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1 Introduction 
The Traveling Salesman Problem (TSP) is among 

the most widely studied combinatorial optimization 

problems, and many studies have been conducted in 

an attempt to identify a reliable solution, a solution 

that is simple to state but very difficult to find. One 

of the first solutions was found during the 1950s by 

Dantzig, Fulkerson, and Johnson [1]. The objective 

of the problem is to find the shortest possible tour 

through a set of N vertices, and in such a way that 

each vertex is visited exactly once. This problem is 

classified as NP-hard problem [2] and there are two 

reasons for this. First, there are no quick solutions 

and second, the complexity of calculating the most 

optimum route increases when more destinations are 

inserted to the TSP. There are many exact and 

heuristic algorithms that have been devised in the 

field of operations research (OR) to solve the TSP. 

It is obvious that the number of possible tours 

increases explosively as the number of cities 

increases. 

A Self-Organizing Map (SOM) is a type of 

Artificial Neural Network (ΑΝΝ) that uses 

unsupervised learning, in order to build a 2D map of 

the problem space. The key difference between a 

self-organizing map and other approaches to 

problem-solving, is that a self-organizing map uses 

competitive learning rather than error - correction 

learning, such as the well-known backpropagation 

algorithm with gradient descent. A self-organizing 

map can generate a visual representation of data on 

a hexagonal or rectangular grid. Applications of 

SOM include among others, meteorology, 

oceanography, project prioritization, as well as, oil 

and gas exploration. A self-organizing map is also 

known as a self-organizing feature map (SOFM) or 

a Kohonen map [3], [78]. The Self-Organizing Map 

(SOM) networks, originally proposed by Kohonen, 

solve the TSP via unsupervised learning. The 
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application of the artificial neural network approach 

in solving TSP, was initiated by Bernard Angeniol, 

Gaël de La Croix Vaubois, and Jean-Yves Le Texier 

in 1988 [27]. The calculations are based on the 

lowest value obtained from the energy function and 

have been improved until the SOM algorithm is 

used to solve this problem. 

A two-layer network with a two-dimensional input 

unit and m output units is utilized to apply SOM to 

the TSP. A ring expanding toward the locations of 

the cities can be used to represent how the network 

evolves. The coordinates of cities serve as the input 

data, and the coordinates of the ring's points serve as 

the weights of the nodes. The cities are presented in 

a random sequence to the network, and nodes 

compete based on Euclidean distance. The node that 

is closest to the city that is being presented is the 

winner node. Also, the winning node and its 

neighbors advance toward the city that is being 

presented in each iteration utilizing the 

neighborhood function in conjunction with an 

updated function. The winner's neighbor nodes' 

influence on a city is determined by the 

neighborhood function. It should be observed that 

updating nearby nodes in response to inputs exerts a 

force that preserves nodes close to one another and 

establishes a mechanism for condensing the created 

tour. 

Fig.1 shows a schematic view of a SOM-like 

network for the TSP. A ring of output neurons, 

denoted by 1, 2, to M, is employed to characterize 

the feature map. The input neurons, receiving the 

data of the input city (say, coordinate values), are 

fully connected to every output neuron. Fig.2 

illustrates the initialization step, an intermediate 

step, as well as the final state of the training process; 

the solution is represented in the fourth graph. 

 

Fig. 1: A schematic SOM-like network for the TSP. 

M is the number of output neurons and p is the 

number of input neurons, say 2, for the 2-

dimensional Euclidean TSP [50]. 

 

Fig. 2: The progress of applying the SOM algorithm 

can be displayed in two-dimensional planes as 

shown above. The dots are the cities of a TSP which 

are the coordinates of a location. The circle in the 

left–top picture, shows the ring that usually starts 

from a random location. After that, the main 

algorithm of SOM starts tracking the next location, 

and the convex-hull spreads across the axis x & y 

during the algorithm execution. The final iteration 

shows the best solution for the TSP map [45]. 

To solve a TSP, the algorithm needs the feeding of 

data in the input layer as a TSPLIB file. TSPLIB is a 

library of sample instances for the TSP (and related 

problems) emerged from various sources and of 

various types. An example of a library is ‘qa194.tsp’ 

with the filename identifies a country / dataset as 

well as the number of the cities / dots of this dataset 

(in this example the data are associated with the 

country of Qatar and a number of 194 cities). Other 

examples of these TSPLIF filenames are ‘pbc1173’ 

and ‘bier127’. 

After this short description regarding the Self-

Organizing Map and the Traveling Salesman 

Problem, the paper is organized as follows: In 

Section (2), the different categories of models that 

solve the problem are presented. On the other hand, 

in Section (3) the focus is given to the subcategories 

of enriched models. Section (4) presents the Hybrid 

models as well as their special types. The objective 

of Section (5) is the presentation of the Multiple 

Salesman TSP models. Section (6) is a brief review 

of a similar problem which is called the Vehicle 

Routing Problem (VRP) and is considered as a 

generalization of the Travelling Salesman Problem 

(TSP), and the TSP with drones (TSP-D) is also 

presented. Least, but not last, in Section (7), some 

computational results are presented. 
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2 Categories 

In this section, the different models of SOM that 

solve the TSP are introduced. The models are 

classified according to the complexity of the 

underlying algorithm used by each one of them. 

Some models are more complicated to be 

constructed, and some others require fewer 

modifications. The literature search revealed two 

main categories of such models. The first one is the 

Enriched SOM model which consists of the basic 

SOM with some upgrades, while the second 

category is identified by the Hybrid SOM model. 

A hybrid algorithm is defined as an algorithm that 

combines two or more other algorithms that solve 

the same problem. This statement does not describe 

a combination of multiple algorithms that solve 

different problems – in fact, many algorithms can be 

considered as combinations of simpler pieces – but, 

instead, a combination of algorithms that solve the 

same problem, but they differ in characteristics, 

such as the performance. The experience has shown 

that these hybrid methods lead to higher 

performance, better computational results, and more 

flexibility on large-scale data. On the other hand, the 

disadvantages of hybrid methods are mostly 

associated with the complexity of the algorithms 

regarding the construction of the primary model. 

The reason for this is that the network is a 

combination of two or more methods, and therefore, 

it is difficult to build. Also, we must note that some 

algorithms are characterized by poor performance 

regarding the time spent to finish. Hybrid algorithms 

are further divided into greedy, evolutionary, 

genetic, memetic, chaos, and fuzzy algorithms. 

In a more detailed description, a greedy algorithm is 

an algorithmic paradigm that builds up a solution 

piece by piece, always choosing the next piece that 

offers the most obvious and immediate benefit. This 

means that the class of problems in which the 

selection of the local optimum, also leads to the 

global optimum, are the best fit for greedy 

algorithms. The advantage of using this type of 

algorithm, is that the solutions associated with 

smaller instances of the problem, are generally 

straightforward and easy to understand. On the other 

hand, the disadvantage of greedy algorithms is that 

it is entirely possible that the most optimal short-

term solutions may lead to the worst possible long-

term outcome. 

On the other hand, an evolutionary algorithm is 

nothing more than an evolutionary-based computer 

application that is capable of solving problems by 

employing processes that mimic the behaviors of 

living things. As such, it uses mechanisms that are 

typically associated with biological evolution, such 

as reproduction, mutation, and recombination. 

However, the drawback of this type of algorithm is 

that it requires a lot of computational power. It is 

interesting to note, that evolutionary algorithms are 

behaved in a Darwinian-like natural selection 

process; the weakest solutions are eliminated, while 

the stronger, more viable options, are retained and 

re-evaluated in the next evolution with the goal to 

arrive at optimal actions to achieve the desired 

outcomes. 

A genetic algorithm is a heuristic search method 

used in artificial intelligence and computing. It is 

employed to find optimized solutions to search 

problems based on the theory of natural selection 

and evolutionary biology. Genetic algorithms are an 

excellent tool for searching through large and 

complex data sets. The most serious disadvantages 

of genetic algorithms, is the high cost of their 

implementation, as well as the difficulties associated 

with the debugging process. Furthermore, on some 

occasions, they can be difficult to understand. 

The memetic algorithms can be viewed as a 

combination of a population-based global technique 

with a local search procedure made by each one of 

the individuals. These algorithms are special types 

of genetic algorithms with a local hill climbing. The 

memetic algorithms, like genetic algorithms, are a 

population-based approach. 

A chaotic self-organizing map can be produced by 

replacing the linear neural units of the conventional 

self-organizing map with neural units capable of 

producing chaos. 

Fuzzy logic is an interesting approach that allows 

the association of multiple possible truth values with 

the same variable. Fuzzy logic attempts to solve 

problems using an open, imprecise spectrum of data 

and heuristics that makes it possible to obtain 

accurate conclusions. Fuzzy logic is designed to 

solve problems by considering all available 

information and making the best possible decision 

given the input. 

Simulated annealing (SA) is a probabilistic 

technique for approximating the global optimum of 

a given function. Specifically, it is a metaheuristic 

that allows the approximation of global optimization 

in a large search space for an optimization problem. 

It is often used when the search space is discrete. 

