle before decay. 

3. Decay constant 𝜆, which is the reciprocal of the 

mean lifetime (in 𝑠−1), sometimes referred to as 

simply decay rate.  

4. The equation that combines the aforementioned 

properties is 

𝑡1/2 = 𝜏𝑙𝑛2 =
1

𝜆
𝑙𝑛2.                               (10) 

 

Knowing that 𝑡1/2 depends only on 𝜆 of the 

nuclei. It is always the same; the amount of time for 

the number of nuclei to decrease from 40 million to 

20 million is the same amount of time as it takes the 

number to decrease from 4.8 to 2.4. The initial 

number does not have an effect. 

Figure 3 illustrating the decay of remaining 

radioactive nuclei is as follows:  

Fig. 3: The graph shows the exponential decay of a 

radioactive element. It shows three different 

exponential decays, each with a different decay 

constant i.e., 25, 5, 1, 1/5, and 1/25.  
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The remaining radioactive nuclei undergo 

exponential decay, where larger decay constants 

make the quantity 𝑁 vanish much more rapidly. 

Now, if we have 𝑁0 = 𝑁 + 𝑁′, where 𝑁’ is the 

transformed nuclei (more stable), thus using 

equations (8), we have 

 

𝑁′(𝑡) = 𝑁0(1 − 𝑒−𝜆𝑡).                               (11) 

 

We also note that for any quantity related to the 

number of remaining radioactive nuclei 𝑁, the same 

previous laws of a differential equation and its 

solutions are applied to it. For example, we derive 

the law of radiative decrease in terms of remaining 

radioactive mass 𝑚(𝑡). We have 𝑛(𝑡) =
𝑁(𝑡)

𝑁𝐴
=

𝑚(𝑡)

𝑀
, where 𝑛, 𝑁𝐴, 𝑀 are the amount of substance, 

Avogadro number, and the atomic molar mass, 

respectively. So by using equation (8), we obtain 

 

𝑚(𝑡) = 𝑚0𝑒−𝜆𝑡,                               (12) 

 

where 𝑚0 is the initial mass of radioactive nuclei. 

 

3.2 Resistor–Capacitor Circuit (RC Circuit) 
The RC circuit is an electric circuit composed of 

resistor R and capacitor C. The simplest RC circuit 

consists of a resistor and a charged capacitor 

connected in a single loop. 

A capacitor is one of several kinds of devices 

used in electric circuits as in computers, radios, and 

other such equipment. The capacitors provide 

temporary storage of energy in circuits and the 

property of a capacitor that characterizes its ability 

to store energy is called its capacitance. When 

energy is stored in a capacitor, an electric field 

exists within the capacitor. 

 

3.2.1 Case of Capacitor Charging Process 

(Presence of a Voltage Source): 

We realize the electrical circuit consists of the 

components: a voltage source E (generator), a 

resistor, and a capacitor, connected to one another in 

a single loop. The diagram of RC circuit in the 

presence of a voltage source is presented in Figure 

4. 

 
Fig. 4: Diagram of RC circuit in the presence of a 

voltage source. 

Once the circuit is closed, the capacitor starts to 

charge its stored energy through E. The system we 

study will be described by a linear differential 

equation and its solution is the voltage across the 

capacitor 𝑈𝐶 , which is time-dependent, and it can be 

found by using Kirchhoff's current law (sum of 

voltage law) as follows 

 

𝑈𝐶 + 𝑈𝑅  = 𝐸.                               (13) 

 

      By using Ohm's law 

 

𝑈𝑅(t) = 𝑅𝑖(𝑡),                               (14) 
and 

 

𝑈𝐶(t) =
𝑞(𝑡)

𝐶
  𝑎𝑛𝑑   𝑖(t) =

𝑑𝑞(𝑡)

𝑑𝑡
,             (15) 

 

we have  

 
𝑑𝑈𝐶

𝑑𝑡
+

𝑈𝐶

𝑅
=

𝐸

𝑅𝐶
  𝑤𝑖𝑡ℎ    𝜏 = 𝑅𝐶,            (16) 

 

which is a linear differential equation similar to that 

of equation (1). Knowing that 𝑈𝑅, 𝑈𝐶 are resistor 

and capacitor voltages. 𝜏 is the time constant (in 

seconds), 𝑅 is the electric resistance (in ohms) and 

𝐶 is the electric capacitance (in farads). Noting that 

each variable has a relationship with the capacitor 

voltage, the studied system can be described by a 

differential equation according to it such as the 

charge 𝑞(𝑡) on the poles of the capacitor 

 
𝑑𝑞

𝑑𝑡
+

𝑞

𝜏
=

𝑄𝑚𝑎𝑥

𝜏
  𝑤𝑖𝑡ℎ   𝑄𝑚𝑎𝑥 = 𝐸𝐶.           (17) 

 

By solving the differential equation (16) 

describing the studied circuit, the voltage across the 

capacitor is 

 

𝑈𝐶(𝑡) = 𝐸(1 − 𝑒−
1

𝜏
𝑡),                                (18) 

 

where 𝑈𝐶𝑚𝑎𝑥 = 𝐸. 
 

