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Abstract: The main objective of this note is to explore if, making a small perturbation of an uncontrollable multi-
agent linear system with a previously interrelationship topology established, a controllable multi-agent system
with the same topology can be obtained. Arnold geometric techniques will be used for the objective, and versal
deformations will be constructed in the set of equivalent systems.
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1 Introduction

Recently, the study of multiagent systems has at-
tracted the attention of many researchers because this
class of systems appears in various areas of knowl-
edge, such as the cooperative control of unmanned
aerial vehicles, the consensus problem of communi-
cation networks, the training control of mobile robots,
neural networks modeling the brain structure, Etc.,
[5], [9], [10].

An interesting technique for analyzing pertur-
bations and investigating complicated objects such
as singularities and bifurcations in multiparamet-
ric dynamical multi-systems is the construction of
versal deformations since they provide a particular
parametrization of families of multi-systems.

Versal deformation permits speaking of generic
families relative to a generic property of interest as,
for example, controllability. In this case, generic fam-
ilies with controllable members have the property that
such members remain even when the family is per-
turbed. The generic property permits us that a small
perturbation may eliminate all the non-controllable
cases. In order to construct versal deformation, one
defines an equivalence relation in the space of multi-
agent systems preserving controllability character.

The knowledge of a versal deformation provides a
particular parametrization of the space of multi-agent
systems in a neighborhood of a fixed point, which can
be effectively applied to the perturbation analysis of
this point.

(For more information about versal deformations,
see [1], [2], [3]).

2 Preliminaries
Let us consider a group of k agents. The following lin-
ear dynamical systems give the dynamic of each agent

ẋ1(t) = A1x
1(t) +B1u

1(t) + C1v
1(t)

...
ẋk(t) = Akx

k(t) +Bku
k(t) + C1v

k(t)

 (1)

Ai ∈ Mn(IC), Bi ∈ Mn×m(IC), Ci ∈ Mn×p(IC),
xi(t) ∈ ICn, ui(t) = f i(x1(t), . . . , xk(t) ∈ ICm,
vi(t) ∈ ICp, 1 ≤ i ≤ k.

Sometimes, the considered internal controls ui
are given by means a communication topology de-
fined by an undirected graph with

i) Vertex set: V = {1, . . . , k}

ii) Edge set: E = {i, j) | i, j ∈⊂ V × V

iii) Neighbor of i: Ni = {j ∈| (i, j) ∈ E}. (In the
case where j = i the edge is called self-loop).

defining the communication topology among agents:

ui(t) =
∑
j∈Ni

(xi(t)− xj(t)), 1 ≤ i ≤ k

for some Ki ∈Mm×n(IC), 1 ≤ i ≤ k
Writing X = (xi, . . . , xk)t, U = (ui, . . . , uk)t

and V = (vi, . . . , vk)t, and considering the Laplacian
matrix associated with the graph that is defined in the
following manner

L = (lij) =


|Ni| if i = j
−1 if j ∈ Ni

0 otherwise
(2)
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To simplify notations, we will write the systems
in matrix language:

A = diag (A1, . . . , Ak)

∈Mn(IC)× k. . .×Mn(IC) = M1

B = diag (B1, . . . , Bk)

∈Mn×m(IC)× k. . .×Mn×m(IC) = M2

C = diag (C1, . . . , Ck)

∈Mn×p(IC)× k. . .×Mn×p(IC) = M3

and X = (xi, . . . , xk)t, U = (L ⊗ In)X =
(ui, . . . , uk)t and V = (vi, . . . , vk)t, and in the case
where the communication topology for internal con-
trol is considered, the control is written as U = (L ⊗
In)X,

Finally. we will call by M the set M = M1 ×
M2 × M3. This set is clearly, a differentiable mani-
fold.

3 Equivalence relation for differen-
tiable families of multi-systems

In the set M we consider the following equivalence
relation

Definition 1 Two systems (A1,B1,C1) and
(A2,B2,C2) in M are said equivalent if and
only if, there exist P = diag(P1, . . . , Pk) ∈
Gl(n; IC)× k. . .×Gl(n; IC), Q = diag(Q1, . . . , Qk) ∈
Gl(m; IC)× k. . .×Gl(m; IC), R = diag(R1, . . . , Rk) ∈
Gl(p; IC) × k. . . ×Gl(p; IC), K = diag(K1, . . . ,Kk) ∈
Mm×n(IC) × k. . . × Mm×n(IC) and F =

diag(F1, . . . , Fk) ∈Mp×n(IC)× k. . .×Mp×n(IC), such
that

(A2,B2,C2) =
(P−1A1P+ P−1B1K+ P−1C1F,P−1BQ,P−1CR)