Elastic net linear regression uses the penalties from 

both the lasso and ridge techniques to regularize 

regression models. The technique combines both 
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the lasso and ridge regression methods, by learning 

from their shortcomings, to improve the 

regularization of statistical models. 

Finally, the paper is also considered the multiple 

salesman problem, that solves the TSP with more 

than one salesman as the classic one. 

 

 

3 Enriched Models 
 

3.1 Convex-hull Property Models 
The convex-hull of a set of points in a two-

dimensional Euclidean space, is defined as the 

smallest (in terms of area) convex polygon that 

includes all the points in the set. This subsection 

presents models that are based on this feature. 

Guan et al. [5] proposed the so-called Topology 

Preserving SOM (TOPSOM). The process of gain-

ing knowledge in TOPSOM includes the appropriate 

arrangement of the output layer, the mapping of 

neurons to the input nodes that represent cities, as 

well as the identification of a minimum path that 

passes from all cities and then returns back to the 

starting point. The goal of this method is the satis-

faction of two constraints, namely, the preservation 

of index topology and the convex hull. The main 

steps of TOPSOM are the following: 

1. Normalization and Random Initialization. 

2. Winner selection. 

3. Improved Hebbian Learning process. 

4. Final tour construction. 

Zhang et al. [6] proposed the so-called overall - 

regional competitive SOM (ORC-SOM). In this 

model there are two rules that describe a 

competition process, namely, the overall 

competition, and regional competition. These rules 

are introduced into the circular standard SOM 

competitive learning algorithm: the purpose of the 

overall competition is to outline the tour, while 

regional competition is responsible for refining it in 

order to obtain the optimal and / or near-to-optimal 

solution of the TSP. The ORC-SOM model can be 

considered as a simple extension of a standard 

SOM, with an overall - regional competitive 

learning rule embedded. The ORC-SOM learning 

algorithm for solving the 2-D Euclidean TSP of N 

cities uses as input the coordinates of N cities in 

two-dimensional space, returns as output an optimal 

or near-to-optimal tour, and uses as parameter a 

circular SOM with two inputs and suitable M output 

neurons with M >N. 

Xu et al. [7] proposed a Convex-Hull SOM 

(CHSOM) model. The proposed SOM is first 

initialized with cities on the convex-hull of a 

problem. In order to keep the convex-hull property 

of the problem, a principle of neuron creation and 

deletion is introduced into the proposed SOM. The 

algorithm is described as follows: 

Initialization method: The SOM initially has k 

neurons where k is the number of cities on the 

convex hull. In other words, there is an 1-to-1 

mapping of the set of neurons to the associated set 

of cities. Furthermore, the value associated with 

each neuron is the same as the value of the 

corresponding city. 

Neuron creation: During learning, only those cities 

that are not located on the convex-hull are fed into 

the input neurons. First, one city is fed into the input 

neurons. Then, a winner is selected based on the 

competing rule. In this model, there are two cases 

where the creation of a neuron is required. The first 

one is when an initializing neuron becomes a 

winner. In this case, a neuron is created and is 

associated with the same value as the initializing 

neuron. In the next step, the newly created neuron is 

inserted into the ring as the left neighbor or the right 

neighbor of the winner. Fig.3 shows that principle. 

 

Fig. 3: The principle that allows the determination 

of the position for the insertion of a newly created 

neuron. In this figure, V1 is the winner, and V4 is 

the input city. Furthermore, V2 is the left neighbor 

of V1, while V3 is its right neighbor [7]. 

Neuron deletion: A node is deleted if it has not been 

chosen as the winner by any city during three 

complete surveys. 

Neighborhood function: This function is described 

by a mathematical equation. Once a neighbor is an 

initializing neuron, the neighborhood updating 

process skips this neuron. In other words, only those 

neighbors that are not initializing neurons are 

updated. 

Yang & Yang [8] proposed an Expanding Property 

SOM (EPSOM) model. The process used in this 

method is described as follows: Within each 

iteration, the excited neuron is drawn towards the 

input city as well as towards the convex hull. The 

former adaptation, together with the cooperative 

adaptation of neighbor neurons, will gradually 
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discover the topological neighborhood relationship 

of the input data. Meanwhile, the latter adaptation, 

together with the cooperative adaptation, can 

approach the convex hull property of the TSP. To do 

so, it is reasonable to push the excited neuron away 

from the center of the city. The procedure to 

implement the idea is described as follows: 

1. Take the coordinates of the cities. 

2. Randomly set the weight vectors and nullify the 

iterations. 

3. Randomly select a city and feed it to the input 

neurons. 

4. Find the winning neuron according to the 

Euclidean metric. 

5. Train the neuron and its neighbors. 

6. Update the width parameter and the learning 

parameter according to a predefined decreasing 

scheme, and if the learning is not terminated, 

go to Step 3. 

7. Calculate the activity value of each city. 

8. Order the cities by their activity values and 

then form a tour for the TSP. 

Kwong-Sak et al. [9] proposed an Expanding SOM 

(ESOM) model. The basic idea of the ESOM is to 

include implicitly the convex hull property in its 

learning rule, with little additional computation. The 

convex hull property is acquired gradually, as the 

topological neighborhood among cities is being in-

spected and preserved. Therefore, this ESOM model 

tries to satisfy sufficient and necessary conditions 

for optimal tours. This is realized in the following 

way: In a single update iteration, besides drawing 

the excited neuron towards the input city, it is ex-

panded towards the convex hull. It is worth noting 

that the approach of the convex hull can be approx-

imated by moving away from the center of the cit-

ies. The motivation of the developed ESOM model 

is to approximate an optimal tour by trying to satisfy 

a sufficient condition (namely, the neighborhood 

preserving property), as well as a necessary condi-

tion (namely, the convex-hull property). The steps 

of the algorithm are the following: 

1. Map all the city coordinates into a circle. 

2. Randomly set the weight vectors. 

3. Feed a random city to the input neurons. 

4. Train neurons and their neighbors. 

5. Update the parameters. 

6. Calculate the activity value of each city. 

7. Order the cities by their activity values. 

 

3.2 Ring Topology Models 
Bai et al. [10] proposed a Modified Growing ring 

SOM (MGSOM) model that initializes a random 

circular ring of neurons, it stretches the neurons to 

the city’s location, and finds the closest node using 

Euclidean distance. The advantages of this model 

are the easy implementation, the fast computation, 

the robust applicability, and the production of good 

solutions. The MGSOM approach is briefly 

described as follows: 

1. Initialization. 

2. Randomizing. 

3. Parameter adaptation. 

4. Competition. 

5. Adaptation. 

6. Insertion of a node. 

7. Step 4 or 8 depending on the result of a 

condition. 

8. Convergence test. 

The steps for a better-quality solution are the 

following: 

1. Run 10 simulations with  iterations 

by using the MGSOM. 

2. Select the best solution emerged from the 

simulation runs of Step 1. 

3. Run a new simulation with  

iterations that uses as initial weight matrix the 

weight matrix associated with the best solution 

found in Step 2. 

The complexity of the improved algorithm (for each 

value of t) is evaluated as follows: for each city, 

there are 0.3m (average neighbor length) operations 

for the calculation of the neighborhood function. 

Therefore, the time complexity function for each 

iteration, can be defined as , 

while the complexity reduction is guided by the 

variance of the neighborhood function. The analysis 

of the variance evolution reveals that the algorithm 

processing time decreases fast (due to the selective 

update). This feature is mainly attractive when 

processing large datasets. 

Bai et al [11] proposed an Efficient Growing ring 

SOM (EGSOM) model that uses a ring topology, as 

the previous one, namely, a network in which the 

nodes are connected in a closed loop configuration. 

The adjacent pairs of nodes are joined via direct 

connections, while the remaining pairs of nodes are 

indirectly connected, meaning that the data passes 

through one or more intermediate nodes. The 

structure of the EGSOM can grow according to each 

node's winning number and the states of its 

neighbors. Each city location corresponds to an 

input, and it is randomly applied to the EGSOM. 

The advantage of this model is that it is easy to 

implement, fast to compute, and produces good 

solutions. The number of nodes need only grow to 
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1.5n and the algorithm processing time is fast. The 

MGOM and the EGSOM models have similar 

specifications. Both models are based on a ring 

topology, and therefore, their computational results 

are close to each other. 

Zhang et al. [12] proposed a modified heuristic 

approach (MSTSP) model. MSTSP has the same 

architecture and similar philosophy as the MGSOM 

and EGSOM. The main difference is that in the 

MSTSP the increase of the number of nodes does 

not trigger the insertion of a new node. The 

operation of the MSTSP model, is briefly described 

as follows: 

1. Initialization. 

2. Randomizing. 

3. Parameter adaptation. 

4. Competition. 

5. Adaptation. 

6. Step 4 or 7 depending on the result of a 

condition. 

7. Convergence test. 

The complexity of the MSTSP algorithm for each 

iteration (each value of k) may be evaluated as 

follows: For each city, there are m operations to find 

the closest node to that city, and 0.2m (average 

neighbor length) operations for the calculation of 

the neighborhood function. Therefore, the time 

complexity function for each iteration may be given 

by , and the time complexity function 

of the MSTSP algorithm for each simulation may be 

given by equation (1). 