3.2.2 Case of Capacitor Discharging Process 

 (Without a Voltage Source): 

We use the same circuit as before, but without an 

electrical voltage source E. The diagram of RC 

circuit in the absence of a voltage source is 

presented in Figure 5. 
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Fig. 5: Diagram of RC circuit in the absence of a 

voltage source. 

 

Once the circuit is closed, the capacitor starts to 

discharge its stored energy through the resistor. The 

voltage across the capacitor as well is time-

dependent. Both the linear differential equation that 

describes the system above and its solution (the 

voltage across the capacitor 𝑈𝐶) can be found by 

using the sum of voltages law as follows 

𝑈𝐶 + 𝑈𝑅  = 0.                               (19) 
        

   Now using equations (14) and (15), we then obtain 

 
𝑑𝑈𝐶

𝑑𝑡
+

𝑈𝐶

𝑅
= 0,                               (20) 

 

which is a linear differential equation similar to that 

of equation (3). Each variable has a relationship 

with the capacitor voltage 𝑈𝐶  can be used to study 

the system. Such as the following differential 

equation according to the charge on the poles of the 

capacitor 

 
𝑑𝑞

𝑑𝑡
+

𝑞

𝜏
= 0.                               (21) 

    

       As well, the equation from equation (19) using 

the voltage across the resistor 𝑈𝑅 (t) is 

 
1

𝜏
∫ 𝑈𝑅𝑑𝑡 + 𝑈𝑅 = 0,                               (22) 

 

which is a Fredholm integral equation, and once we 

derive it we get 

 
𝑑𝑈𝑅

𝑑𝑡
+

𝑈𝑅

𝜏
= 0.                               (23) 

       

       The same regarding the equation from the 

current 𝑖(𝑡), so by deriving equation (21), we have 

 
𝑑𝑖

𝑑𝑡
+

𝑖

𝜏
= 0.                               (24) 

 

       Now the solution to equation (18) is 

 

𝑈𝐶(𝑡) = 𝑒−
1

𝜏
𝑡.                               (25) 

      

       In this part, we can conclude that 𝜏 is the time 

required to charge the capacitor, through the 

resistor, from an initial charge voltage of zero to 

approximately 63.2% of E or to discharge the 

capacitor through the same resistor to approximately 

36.8% of E. 

 

3.3 Motion of a Real Fall of a Solid Object 

in the Air 
An example of modelling a real problem using 

differential equations is the determination of the 

velocity 𝑣 of a solid object (s) falling through the 

air, considering only gravity and air resistance. The 

ball's acceleration towards the ground is the 

acceleration due to gravity minus the deceleration 

due to air resistance. Gravity is considered constant, 

and air resistance may be modelled as proportional 

to the ball's velocity. This means that the ball's 

acceleration, which is a derivative of its velocity, 

depends on the velocity, which depends on time. 

Finding the velocity as a function of time involves 

solving a differential equation and verifying its 

validity. Now, we consider the system in question to 

be a solid object (s) falling from a certain height 

toward the ground (one-dimensional motion). Figure 

6 presentes th scheme of the various forces to which 

the body is subject. 

 
Fig. 6: Scheme of the various forces to which the 

body is subject. 

 

 The reference level for gravitational potential 

energy is the surface of the Earth. The external 

forces acting on the object (s) during its fall are the 

force from gravity 𝑝 = 𝑀�⃗�  and �⃗⃗� = 𝑚𝑎𝑖𝑟�⃗� =
𝜌𝑎𝑖𝑟𝑉�⃗� denotes the buoyant force applied onto the 
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submerged object (according to Archimedes' 

principle) and the force of friction 𝑓 = 𝑘𝑣𝑛𝑒𝑧, 

where for low object velocities 𝑛 = 1 and for high 

ones 𝑛 = 2. 

M is the mass of the body; g is Earth's 

gravitational acceleration; 𝜌𝑎𝑖𝑟 =
𝑚𝑎𝑖𝑟

𝑉𝑎𝑖𝑟
  is a 

volumetric mass of air (fluid) and 𝑉 is the volume of 

the solid object immersed in the fluid (equal to that 

of the displaced fluid i.e., 𝑉 = 𝑉𝑎𝑖𝑟). 𝑘 is the friction 

constant and 𝑣 is the solid object velocity. By 

applying Newton's second law (the basic principle 

of motion), we have 

 

∑ �⃗�𝑒𝑥𝑡 = 𝑝 + �⃗⃗� + 𝑓 = 𝑀𝑎𝑠,                              (26) 

where 𝑎𝑠 is the acceleration of the object (s). By 

projecting the equation (26) on the axis of motion 

and after simplifying, we find 

 
𝑑𝑣

𝑑𝑡
+

1

𝑀
𝑓 =

𝑀𝑔 − 𝜌𝑎𝑖𝑟𝑉𝑔

𝑀
,                             (27) 

 

with 𝜌𝑎𝑖𝑟 =
𝑀

𝑉
   is the volumetric mass of the solid 

object (s). 