This equivalence relation can be seen as the action
by a Lie group in the following manner:

Let G = {(P,Q,R,K,F) ∈ Gl(n, IC) ×
Gl(m; IC)×Gl(p; IC)×Mm×n(IC)×Mp×n(IC). It is a
Lie group to the usual product of matrices in the form:

 P1 0 0
K1 Q1 0
F1 0 R1

 ·

 P2 0 0
K2 Q2 0
F2 0 R

 = P1P2 0 0
K1P2 +Q1K2 Q1Q2 0
F1P2 + R1F2 0 R1R2



and

 P1 0 0
K1 Q1 0
F1 0 R1

−1

=

 P−1
1 0 0

−Q−1
1 K1P

−1
1 Q−1

1 0

−R−1
1 F1P−1

1 0 R−1
1


G acts over M in the following manner
Calling G = (P,Q,R,K, F ) and M =

(A,B,C) ∈ M,

φ : G ×M −→ M
(G,M) −→ φ(G,M) = M̄

(3)

Where M̄ = (P−1AP + P−1BK +
P−1CF,P−1BQ,P−1CR)

φ is differentiable and surjective.
Fixing M0 = (A0,B0,C0) ∈ M we have the

differentiable map

φM0 : G −→ M
G −→ φ(G,M0)

(4)

The image of this map ImφM0 is the set of equiv-
alent systems to M0 and it is called orbit of M0 and
it is denoted by O(X0). On the other hand, the sub-
set of G leaving invariant the system M0, {G ∈ G |
φM0(G) =M0} is called the stabilizer of M0.

The differentiability of the action allows a local
study of the orbit and the stabilizer computing the dif-
ferential of φM0 .

Lemma 2 The differential dφM0,I : TIG −→ M at
the identity point I ∈ G, on any element G ∈ TIG, is
given by

dφM0,I(G)) =
([A,P] + BK+ CF,BQ− PB,CR− PC)

Remark 3 TIG = {(P,Q,R,K,F) ∈ Mn(IC) ×
Mm(IC) × Mp(IC) × Mm×n(IC) × Mp×n(IC). and
TM0M = M.

Proof:
It suffices to compute the linear approximation of

the map on the identity.

φM0(I+ εG) =
M0 + ε(([A,P] + BK+ CF,BQ− PB,CR− PC))

+ε2 . . .

⊓⊔
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4 Versal deformations
There is quite a lot of literature in which it can find
the definition of deformation and versal deformation;
in this case, we take the one found in [6]

Definition 4 A deformation of an element M0 ∈ M
is a family of elements of M indexed by λ ∈ Λ φ :
Λ −→ M where Λ ⊂ ICm is a neighborhood of 0, and
where φ(0) = M0 and φ depends smoothly on the
parameters.

Definition 5 A deformation φ(λ) = φ(λ1, . . . , λm)
of M0 is versal if and only if for any deformation
φ′(µ1, . . . , φk) ∈ M of M0, φ′(µ) is induced by
φ(λ), that is to say, there exists a neighborhood V
of 0 in ICk, a map ψ : V −→ ICm with ψ(0) = 0, and
a map g : V −→ G with g(0) = I such that ∀µ ∈ V ,
φ′(µ) = g(µ)φ(ψ(µ))g−1(µ) with ψ and g holomor-
phic (smooth).

It is obvious that if we have a versal deforma-
tion of an element, automatically we have a versal
deformation of any element that is equivalent to it,
since if M = φ(G,M0) is an equivalent element
of M0 and φ(λ) is a versal deformation of M0 then
φ(G−1, φ(λ)) is a versal deformation of M ′.

A versal deformation having a minimal number
of parameters is called miniversal.

4.1 Transversality
The versatility condition admits a useful geometric
characterization in terms of transversality. We begin,
then, by recalling the notion of transversality.

Definition 6 Let S ⊂ W be a differentiable subman-
ifold of a manifold W . Consider a differentiable map
ψΛ −→ W , of another manifold S on W . Let λ ∈ Λ
such that ψ(λ) ∈ S

It is said that the map ψ is transversal to S in λ,
if the tangent space to W , in ψ(λ) decomposes in the
way:

Tψ(λ)W = Im dψλ + Tψ(λ)S.