. (1) 

Furthermore, the complexity reduction is guided by 

the neighborhood function variance. The analysis of 

the variance evolution reveals that the algorithm 

processing time decreases fast (due to the selective 

update). This feature is mainly attractive when 

processing large data sets. 

 

3.3 Heuristic Enriched Models 
Dantas et al. [13] proposed a SOM (Enhanced SOM 

Solution) model. This model is an improvement of 

the classic SOM in the sense that it employs 

hyperparameter tuning to adapt the algorithm and 

create two additional features to find solutions with 

better results. In the first step the primary 

hyperparameters (population size, number of 

iterations, learning rate, and discount rates for the 

latter two) are identified and then used to evaluate 

and their effects on the final scores. To understand 

the influence of each one of these factors and find 

their best configuration, a single-factor design is 

employed to tune the proposed technique, meaning 

that each feature is varied individually, one feature 

at a time. The search for the hyperparameters that 

better suit the dataset finally leads to the baseline 

algorithm. The first improvement to the baseline 

algorithm is to change the way of choosing the first 

node considered. In addition to the randomly chosen 

initial city, the algorithm is forced to start from the 

city in the centermost position and the furthest 

position from the centroid of all cities. As the 

second modification, after employing the 

hyperparameters tuning and identifying the most 

significant feature as the population size, the 

algorithm improved based on the variation of this 

hyperparameter in each SOM iteration. The solution 

is evaluated using the F1 score of the predicted 

adjacency matrix compared to the optimal solution. 

The F1 score is the harmonic mean of precision and 

recall. The best value of this score is the value of 1, 

while the worst value is the value of 0. [14]. It is 

chosen as the baseline for the following 

configuration: 100000 iterations, 0.9997 for the 

discount rate of the initial neighborhood, 0.8 for the 

learning rate, 0.99997 for the discount rate of the 

learning rate, and 6 for the population size 

multiplier factor. 

Modares et al. [15] proposed a SOM algorithm for 

solving a relatively efficient TSP problem. By 

simply inspecting the input city data for regularities 

and patterns and then adjusting itself to fit the input 

data through cooperative adaptation of the synaptic 

weights, such a network creates the localized 

response to the input data, thus reflecting the 

topological ordering of the input cities. In this way, 

this neighborhood preserving map, results in an 

expected tour of the TSP under consideration. From 

each city, the resultant tour tries to visit its nearest 

city. The shortest sub-tour can intuitively lead to a 

good tour for the TSP. This algorithm is one of the 

oldest SOM algorithms that solves the TSP. 

Matsuyama [16] proposed another SOM model. 

This model uses a competitive learning process that 

causes just one neuron, or alternatively, a small 

group of neurons to respond to a given input. In this 

way, the self-organization of entire neural networks 

can be achieved. When this self-organization 

process is applied to various kinds of traveling 

salesman problems in a Euclidean space, a good 

approximation or the true solution is obtained. The 

algorithm is used as the training method for a neural 

network arranged in a closed loop, a sequential 

update that looks at the position vector of each city, 

one at a time. In this case, it uses symmetrical 

connections between neurons. The required number 
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of neurons is approximately a linear function of the 

number of cities. 

Schabauer et al. [17] proposed a Structural Data 

Parallel approach (SDP). This approach allows 

users, who are inexperienced in high-performance 

computing, to increase the performance of neural 

network simulation by parallelization. The paper 

describes an unsophisticated approach, whose 

results are used then in the main sophisticated 

approach. The unsophisticated approach is based on 

the execution of an application written in Fortran 90 

that tries to parallelize it right away. It uses the 

sequential program as the base for parallelization. It 

just tells the system how the data has to be 

distributed. Based on the SDP method for 

parallelizing, the computation of the TSP-SOM 

program consists of three parts: 

1. Get coordinates of cities by random. 

2. Get starting weights of the Kohonen network 

by constructing a circle. 

3. Train the network. 

The training phase, which is the main loop of the 

program, consists of the following steps: 

1. Calculate a vector of distances. 

2. Find the winner-neuron. 

3. Update the matrix of weights. 

In the sophisticated approach, there are identified 

the following five issues for specific attention and 

analysis: 

1. Local cache misses. 

2. Workload balancing. 

3. Latency of communication. 

4. Communication throughput. 

5. Locality of data. 

E.M. Cochrane and J.E. Beasley proposed a co-

adaptive neural network (CAN). The CAN [18] is 

another approach to solving the TSP using the 

SOM. Its main feature is using a so-called 

cooperation phase. Cooperation means that during 

the learning process, the identification of the 

winning neuron is based on the cooperation of 

various inputs. The competition and the cooperation 

phases differ in how neurons react, when one 

neuron is the winner for various inputs. In the 

competition phase, if the neuron is a winner for just 

one time, only the neighborhood is moved. On the 

other hand, if the neuron has been chosen more than 

once, none of the neurons is moved. In the 

cooperation phase, none of the winning neurons are 

allowed to move more than once. The neighbors are 

not allowed to move as well. The learning method is 

based on both phases, beginning with the 

competitive phase, and switching at some point to 

the cooperation phase. In this algorithm, the neuron 

initialization process is the same as in the basic 

SOM (initially, the neurons lie on a ring). The 

winner selection is also similar, except one 

difference that is supposed to improve the speed: the 

winning neuron is searched for in the vicinity (as 

measured around the ring) of the neuron that was 

the winner in the previous iteration. In every βth 

iteration, the set from which the winning neuron is 

searched for, is expanded to the whole set of 

neurons. In reference [19], which is the original 

paper on the CAN algorithm, this model was 

compared to many other models. The main 

conclusion of this comparison is that the CAN 

algorithm is far superior with respect to the works of 

Matsuyama, Guilty Net [20] and Elastic Net [21], 

with regard to all measures of solution deviation 

from optimal and computation time. Also, the CAN 

algorithm produces results that are superior to 

Somhom with regard to solution deviation from 

optimal. Moreover, the results are produced in a 

faster time. The CAN is approximately 10 times 

faster than Somhom. 

Faigl [22] proposed a modified CAN model. This 

model is similar to the original CAN, but with some 

modifications that give better results. The first one 

is an initialization method similar to the one used in 

the original model, in the sense that a ring topology 

is initialized as a small circle around the centroid of 

the cities. The original adaptation rule is also 

modified to consider the b-condition, and it is 

combined with the Multi-Scale Neighborhood 

Functions (MSNF) used by Murakoshi and Sato 

[23]. The co-adaptive net requires a higher number 

of adaptation steps, while the insertion of MSNF in 

the neighborhood function, increases the solution 

quality and the number of required steps. This 

modification of the adaptation rule to support the b-

condition, can be used without decreasing the 

neighborhood size. The terminating condition of the 

network adaptation procedure in all algorithm 

variants is defined as G < 0.01. The gain-decreasing 

rate a = 0.1 provides almost the same solution 

quality (about one or two percent worse) as the 

original algorithm, being more than four times 

faster, compared with the original one associated 

with the value a = 0.02. For problems with less than 

fifty cities, the modified co-adaptive net algorithm 

provides better results. The co-adaptive net uses the 

number (id) of the winning neuron. The algorithm 

avoids adaptation of the winners and neighboring 
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nodes, meaning that the nodes are moved with less 

frequency. 

Aras et al. [24] proposed a Kohonen network that 

incorporates explicit statistics (KNIES). More 

specifically, the KNIES method takes full advantage 

of statistics. The network consists of a fixed number 

of M neurons. The input to the network is the 

coordinates of each city node, which belongs to the 

set of cities. The city nodes are mapped to the 

neurons of the ring structure, and the order of the 

neurons in the ring represents the order of the city 

node’s traversal. Since KNIES makes full use of the 

advantages of SOM, it can maintain the 

neighborhood structure between city nodes. The 

primary difference between the SOM and the 

KNIES, is the fact that every iteration in the training 

phase includes two distinct modules — the 

attracting module and the dispersing module. In the 

attracting module, a subset of the neurons migrates 

toward the data point that has been presented to the 

NN. This phase is essentially identical to the 

learning phase of the SOM. However, in what 

follows, the rest of the neurons which have not been 

involved in the attracting module, participate in a 

dispersing (repellent) migration. Indeed, these 

neurons now move away from their current 

positions in a manner that ensures that the global 

statistical properties of the data points are resident in 

the neurons. Thus, although in the SOM the neurons 

individually find their places both statistically and 

topologically in an asymptotic way, in the KNIES 

they collectively maintain their mean in such a way 

that it represents the mean of the involved data 

points. The KNIES was compared to ESOM and 

ORC-SOM. 

Aras et al. [25] proposed a Kohonen-like 

Decomposition model (KNIES DECOMPOSE). 