 In the case of low velocities, we have 

𝑑𝑣

𝑑𝑡
+

𝑘

𝑀
𝑣 = 𝑔(1 −

𝜌𝑎𝑖𝑟

𝜌𝑠
),                            (28) 

 

which is a 1st-order differential equation similar to 

equation (1), its solution is like equation (2), which 

is 

𝑣(𝑡) = 𝑣𝑙 (1 − 𝑒−
1

𝜏
𝑡).                              (29) 

 

Here 𝑣𝑙 is the terminal velocity and 𝜏 =
𝑀

𝑘
. In the 

permanent regime, we have  
𝑑𝑣

𝑑𝑡
= 0, thus we obtain 

𝑣𝑙 =
𝑔

𝑘
(𝑚 − 𝜌𝑎𝑖𝑟𝑉).                               (30) 

 

The terminal velocity of the object increases with 

the increase in the volumetric mass of the solid 

object, and the following table (Table 1) gives some 

examples: 

 

 

 

 

 

 

 

Table 1. Some solid objects and their terminal 

velocities 𝑣𝑙. 

Solid Object Terminal Velocity 

𝒗𝒍 (m/s ) 
Paratrooper in free vertical 

fall 
8,5 

Paratrooper with an 

opened parachute 
6,5 

Table tennis ball 7 
Golf ball 30 

A steel ball with a radius 

of 2 cm 
80 

Stone of radius 1 cm 30 
A drop of water 10 

 In the case of high velocities, we have 

𝑑𝑣

𝑑𝑡
+

𝑘

𝑀
𝑣2 = 𝑔(1 −

𝜌𝑎𝑖𝑟

𝜌𝑠
),                          (31) 

 

   where the terminal velocity is 

𝑣𝑙 = √
𝑔

𝑘
(𝑚 − 𝜌𝑎𝑖𝑟𝑉).                               (30) 

 

Now, Figure 7 presents a graph from equation 

(24) as follows: 

 

 
Fig. 7: Plot of 𝑣 = 𝑓(𝑡) where 𝑣𝑙 = 10 and 𝜏 = 2. 

 

3.4 Formed and Reacted Substance 

Amounts during Chemical Reactions 
As another example regarding the phenomena that 

develop monotonously, let's consider the evolution 

of the formed or reacted (hidden) substance amounts 

and the progress of reaction (as the extent of 

reaction) in the chemical reactions in aqueous 

solutions. By considering the simple chemical 

equation as 𝐴 + 𝐵 → 𝐶 + 𝐷, where the chemical 

reactants on the left and those of the chemical 

products on the right. The amount of substance 𝑛𝐴 is 

of the hidden reactant A and 𝑛𝐶 is of the formed 

product C and the progress of chemical reaction 𝑋, 
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which expresses the number of times the reaction 

occurs; it is at the macroscopic level. So, in a 

chemical reaction in an aqueous solution, the 

evolution of the amount of the formed substance 

will be exponentially increasing while the amount of 

the reacted substance will be exponentially 

decreasing. As a result, we present the plot of  𝑛𝐴 =
𝑓(𝑡), 𝑛𝐶 = 𝑔(𝑡)) where 𝜏 = 2 in Figure 8.  

 

 
Fig. 8: Plot of  𝑛𝐴 = 𝑓(𝑡); 𝑛𝐶 = 𝑔(𝑡)) where 𝜏 = 2. 

 

In addition, the equation of the progress of 

reaction in time 𝑋(𝑡) will be 

 

𝑋(𝑡) = 𝑋𝑚𝑎𝑥 (1 − 𝑒−
1

𝜏
𝑡),                              (29) 

 

where 𝑋𝑚𝑎𝑥  is the maximum number of times the 

reaction occurs, it also corresponds to the smallest 

value of the progress for which the final quantity of 

at least one of the reactants is zero. We also have the 

half-life  𝑡1/2, which is intended to compare two 

chemical reactions in terms of speed or to examine 

whether the reaction is slow or fast. So, 𝑡1/2 of a 

chemical reaction is the time required for the 

reaction to progress half its final progression, i.e., 

for 𝑡 = 𝑡1/2, we have 𝑋1/2 =
𝑋f

2
. Once the reaction 

is complete, then 𝑋f = 𝑋max. 

 

We draw attention to that any amount related to 

the amount of substance, such as concentration, 

could be used in the study. 

 

Finally, yet importantly, we note that with each 

application study, the picture becomes clearer. As 

well, the permanent regime (the speed constancy) is 

reached after a period of 5𝜏. 

 

 

 

 

 

 

4 Conclusion 
Many phenomena develop monotonously where the 

evolution of these phenomena is described by 

differential equations and their solutions give 

accurate descriptions of these developments. The 

most known developments are those that develop 

exponentially. In this work, we have put a 

mathematical model used to describe these 

phenomena and shed light on the most common 

important phenomena that are increasing 

exponentially in one direction and those that are 

decreasing exponentially in one direction. Such as 

the radioactive decay, charging, and discharging of 

a resistor–capacitor circuit and the motion of a real 

fall of a solid object in the air, as well, as the 

progress of quantities of substance when formed or 

reacted during chemical reactions in an aqueous 

solution. Besides, we explained some of the 

mathematical properties of these phenomena. 
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