It is called mini transversal if said sum is direct.

Transversality allows obtaining local trivializa-
tions along the orbits:

Proposition 7 Let ψ : Λ −→ M be a deformation
of M0 minitransversal to the orbit O(M0) in 0, and
G1 ⊂ G a submanifold minitransversal to the stabi-
lizer of M0 in I. then the application

β : Λ×G1 −→ M

defined by β(λ,G) = φ(G,M0(λ) is a local diffeo-
morphism at (0, I).

Proof: It suffices to apply the inverse function theo-
rem and to prove that dβ is exhaustive at (0, I). ⊓⊔

The following result was proved by Arnold [1],
in the case where Gl(n;C) acts on Mn(C), remark-
ing that what was important was the action of the Lie
group on the variety, thus generalizing the result and
providing the relationship between a versal deforma-
tion of M0 and the local structure of the orbit.

Theorem 8 ([1]) 1. A deformation φ(λ) of (M0) is
versal if and only if it is transversal to the orbit
O(M0) at (M0).

2. The minimal number of parameters of a versal
deformation is equal to the codimension of the
orbit of M0 in M, ℓ = codimO(M0).

Corollary 9 Then φ(λ) =M0 + (TM0O(M0))⊥ for
some scalar product is a miniversal deformation.

Let {v1, . . . , vℓ} be a basis of any arbitrary com-
plementary subspace (TM0O(M0)c to TM0O(M0).

Corollary 10 The deformation

φ : Λ ⊂ Cℓ −→M, φ(λ) =M0 +
ℓ∑
i=1

λivi

is a miniversal deformation.

The versatility condition admits a useful geomet-
ric characterization in terms of transversality. We be-
gin, defining scalar products in M and TIG, we can
consider the adjoint application of dφM0 .

The Euclidean scalar product considered in this
paper is defined as follows:

For all M i = (Ai,Bi,Ci) ∈ M

⟨M1,M2⟩1 =
trace(A1A∗

2) + trace(B1B∗
2) + trace(C1C∗

2),
(5)

where A∗ denotes the conjugate transpose of a matrix
A.

Theorem 11 The normal complementary subspace to
tangent space to the orbit of the system M0 is defined
by the set of elements (X,Y,Z) ∈ M verifying

[X∗,A]− BY∗ − CZ∗ = 0
X∗B = 0
X∗C = 0
Y∗B = 0
Z∗C = 0
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Proof:
It suffices to observe that:

⟨(([A,P]+BK+CF,BQ−PB,CR−PC), (X,Y,Z)⟩ = 0

for any (P,Q,R,K,F) ∈ TIG, if and only if

trace

 [X∗,A]− BY∗ − CZ∗ X∗B X∗C
0 Y∗B 0
0 0 Z∗C


·

 P ⋆ ⋆
K Q ⋆
F ⋆ R

 = 0

⊓⊔
After this theorem, it is easy to compute these

spaces.

5 Controllability

The importance of the qualitative property of dynamic
systems in the control theory, known as controllabil-
ity, is well known.

The controllability concept involves taking the
system from any initial state to any final state in finite
time, regardless of the path or input. Let us consider
the multi-agent system 1

It is important to emphasize that various defini-
tions of controllability are derived, depending to a
large extent on the class of dynamic systems and the
form of allowable controls, [7].

In our particular setup, the controllability charac-
ter can be described as

rank
(
A− λIn×k B C

)
= nk

Proposition 12 The controllability character is in-
variant under the equivalence relation considered.

Proof:

rank
(
A− λIn×k B C

)
=

rankP−1
(
A− λIn×k B C

) P
K Q
F R


⊓⊔

For a fixed B-feedback K and the fixed topology
comunication, the system 1 can be written as

Ẋ(t) = (A+ BK(L ⊗ In))X(t) + CV(t). (6)

(See [8] for Kronecker product properties).

The controllability of the system can be analyzed
by computing the rank of the controllability matrix:

(C (A+ BK)(L ⊗ In))C)
. . . (A+ BK)(L ⊗ In))

nk−1C)

The rank of this matrix is invariant under feed-
back, that is to say

Proposition 13 The matrix controllability of the sys-
tem 1 is invariant under external feedback

Proof:

rank (C (A+ BK)(L ⊗ In) + CF)C) . . .
(A+ BK)(L ⊗ In) + CF)nk−1C)
= rank (C (A+ BK)(L ⊗ In))C) . . .
(A+ BK)(L ⊗ In))

nk−1C)

·

 I FB . . .
I FB . . .
. . . . . .