KNIES DECOMPOSE is based on the foundational 

principles of Kohonen's SOM, and on its variant 

named KNIES described above. The final tour is 

obtained by combining Hamiltonian paths that 

KNIES HPP (KNIES Solution to the Hamiltonian 

Path Problem) constructs for the clusters determined 

according to Kohonen's clustering method. The 

Euclidean traveling salesman problem (TSP) is a 

close cousin of the Euclidean Hamiltonian path 

problem (HPP). The decomposition into 

subproblems, is a widely used strategy in solving 

large mathematical programs. It is easier to solve 

the subproblems, because the size of each 

subproblem is much smaller, and their solutions can 

usually be combined to approximate the solution of 

the original problem. The strategy to reduce the 

complexity of a large-scale traveling salesman 

problem instance, is the decomposition or 

partitioning into smaller HPP subproblems, which 

are easier to solve. In essence, it solves a large TSP 

by spawning smaller HPPs. Once these smaller HPP 

instances are individually solved, the solution to the 

original TSP is obtained by patching the solutions to 

the HPP subproblems. The partitioning into smaller 

HPP subproblems is achieved by clustering the 

cities of the original problem, in a way that the 

structural properties of the problem instance are 

preserved. The steps of the KNIES DECOMPOSE 

are: 

 

1. Partition the cities into clusters for a given 

number of clusters. 

2. Determine an order for visiting the clusters. 

3. Identify an entering and a leaving city for each 

cluster, obeying the ordering obtained in Step 2 

and forming the bridges between clusters. 

4. Find a Hamiltonian path in every cluster 

between the entrance and exit cities. 

5. Connect the Hamiltonian paths by using the 

bridges obtained in step 3. 

Faigl [26] proposed a Growing Self-Organizing 

Array (GSOA), a novel unsupervised learning 

procedure for routing problems. Its main principles 

follow the existing work on SOM for the TSP, but it 

is mostly motivated by data collection planning, 

where a robotic vehicle is requested to collect data 

from a given set of sensing sites. In this type of 

problem, it may not be necessary to visit the sites 

precisely, and the robotic vehicle may use remote 

sensing or wireless communication to collect the 

required data. The procedure consists of three steps: 

1. Winner node determination. 

2. Adaptation of the winner. 

3. Extraction of the solution after. 

Angeniol [27] proposed another SOM model, with 

the following features: Firstly, the total number of 

nodes and connections in a connectionist parallel 

implementation, is proportional only to the number 

of cities in the problem, thus scaling very well with 

problem size, Secondly, the model requires the 

tuning of only one parameter, which directly 

controls the total number of iterations, and thirdly, 

the typical values of this parameter ensure a good, 

near-optimum solution in a reasonable time for the 

performed simulations. More specifically, only the 

gain decrease parameter a must be adjusted, with the 

obtained results to be almost insensitive to it. A low 

value of the parameter a gives a better average. 

However a higher value has the advantage that the 

optimum is sometimes reached, while, at the same 
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time, leads to a good solution after several tries, in 

less time than the case in which only one try is 

performed with a low value of a. In either case, a 

good average solution (less than 3% greater than 

optimum) may be obtained in 2 seconds using 

classical hardware. Simulations were performed on 

small sets of cities taken from Tank and Hopfield 

and from Durbin and Willshaw. 

Kitaori et al. [28] proposed methods that enforce the 

ability of Kohonen's self-organizing features map 

(SOFM) to solve optimization problems, with the 

focus on the solution of the traveling salesman 

problem (TSP). As is well known, the conventional 

SOFM can solve the TSP. However, the solution 

found, is not the optimum solution, because the path 

intersects itself. On the other hand, the proposed 

methods of Kitaori et al, keep the path from always 

intersecting itself. The use of these methods to the 

weight adaptation rule, improves the length of the 

identified path, in the sense that the iteration 

execution time is decreased, while, at the same time, 

the convergence rate is increased. One is called 

constraint condition, which prevents the tour from 

crossing itself all the time. The other method is 

called active area and refresh, and its usage is for 

creating and deleting cells that will put the proper 

number of cells in the right place. A disadvantage of 

this approach is that as the number of cities 

increases, the convergence rate of the model gets 

worse, leading to inaccurate results regarding the 

path length. 

Budinich [29] applied unsupervised learning to an 

unstructured neural network to get approximate 

solutions to the traveling salesman problem. For a 

training set of 50 cities, this algorithm performs like 

the elastic net of Durbin and Willshaw (1987), 

while, if the number of cities increases, the 

algorithm leads to better results than the ones 

associated with simulated annealing for problems 

with more than 500 cities. Furthermore, in all the 

tests, this algorithm requires only a fraction of the 

execution time taken by simulated annealing. 

Kim et al. [30] proposed another efficient SOFM 

algorithm, for solving large-scale TSP. In this 

algorithm, a winning neuron for each city is not 

duplicated but instead, it is excluded in the next 

competition. This approach to TSPs using SOFM is 

very promising due to the following features. First, 

the total number of neurons and connections is small 

and linearly proportional to the number of cities of 

the TSPs, thus giving good scalability for the 

problem size, and makes the algorithm suitable for 

parallel hardware implementation. Second, the 

proposed algorithm requires only N output neurons 

and 2N connections, where N is the number of 

cities, while it does not require a dedicated 

procedure for the creation and deletion of neurons, 

giving thus 30% faster convergence than the 

conventional algorithm for 30-city TSPs. Finally, 

the actual potential of the proposed algorithm leads 

to near-optimal solutions in 92% of the total trials 

within a reasonable time. Simulation for the 1000-

city TSPs also gives good and promising results for 

the proposed algorithm. 

Mohamed [31] proposed a cost minimization 

approach. In this approach, a route-first cluster-

second heuristic uses a SOM network with varying 

parameters, as well as a greedy algorithm to 

minimize the cost or distance of the TSP-D (TSP 

with drones) solution and measure the impact that 

the one parameter (cost or distance) has on the 

other. The study was conducted using benchmark 

TSP data sets of varying sizes that were adapted to 

fit the TSP-D model. The study shows that while a 

cost-minimization approach can yield distance 

savings of up to 21%, a distance-minimization 

approach can actually result in higher costs by up to 

54%. Additionally, the SOM algorithm employed in 

this study, was shown to generate significant cost 

savings of up to 10.4% for networks consisting of 

194 customers or more. 

Markovic et al. [32] proposed a Waste Disposal 

SOM for solving the waste disposal problem with a 

size of 20 (WDS). This is a real life problem, solved 

for the city of Nis. On the other hand, Lobo [33] 

proposed a SOM on Marine patrol. This method is 

based on a Self-Organizing Map (SOM) solution for 

the Travelling Salesman Problem (TSP), even 

though there are significant changes. The locations 

of reported Search and Rescue (SAR) requests, 

together with the locations of reported occurrences 

of illegal fishing activities, are used as guidelines 

for designing the path to be followed. However, 

instead of forcing the patrol routes to pass exactly in 

those locations, as would happen in a TSP, the 

proposed method uses the locations as density 

estimators, in an attempt to identify the places 

where the patrol effort should be focused. In the 

next step the algorithm obtains a patrol route that 

passes through the areas with greater density. This 

algorithm uses some data from the Portuguese 

Navy. 

Faigl et al. [34] proposed an application on 

Obstacles + SOM, namely, a SOM algorithm that 

solves the TSP with obstacles in the map. The 

difficulty of SOM application to the non-Euclidean 
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TSP has been noted by several authors of SOM 

algorithms for the TSP. The presented experimental 

results show that even a simple approximation of the 

shortest path among obstacles can be used, with the 

SOM algorithm to be able to find a solution with 

competitive quality to a solution of the Euclidean 

TSP of similar problem size. The approximation of 

the shortest path used here, is more computationally 

intensive than the computation associated with the 

Euclidean distance. The algorithms used in this 

work include a visibility graph algorithm, a convex 

polygon partitioning algorithm, a point location 

algorithm and a straight walk procedure in a convex 

partition. 

Faigl & Preucil [35] proposed a Multi-Goal Path, 

namely, a SOM approach for the multi-goal path 

planning problem with polygonal goals. The 

objective of the problem is to find the shortest 

closed collision-free path for a mobile robot 

operating in a planar environment represented by a 

polygonal map W. The requested path must visit a 

given set of areas, where the robot takes 

measurements to find an object of interest. Neurons’ 

weights are considered as points in W and the 

solution is found as the approximate shortest paths 

connecting the points (weights). The proposed SOM 

has fewer parameters than a previous approach 

based on the self-organizing map for the traveling 

salesman problem. Moreover, the proposed 

algorithm provides better solutions within less 

computational time for problems with a high 

number of polygonal goals. The planning problem 

for point goals can be formulated as the well-known 

traveling salesman problem (TSP). 

Faigl et al. [36] proposed an approach on 

Orienteering Problem with Neighborhoods + SOM. 

This work addresses the Orienteering problem (OP) 

by the unsupervised learning of a self-organizing 

map (SOM). This approach is based on the solution 

of OP with a new algorithm based on SOM for the 

Traveling salesman problem (TSP). Both problems 

are similar in finding a tour visiting the given 

locations; however, the OP is focused on the 

determination of the most valuable tour that 

maximizes the rewards collected by visiting a subset 

of the locations, while keeping the tour length under 

the specified travel budget. The proposed stochastic 

search algorithm is based on unsupervised learning 

of SOM and it constructs a feasible solution during 

each learning epoch. The reported results support 

the feasibility of the proposed idea and show that 

the performance is competitive with existing 

heuristics. Moreover, the key advantage of the 

proposed SOM-based approach is the ability to 

address the generalized OP with Neighborhoods, 

where rewards can be collected by traveling 

anywhere within the neighborhood of the locations. 

This generalization of the problem fits better the 

data collection missions with wireless data 

transmission and it allows to save unnecessary 

travel costs to visit the given locations. 

Faigl [37] also proposed another approach on 

Orienteering Problem + SOM. In this case, the 

proposed approach is able to directly utilize a non-

zero communication radius, and thus it is capable of 

finding solutions with higher rewards than the 

demanding metaheuristics for the Orienteering 

Problem (OP), as well as and Team Orienteering 

Problem (TOP), and more importantly, without 

considering the neighborhoods. Therefore, the 

proposed SOM-based approach can be considered as 

a construction heuristic and combined with 

evolutionary techniques and existing metaheuristics 

to improve solutions not only in the OP and TOP, 

but mainly in orienteering problems with 

neighborhoods which are suitable formulations for 

robotic information gathering scenarios with single 

or fleet of robotic vehicles. The main difference 

between the ordinary OP and its generalization, 

namely, the Orienteering Problem with 

Neighborhoods (OPN), is that, in addition to the 

determined subset of the sensors providing the most 

valuable measurements, it is also required to 

determine the most suitable waypoints from which 

the measurements (rewards) from the sensors can be 

collected. Both formulations (the OP and OPN) 

share the main challenge of orienteering problems, 

which is the determination of the subsets of the 

locations according to the tour visiting them with 

respect to the given travel budget. 

Faigl & Vana [38] proposed an approach on Dubins 

traveling salesman problem (DTSP + SOM). The 

main difficulty of Dubins TSP arises from the fact, 

that it is necessary to determine the sequence of 

visits to the locations, together with headings of the 

vehicle at these locations. The proposed paper is the 

first SOM-based solution of the Dubins TSP, that 

includes challenges of the underlying combinatorial 

TSP with the continuous optimization of the 

headings at the locations. Even though the results do 

not reveal significantly better solutions of SOM, 

than a more computationally demanding memetic 

algorithm, however, the results support the 

feasibility of the proposed idea and lead to better 

scalability for larger and denser problems. 

Wang et al. [39] proposed a massively parallel 

cellular SOM to address large-scale Euclidean 
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TSPs. The implementation of the model is done on a 

GPU CUDA platform, with evaluations performed 

on 52 large-size TSP instances with up to 85900 

cities. The proposed model deals with a very simple 

procedure close to the original standard SOM. The 

key point is the massive parallelism that should 

allow a substantial reduction in execution time in 

the future, as thousands of multi-cores are available 

in a single chip. 

 

 

4 Hybrid Models 
After the short presentation of the enriched models 

let us now present the hybrid models found in the 

literature. These models are the following: 

 

4.1 Greedy Models 
Nuriyev et al. [40] proposed a Self-Organizing 

Iterative approach. The proposed algorithm is in 

fact, a combination of a Nearest Neighbour 

Algorithm from Both End Points (NND) [41] as 

well as a Greedy Algorithm [42]. In the first 

algorithm, the priority values of the edges are 

determined, and an initial solution is found. Then 

the NND algorithm is used from selected vertices, 

and the priority values of the edges are updated by 

considering how many times an edge is used in a 

solution. In the second part of the algorithm, an 

iteration algorithm is used to improve the existing 

solution. This process includes the update of the 

priority values of the edges and their subsequent 

sorting in descending order. After that, the greedy 

algorithm is run. The steps of the NND algorithm 

are as follows: 

1. Choose an arbitrary vertex in the graph. 

2. Visit the unvisited vertex that is nearest to this 

vertex. 

3. Visit the unvisited vertex that is nearest to these 

two vertices and update the end vertices. 

4. Is there any unvisited vertex left? If yes, go to 

Step 3. 

5. Go to the end vertex from the other end vertex. 

The steps of the Greedy algorithm are as follows: 

1. Sort all edges in descending order. 

2. Select the shortest edge and add it to the tour if 

it does not violate any of the above constraints. 

3. Do we have any edges in the tour? If not, go to 

Step 2. 

Mueller & Kiehne [43] proposed a different hybrid 

approach. Ant Colony Optimization (ACO) is a 

population-based metaheuristic that can be used to 

find approximate solutions to difficult optimization 

problems. In ACO, a set of software agents 

called artificial ants, search for good solutions to a 

given optimization problem. To apply ACO, the 

optimization problem is transformed into the 

problem of finding the best path on a weighted 

graph. The artificial ants (hereafter ants) 

incrementally build solutions by moving on the 

graph. The solution construction process is 

stochastic and is biased by a pheromone model, 

namely, a set of parameters associated with graph 

components (either nodes or edges), whose values 

are modified at runtime by the ants. The general 

idea of combining ACO and ANN, is to let the ants 

construct a tour which is then improved by applying 

a Self-Organizing Map. As the ACO algorithm is 

faster in converging towards a good (but not a very 

good) solution, the idea is to use the ANN as a kind 

of local search. The procedure is as follows: 

1. Initialize ACO and SOM with the given 

parameters. 

2. Solve the given TSP with the initialized ACO. 

3. Extract the best-found tour in ACO and insert it 

into the SOM. 

4. Solve the SOM. 

5. Return the solution when SOM training is 

finished. 

 

4.2 Evolutionary Models 
Majdoubi et al. [44] proposed a Corona Virus Opti-

mization Algorithm and Self-organizing Maps 

(CVOA+SOM). This work consists of applying a 

new hybrid method that uses both CVOA and SOM, 

to solve the Euclidean TSP. The conceived approach 

is based on considering subsequently a random path 

of n cities as an input pattern. For each one of the 

generated tours, the adaptation parameters are calcu-

lated to select the winner node with criterion the 

minimum distance from the located point of the 

tour. The adaptation procedure is then applied to 

detect the neighbors, to create a new candidate solu-

tion. The implementation of the proposed method 

leads to an evolutionary algorithm based on proba-

bilistic procedures that requires a definition of the 

replicate function, which is used to insert new indi-

viduals to participate in CVOA evolution. The repli-

cate function is therefore responsible for the genera-

tion of a candidate solution to use with the SOM 

algorithm. The main properties of CVOA are as fol-

lows: The defined probabilities and parameters are 

updated by the scientific community; the explora-

tion of search space is possible, as long as the in-

fected population is not null; the high expansion 

rate, guarantees the better use of search space, lead-

ing to the intensification of the resolution. The con-

cept of parallel strains is reformulated by applying 

the processing algorithms in different processors, to 

generate diversification of the resolutions. The ob-
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tained average deviation for data sets Pr76 and 

Rat99 is 0.3 and 0.5 respectively, solved by the pre-

sent combined algorithm and where the learning 

parameters are adapted (The learning rate and the 

neighborhood function). 

Tinarut & Komgrit [45] proposed a hybrid SOM. It 

uses local search which is a solution to a specific 

problem. The map is definitely fixed, and the 

solution is an estimated solution, which cannot be 

guaranteed to be the optimal solution or the same 

solution every time. A typical local search, after 

finding an initial feasible solution result, generates 

a mechanism to change the answer, and then stops 

the answer when an acceptable value is received. 

The mechanism of changing the results for this TSP 

problem can be achieved by changing the position 

of the path that connects the two present cities to the 

brand-new route that connects the city to the new 

point. If these changes lead to a shorter distance 

with respect to the old solution, the old solution is 

replaced with the new one. This procedure is 

performed repeatedly, until the required number of 

rounds is reached, or until acceptable conditions are 

met. In this study, the following three routes are 

used: 2Opt exchange operator, Relocate operator, 

and Exchange operator. 2Opt Exchange Operator 

for TSP aims to reduce the distance without crossing 

routes. Relocate Operator will change two routes 

connected to each other at a given point, without 

passing through it again. Then it will create a new 

route to that point, by changing the one or the other 

route into two routes connected to that point. The 

Exchange Operator will change two routes 

connected to each other at a given point into two 

routes connected to a new point. The two old routes 

connected to the new point will be transformed into 

two routes connected to the old one. The proposed 

algorithm can be outlined as follows: 

● Initialization. 

● Result improvement by local search. 

2Opt exchange operator. 

Relocate operator. 

Exchange operator. 

Solution examination. 

Processing cycle increases. 

Brocki [46] proposed a 2opt+SOM approach that 

combines the Kohonen network with the 2opt 

algorithm to lead to an improved model. More 

specifically, a neuron and a city are assigned to each 

other. All neurons are organized in a vector that 

represents a sequence of cities that must be visited. 

Unfortunately, the Kohonen SOM model without 

some modifications is unable to solve TSP. The 

reason for this, is that if the neural weights are used 

as the coordinates of the cities, they may not equal 

to the coordinates of cities that are given. To solve 

the problem, an algorithm that would modify 

Kohonen’s solution to one that is valid, has been 

created. In this algorithm the positions of cities and 

the positions of neurons may not be equal. However, 

adequate neural weights and cities’ coordinates are 

very close to each other. An algorithm that modifies 

neural weights so they are equal to cities’ 

coordinates can be applied. The 2opt algorithm 

selects a part of the tour, reverses it, and inserts it 

back into the cycle. If the new tour is shorter than 

the original cycle, then it is replaced. The algorithm 

stops when no improvement can be done. This 

algorithm was improved by Ahmad & Kim [79], via 

a modification to the neighborhood method, using a 

Gaussian method. 