⊓⊔

We are going to carry out the study for a particular
case in which all the systems have the same dynamics,
that is, Ai = A, Bi = B, Ci = C and Ki = K for
all 1 ≤ i ≤ k; and the graph defining the topology
relating to the systems is undirected and connected.
For being un undirected graph the matrix L is sym-
metric, then there exist an orthogonal matrix P such
that PLP t = D, and the connection ensures that 0 is
a simple eigenvalue of L.

Proposition 14 Under these conditions, the system
can be described as

Ẋ(t) =
((Ik ⊗A) + (Ik ⊗BK)(L ⊗ In))X(t) + (In ⊗ C)V(t)

(7)

In our particular setup, we have that there ex-
ists an orthogonal matrix P ∈ Gl(k,R) such that
PLP t = D = diag (λ1, . . . , λk), (λ1 ≥ . . . ≥
λk−1 > λk = 0).

Corollary 15 The system can be described in terms of
the matrices A, B, C the feedback K and the eigen-
values of L.

Proof:
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Following the properties of Kronecker product,
we have that.

(P ⊗ In)(Ik ⊗A)(P t ⊗ In) = (Ik ⊗A)
(P ⊗ In)(Ik ⊗BK)(P t ⊗ In) =
(Ik ⊗BK)
(P ⊗ In)(Ik ⊗ C)(P t ⊗ Ik) = (Ik ⊗ C)
(P ⊗ In)(L ⊗ In)(P

t ⊗ In) = (D ⊗ In)

and calling X̂ = (P ⊗ In)X, and V̂ = (P ⊗ Ik)V we
have

˙̂X=((Ik⊗A)+ (Ik⊗BK)(D⊗ In))X̂+(Ik⊗C)V̂.

Using this description, the analysis of controlla-
bility is easier.

Proposition 16 The system (7) is controllable if and
only if the systems (A + λiBK,C) are controllable
for each 1 ≤ i ≤ k.

5.1 Perturbation

The controllability character is generic in multi-agent
systems’ space M.

Proposition 17 The subset C ⊂ M of the control-
lable multi-agent systems is an open and dense set in
the space M of multi-agent systems.

Proof:
Taking into account that if a nk-order minor is

non-zero, it is in the neighborhood, we conclude that
all small perturbations of this minor are non-zero, and
in particular for all perturbed minors corresponding to
a perturbed system, so the set C is open in M, and for
density it suffices to take into account the fact that the
function rank : ICm×n −→ IR is lower semicontinuous
in the space of rectangular matrices of size r × s for
all pair of non-zero positive numbers r and s. ⊓⊔

Then, the set of controllable systems is the
union of orbits of controllable systems. Each non-
controllable system is located on the frontier of one
of these orbits.

Proposition 18 For each non-controllable system,
there exists a neighborhood of this system containing
controllable systems. These controllable systems can
be described using the miniversal deformation of the
given system.

For the case of the non-controllable systems 6,
and in order to preserve the fixed feedback K, the
equivalence relation is reduced to external feedback
in the following sense

Definition 19 Two systems Ẋ(t) = (A + BK(L ⊗
In))X(t) + CV(t) and Ẋ(t) = (A1 + BK(L ⊗
In))X(t) + C1V(t) are equivalent if and only if

A1 = A+ CF, C1 = CR

for some F ∈
∏
kMp×n(IC) and R ∈

∏
kGl(p, IC)

This relation can be given in a matritial expres-
sion:

(
A1 0 C1

)
=

(
A 0 C

) I
I

F R



where

 I
I

F R

 ∈ G1 ⊂ G

G1 has the structure group with the same opera-
tion as G.

Proposition 20 For a non-controllable system of type
6, If in a neighborhood of it, there exists a controllable
one it can be found in (A+X, 0,C+Z) with (X, 0,Z)
in a neighborhood of 0 ∈ M verifying that X∗C = 0
and Z∗C = 0.

Proof: It suffices to consider the miniversal deforma-
tion restricted to this case.

⊓⊔

6 Conclusion

In this work, we have explored whether, with a small
perturbation of a non-controllable multi-agent linear
system with a previously established interrelationship
topology, we can obtain a controllable multi-agent
system with the same topology. For this, we have used
geometric techniques defining transversal families to
the set of equivalent systems under a previously de-
fined equivalence relation that preserves controllabil-
ity.
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