Vieira et al. [47] proposed a SOM Efficiently 

applied to the TSP (SETSP). The proposed 

modifications to the SOM, lead to a reduction in the 

algorithm complexity from execution on  steps to 

execution on, at least, n steps, where n is the input 

data set size (number of cities), as the algorithm 

evolves in time. Thus, even for a large data set, the 

algorithm executes faster as the number of iterations 

evolves. Furthermore, the complexity reduction is 

guided by the neighborhood function variance 

which decreases. This feature is attractive, 

especially in the case of processing large data sets. 

The applied modifications include a change to the 

network structure (a ring network is proposed) and 

initialization, a definition of a neighborhood 

function threshold, as well as a definition of new 

parameter adaptation laws. The main important 

aspects of the SETSP are algorithm complexity 

reduction, according to the number of iterations and 

its faster convergence. 

 

4.3 Genetic Models 
Nourmohammadzadeh & Voss [48] proposed a clus-

tered SOM model that uses the SOM as well as the 

Genetic Algorithm (GA) and consists of three steps. 

In the first step, a SOM of a given size is applied to 

a data set of node coordinates. During the training 

process, the SOM neurons are moved on the plane 

and the shape of the network changes. According to 

the final shape of the map, the cities are clustered 

based on the SOM neuron that is nearest to each one 

of them. Therefore, the cities of each cluster are 

known and the sub-TSPs are constituted. In the next 

step, the GA is applied to each sub-problem to min-

imize the length of the sub-tours. Furthermore, an-

other GA is used that tries to find a good order for 

connecting the sub-tours. The GA codes the order of 
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visiting the cities and clusters as strings of unique 

numbers as it is shown in Fig.4, where the square 

shapes are the unique numbers and the rest is the 

order of the cities. After this step, a solution for the 

entire original TSP can be found. The number of 

clusters is equal to 1 for every 20 cities. It is ob-

served that the proposed SOM with the complemen-

tary GA is superior in terms of the objective value 

as well as and the computation time with their com-

petitors. Before each GA application, its parameters 

are tuned by the Taguchi design of experiments [49] 

and trial and error method. In Taguchi, three levels 

(meaning three variables: nPoP which is the a popu-

lation of random initial solutions, Cross_rate for 

doing crossovers on the solutions and nMutat which 

is a proportion of the population is chosen randomly 

from the population for mutation) are considered as 

the potential values of each parameter and a number 

of experiments are conducted with some designed 

combinations of the levels. For each level the value 

of a signal-to-noise ratio (SNR) ratio is calculated. 

The smaller SNR values are better in this minimiza-

tion problem. However, in the trial-and-error ap-

proach used to determine the maximum number of 

iterations, the experiments are conducted using in-

creasing values for the maximum number of itera-

tions, starting from 50 iterations. Fig.4 depicts a 

solution built according to this method for a small 

TSP, by connecting the cities of each cluster, and 

then, the clusters themselves. 

 

Fig. 4: An example solution [48]. 

 

Jin et al. [50] proposed an Integrated Self-

Organizing Map (ISOM), whose name is due to the 

fact that its learning rule integrates the three 

learning mechanisms found in the SOM literature. 

More specifically, within a single learning step, the 

excited neuron is first dragged towards the input 

city, then pushed to the convex hull of the TSP, and 

finally drawn towards the middle point of its two 

neighboring neurons. The evolved ISOM (eISOM) 

uses a genetic algorithm to handle inherently hard or 

time-consuming problems. In this algorithm, every 

individual represents a learning scheme. For each 

learning scheme, the parameters include the type of 

formula to calculate the expanding coefficient and 

the parameters (i =1,2,3,4). They also include 

other parameters in the ISOM, such as the radius R, 

the total learning loop L, the initial values, and the 

decreasing schemes of the effective learning width 

σ(t), as well as the learning parameters (t) and 

(t). To evaluate the solution quality, the relative 

difference between the generated tour length and the 

optimal tour length as used. The eISOM is one of 

the most accurate SOMs for the TSP with quadratic 

computation complexity. 

Vishwanathan & Wunsch [51] proposed an 

Adaptive Resonance Theory + SOM (ART/SOFM) 

approach. The adaptive resonance theory in its basic 

form uses an unsupervised learning technique. The 

terms “adaptive” and “resonance”, mean that they 

are receptive to new learning (adaptive) without 

discarding the previous or the old information 

(resonance). The ART networks are widely known 

to solve the stability-plasticity difficult choice with 

the stability to describe their nature of memorizing 

the learning and the plasticity to describe the fact 

that they are versatile to achieve new information. 

Due to the nature of ART, they are always able to 

learn new input patterns without forgetting the past. 

The model uses a combination of Adaptive 

Resonance Theory (ART) [52] and Self Organizing 

Feature Maps (SOFM) to solve large-scale TSPs. 

The use of this combination, allows the number of 

neurons to be a steady one. This approach is divided 

into the following modules: 

 Clustering. 

 Finding Hamiltonian paths for each cluster. 

 Finding a Hamiltonian loop for the inter-

cluster tour. 

 Linking the clusters, and applying heuristics 

to improve the solution. 

Note that clustering techniques have been frequently 

used to divide the TSP into smaller subproblems and 

combine the sub-solutions separately. 

 

4.4 Memetic Models 
Creput & Koukam [53], proposed a MEMETIC 

SOM model. This memetic SOM uses an 

evolutionary loop embedding the SOM. The main 

operator is the SOM algorithm applied to a graph 

network. The memetic loop applies a set of 

operators sequentially to a population of Pop 
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individuals, at each memetic iteration, called a 

generation. A loop executes a constant number of 

generations. The number of individuals is also 

constant. At each generation, a predefined number 

of SOM basic iterations are performed allowing the 

long decreasing run to be interrupted and combined 

with the application of other operators that can be 

other SOM operators with their own parameters, 

mapping, fitness evaluation, and selection operators. 

A construction loop, as well as an improvement 

loop, are instantiated based on the memetic loop 

structure presented in the code of Fig.5.  

 

 
Fig. 5: The generic memetic loop embedding SOM 

[53]. 

 

The details of the operators are as follows: 

1.  Self-organizing map operator: It is the standard 

SOM applied to the ring network. 

2.  Mapping operator: This operator, denoted 

MAPPING, generates an admissible TSP solution 

and modifies the shape of the ring accordingly, at 

each generation. The operator maps cities to their 

nearest neuron, not already assigned to a city. This 

generates a valid tour. Then, the operator moves 

neurons to the location of their single assigned city 

(if it exists) and dispatches regularly (by 

translation) other neurons along edges formed by 

two consecutive cities in the tour. 

3.  Fitness operator: For each individual, this 

operator, denoted FITNESSTSP, evaluates a scalar 

fitness value that has to be maximized and used by 

the selection operator. It returns the fitness value 

fitness = – L, where L is the length of the tour 

defined by the ordering of cities mapped along the 

ring. 

4.  Selection operators: Based on fitness 

maximization, the operator denoted SELECT, 

replaces the worst individuals associated with the 

lowest fitness values in the population, with the 

same number of the best individuals, associated 

with the highest fitness values in the population. 

An elitist version SELECT_ELIT, replaces the 

worst individuals with the single best individual 

encountered during the run. 

Avsar & Aliabadi [54], proposed a Parallelized 

Memetic Self-Organizing Map (PMSOM). In this 

approach the cities are organized into 

municipalities, the most appropriate solution from 

each municipality is used to find the best overall 

solution and finally the neighboring municipalities 

are joined by a blending operator to identify the 

final solution. The proposed system is a more 

generalized form of the previous memetic SOM. It 

uses different techniques in the following order: 

1. Divine map into municipalities by K-Means 

clustering algorithm. 

2. It uses an algorithm that shows the learning 

mechanism of each municipality. If the municipality 

has not yet converged, it will start to randomly 

choose a subset of assigned cities and apply KNIES 

learning rule over each member of the population. 

3. Merge the neighborhood municipalities. 

4. Remove kinks (kinks make tours more 

complicated and long) of mixed clusters with an 

algorithm similar to the famous 2opt algorithm. 

5. Update Adjacency Matrix. 

6. Termination. 

 

4.5 Chaotic Models 
Matsushita & Nishio [55] proposed an interesting 

Chaotic SOM (CHAOSOM) model, associated with 

the Hodgkin-Huxley equation [56], a mathematical 

model used to simulate action potentials in giant 

squid axons. The basic algorithm of CHAOSOM is 

the same as SOM; however, the important feature of 

CHAOSOM is the ability to refresh the learning rate 

as well as the neighboring coefficient at the timing 

of the spikes generated chaotically by the Hodgkin-

Huxley equation. The neighboring coefficient is a 

set of neighboring neurons of the winner neuron 

which includes a parameter of the number of spikes 

and an increasing value depending on a chaotic 

signal spike. 

Ryter et al. [57] proposed an application of different 

Chaotic Maps on the SOM in order to solve the 

TSP. As it is well known from mathematics, a 

chaotic map is a map (and more specifically, an 

evolution function) that exhibits some sort of 

chaotic behavior. These maps may be parameterized 

using a discrete-time or a continuous-time 

parameter. Discrete maps usually take the form of 

iterated functions. Chaotic maps often occur in the 

study of dynamical systems and are able to generate 

fractal structures. Although a fractal may be 

constructed by an iterative procedure, some fractals 

are studied on their own, rather than in terms of the 
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map that generates them. This is a usual approach, 

because there are several different iterative 

procedures that generate the same fractal. The maps 

that are used and the associated results are given in 

Table 1 [57]. The results differ from each other, 

depending on the scale of the problem (big or small 

scale) and the iterations. Whether a chaotic map 

performed just better denoted with (+) or worse 

denoted with (-) and both are statistically 

insignificantly better/worse. If a map is denoted 

with (++) or (- -) have better/worse significance 

within a 95% confidence interval. The Henon map 

corresponds to a time-discrete dynamical system 

[58]. The Burgers Map is a discretization of a pair 

of coupled differential equations that were used by 

Burgers to illustrate the relevance of the concept of 

bifurcation to the study of hydrodynamics flows 

[59], [60]. The results shown in Table 1 [57], are 

scaled from 1000 to 1000000 iterations (1K to 1M) 

and they are divided into small and big-scale 

problems. 

 

Table 1. Computational Experiments of Chaotic 

Maps 
 Small Problem Big Problem 

Iterations 1K 10K 1M 1K 10K 1M 

Arnold Cat 
Map 

- + - + - - 

Burgers Map + + - ++ ++ - - 

Delayed 

Logistics 
- - - - + ++ - - 

Dissipative 

Map 
- - - - + + 

Henon Map + ++ - - - + - 

Ikeda Map - - + - + + - 

Lozi Map - - - - - + - 

Sinai Map - + + - + - 

Tinkerbell 
Map 

- - - - ++ ++ - - 

The experiments showed that significantly better 

results are obtained for large-size problems with a 

small or medium number of iterations when the 

pseudorandom number generator is replaced by 

Burgers Map, Delayed Logistics Map [61], or 

Tinkerbell Map [62]. For smaller problems, the 

Henon Map showed significantly better results for a 

medium number of iterations. 

 

4.6 Fuzzy Model 
Chaudhuri et al. [63] proposed a Fuzzy SOM 

approach. The Fuzzy Self Organizing Map [64] 

introduces the concept of membership function in 

the theory of Fuzzy Sets to the learning process. 

Some network parameters related to the 

neighborhood in the Self Organizing Map, are 

replaced by the membership function. Also, the 

learning rate parameter is omitted. The Fuzzy Self 

Organizing Map is more effective at reducing 

oscillations and avoiding dead units, because they 

take into account all input data at each iteration step. 

The Fuzzy Self Organizing Map used here, is a 

combination of the Self Organizing Feature Map 

and the Fuzzy C Means clustering algorithm. The 

more complex the problem is, the more output 

neurons are required. The number of output neurons 

is manually selected. The weight components are 

initialized randomly and adjusted gradually using a 

Self-Organizing learning algorithm, and ultimately a 

mapping is done from input to output. The learning 

algorithm consists of the following steps: 

1. Randomize the weights for all the neurons. 

2. Input all the patterns. 

3. Take one random input pattern and calculate 

the Euclidean distances. 

4. Compute the memberships of each pattern to all 

neurons. 

5. Find the winning neuron and the neighbors of 

the winner. 

6. Adjust the synaptic weights of each neuron 

according to the computed memberships. 

7. Reduce the values of the parameters. 

8. Determine the stability condition of the 

network. 

 

4.7 Simulated Annealing Model 
Takano et al. [65] proposed modified self-

organizing map and Simulated Annealing (SOM + 

SA) approach. Regarding the SOM network, the fact 

that a map is formed, with data having similar fea-

tures to be arranged nearby, while other data are 

arranged at a distant place, the route will be identi-

fied according to the order of cities which is deter-

mined at random. Therefore, the obtained route, 

quickly suggests a route pattern, close to the global 

optimal. However, because the accuracy deteriorates 

locally, SA (Simulated Annealing), which is excel-

lent for local searching, is then applied to compen-

sate for this area. With this procedure, SA is per-

formed using the solution obtained by SOM, as the 

initial solution of SA to obtain a higher accuracy 

route. The algorithm of the SOM+SA procedure is 

the following: 

1. Execute the algorithm of SOM. 

2. Perform crossing judgment and 

crossing removal, for the solution in the 

previous step. 

3. Execute the algorithm of SA 

using the solution obtained in Step 2 as its 

initial solution. 

4. Perform crossing judgment and 

crossing removal in order for the solution 

obtained in Step 3, to be used as the final 

solution. 
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In the proposed SA+SOM solver, the determination 

of an initial temperature for simulated annealing, 

influences the search performance. To obtain higher 

solution accuracy, the appropriate parameters of the 

SA process have to be selected. The estimated 

computational complexity as well as the accuracy of 

the solution for large-scale TSP were estimated, 

revealing the possibility that an approximate 

solution for a problem of tens of thousands of cities, 

is obtainable using an ordinary PC. 

 

4.8 Elastic Net 
Chen et al. [66] proposed an Elastic Net with SOM 

(EN+SOM) model. This paper presents an Elastic 

Net (EN) algorithm, by integrating the ideas 

associated with SOM. The proposed solution is 

based on a SOM structure, initialized with as many 

artificial neurons as the number of targets to be 

reached. In the competitive relaxation process, the 

information regarding the trajectory connecting the 

neurons, is combined with the distance of neurons 

from the target. The gradient ascent algorithm 

attempts to fill up the valley, by modifying 

parameters in a gradient ascent direction of the 

energy function. The EN is based essentially on how 

the constraints are represented in its energy 

function, and thus can be used in the solution of 

non-geometrical problems. In each iteration of the 

EN algorithm, the coordinates of all nodes are 

calculated even if there is no change in the 

coordinates. However, in SOM, one or a few 

weights are updated. In this paper, SOM is used to 

construct the network, and quantify the criteria. EN 

is used to derive the TSP route under a set of 

weights and display the results. 

 

 

5 Multiple Salesman Models  

Multiple salesman problem is an extension of the 

well-known Traveling Salesman Problem (TSP), 

where a number of m salesmen are used to serve a 

set of n locations / cities, restricted to the original 

constraint that each location must be visited only 

once. The agents / salesmen share a single-depot 

case known as Single-Depot Multiple-TSP or use 

multiple depots, a variant known as Multiple-Depot 

Multiple-TSP. 

Lupoaie et al. [67] proposed MinMax Multiple-TSP. 

In this model the evolutionary algorithm as well as 

the ACO approach are used. Furthermore, the 

algorithms are tested individually but also, they 

combined with each other. In the case of SOM for 

Multiple-TSP, the topology of the output layer must 

be modified such that instead of a single route that 

has the standard SOM, a number of m routes must 

be generated. Fig.6 illustrates the initialization step, 

an intermediate step, as well as the final state of the 

training process; the solution is represented in the 

fourth graph. The evolutionary algorithm for solving 

Multiple-TSP was the two-part chromosome 

representation. Because of the requirement to 

perform more complex mutations within an 

individual, a requirement imposed by the necessity 

of balancing the tours, the multi-chromosome 

technique [68] is used. This technique reduces the 

size of the search space, by eliminating redundant 

solutions and it can be improved using the 2opt 

local search heuristic approach. The ACO approach 

uses g-MinMaxACS which is a variation of the Ant 

Colony System. More specifically, instead of using 

a single ant to construct one tour as in TSP, a set of 

m ants is used instead, to generate a complete 

solution to the Multiple-TSP problem. Initially, all 

ants start their tours from the depot, and the 

salesman to visit the next city is selected at random. 

Α more elaborate description can be found in [69]. 

In the hybridization stage, the emerged models are 

created via the combination of SOM and g-

MinMaxACS (SOM-ACO), SOM and EA (SOM-

EA), and SOM, EA, and 2opt (SOM-EA-2opt). In 

the MinMax Multiple-TSP, the number of salesmen 

that were used is 2, 3, 5, and 7. Ant Colony System 

achieves better results than both SOM and EA. 

When comparing the performance of the hybrid 

version SOM-ACO with the standalone ACO is 

slightly the same in some cases. In the case of the 

evolutionary algorithm, it is evident that the 

hybridization between EA and SOM improves 

greatly over the simple EA in all cases. Regarding 

the comparative performance of SOM-ACO versus 

SOM-EA, the latter achieves statistically significant 

better results in most cases. Generally, hybridization 

not only improves results but also reduces the 

variance. When enhancing SOM-EA with the 2opt 

local search heuristic, the results also improve 

significantly. 
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Fig. 6: SOM for Multiple-TSP for the data set eil76 

with 5 salesmen: initialization, intermediate 

iteration, final iteration, and final solution. The 

points correspond to cities, while the curves 

correspond to the trajectory given by traversing the 

neurons using the ring topology [67]. 

Zhu & Yang [70] proposed a Multiple Traveling 

Salesman Problem (MTSP). In this model there are 

k rings (where k is the number of salesmen) and M 

nodes that represent the cities. This model has 2 

nodes in the input layers and kM nodes in the output 

layer (or equivalently k rings with each ring contain-

ing M nodes). The rule for identifying the winning 

neuron is modified with a new term that increases 

the possibility of a node to be a winner when it is far 

away from the home city. The algorithm can be 

easily implemented for parallel computation. It is 

compared to conventional SOM from Modares et al. 

[15]. The comparison of MTSP with the conven-

tional TSP, was performed using 2, 3, and 4 sales-

men for each one of them. The quality of the results 

associated with the improved SOM approach, is bet-

ter than the quality associated with the conventional 

SOM approach. In addition, the improved SOM ap-

proach converges faster than the conventional SOM 

approach. The differences between the two ap-

proached are: the use of M nodes in the output layer 

instead of 2M nodes, to reduce the calculation work-

load, the modification of the neighborhood function 

by adding an equation to speed up the convergence, 

and lastly, the modification of the update rules, by 

adding an equation to increase the convergence. 

A summary of all models presented in the previous 

sections, can be found in Table 2 (enriched models) 

and Table 3 (hybrid models). In both tables, the first 

column presents the type of the model. The second 

and the third columns include the name and the 

release date of the model, while the other columns 

present for each model, the number of the cities that 

were tested, the number of iterations performed, and 

many other useful information and comments. Most 

of the models are capable of giving better results for 

large-scale problems and others for small datasets. 

Last but not least, the tables show the number of 

neurons that are used in the first phase of the 

algorithm which is usually the initialization phase. 

Usually, the number of neurons that are used is 

equal to the number of the cities of the TSP, but 

sometimes it is either 1.5 or 2 times more. Selecting 

the number of nodes that is equal to the number of 

cities makes the process of node separation more 

delicate and results in the sensitivity of the 

algorithm to the initial configuration. All of the 

models have a common 2 layers in the input. On the 

input layer, they take as entry the Cartesian 

coordinates of the 2D point (city). On the other 

Tables 4 and 5 present the models that we discussed 

before and the models or algorithms that competed 

against during their experiments. With the X sign, 

we can perceive their competitors while Table 6 

presents a summary of the Multiple TSP models. 

Table 7 shows the competition of the Multiple TSP 

models as they were mentioned in the previous 

tables. Table 8 is an assemblage of all the models. 

 

 

6 Vehicles & Drones  
The vehicle routing problem (VRP) is a well-known 

combinatorial optimization problem concerned with 

the identification of the optimal routing of goods 

between a central depot and a set of customers. The 

Capacitated Vehicle Routing Problem (CVRP) [71] 

introduces a restriction on a vehicle’s capacities. To 

extend the SOM application from the TSP to the 

CVRP, there are two factors that must be 

considered, and more specifically, the number of 

vehicles in the problem as well as the vehicle 

capacity constraint. Applying the SOM to the 

CVRP, there are K rings of neurons (one ring for 

each of the K vehicles / routes), where each ring 

consists of M neurons. The output neurons must 

now be indexed using the ring (route) as well as the 

position within the route. To account for the 

capacity constraint of the CVRP, there are two 

approaches that have been followed, according to 

the literature, both of which incorporate a 

mechanism to penalize routes that are over capacity 

when choosing the winning node for an input city 

. One of the earliest applications of the SOM to 

the CVRP uses a probabilistic approach for 

choosing the winning node J [72]. In this algorithm, 

each time an input city, , is presented to the 

network, the closest node (measured by Euclidean 
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distance) on each route is identified. From these K 

nodes, the winning node is chosen in such a way 

that the probability of the winning node being 

chosen from an overloaded route, tends towards 

zero as the network evolves in time. The second 

approach incorporates a bias term to penalize 

overloaded routes during the competition phase of 

the algorithm. The earliest variation of this approach 

multiplies the Euclidean distance by a ‘handicap’ 

factor as the nodes compete [73]. In this method, a 

larger ‘handicap’ indicates that the current route is 

near or over the capacity constraint. In subsequent 

SOM approaches to the VRP, a bias term is added to 

the Euclidean distance as the nodes compete. In this 

approach, a winning node has the smallest 

combination of Euclidean distance and bias term. 

The published results of the application of the SOM 

to the CVRP that utilize benchmark problem sets, 

surpass the results from previous SOM approaches 

[72]–[75]. 
Tairi et al. [76] proposed a traveling salesman 

problem with drones solution with SOM (TSP-D). 

The goal of the traveling salesman problem with 

drones (TSP-D) is to efficiently route a vehicle 

equipped with a drone from a source depot to 

deliver packages to a set of customers and return to 

the source depot with minimal distance traveled. 

The TSP-D has been widely studied since first being 

introduced in 2015 and it has been shown to 

significantly reduce travel time in comparison to a 

pure TSP. The model proposed in this study uses a 

self-organizing map to determine an initial solution 

to the underlying TSP. In the next step, a greedy 

algorithm is used to determine ideal customer nodes 

to be serviced by the drone, to reduce the total 

distance traveled by the vehicle. The data used for 

this study were retrieved from a National TSP 

library. After determining a feasible route for the 

vehicle by setting the SOM network, the next phase 

in the solution is associated with the determination 

of the ideal candidates for drone insertion. Drone 

insertion refers to the process of dropping one of the 

nodes from the truck route and instead, adding it to 

the drone route. The objective of this algorithm is 

the determination of nodes (if such nodes selected) 

for drone delivery that reduce as much as possible 

the total distance traveled by the truck. This process 

of inserting drone nodes is iterated, until there are 

no more potential candidates for drone delivery to 

minimize the distance traveled by truck. The 

network size used for this study was eight times the 

population size and the number of iterations was 

initialized to 100,000, even though the algorithm 

stopped after 24,487 iterations. The algorithm tested 

on 194 customer nodes and the results showed that 

the initial solution generated using the SOM was 7% 

higher than the optimal solution, while the solution 

to the TSP-D was 39% less than the optimal TSP 

solution and was computed in 28.8 seconds. The 

final solution to the large TSP-D, suggests that 

pairing a drone with a delivery truck, can help 

significantly reduce the transportation distance as 

well as time, if the procedure is planned efficiently. 

 
 

7 A Comparison of the Presented 

Algorithms 
In this section, comparisons between the models are 

performed. The presented results are associated with 

the similarities as well as the difference between the 

presented models. These models are also compared 

and some experimental results are given. 

Compared with traditional SOM-based TSP 

methods, TOPSOM relaxes the stronger ‘closed’ 

constraint at initialization stage, and is able to 

satisfy the convex-hull constraint by using an elastic 

competitive Hebbian learning mechanism during 

optimization. TOPSOM has an average PDM (i.e. 

the percent deviation of the mean solution value to 

best Known Solution) of 4.16% and 8.02% in small-

scale ch130 and medium-scale uy734, while the 

second best one (i.e. eISOM) only gets an average 

PDM of 6.37% and 9.87%, respectively. As a result, 

TOPSOM outperforms eISOM by up to 2.21% and 

1.85%. For the large-scale instances like ro2950 and 

fi10639, TOPSOM has an average PDM of 14.53% 

and 21.94%, respectively, while the second-best 

eISOM gets an average PDM of 15.67% and 

23.45%, respectively. Thus, TOPSOM outperforms 

eISOM by up to 1.14% and 1.51%. The superiority 

of TOPSOM becomes prominent from the 

perspective of the speed for problem-solving, by 

14.08% faster than traditional SOM on average.  

The Memetic SOM is superior to the co-adaptive net 

as well as the ORC-SOM in generating the best 

tours on average, indicating that Memetic SOM is 

not only fast but also superior in getting more 

precise solutions. However, this is true only for 

small-scale instances. On the other hand, for large-

scale instances, ORC-SOM has 6.178% on average, 

which is the smallest compared with those from the 

co-adaptive net and memetic SOM, making 1.76% 

and 1.34% improvement respectively. This indicates 

that ORC-SOM is suitable for more precise 

solutions with higher computation complexity for 

large-scale problems, compared with the memetic 

SOM and co-adaptive net. 

The CHSOM obtained better results than Leung’s 

algorithm for problems with 70, 107, 124, 195, and 
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442 cities. Although CHSOM did not find better 

solutions for KROA200 and ATT532, the solution 

quality is very near to that of Leung’s algorithm. 

The Expanding Property SOM competed against 

Leung's ESOM and the performances of both shows 

that it is very close to the theoretical bounds. The 

main reason for which the error of the Expanding 

Property SOM is slightly larger than Leung's 

ESOM, is that the proposed learning rule is 

comparatively more conservative than Leung's one. 

Thus, the proposed learning rule limits the range of 

convex-hull expansion of the excited neuron. More 

specifically, it has a faster average execution time, 

but the solution quality is close. 

The solution qualities of the ESOM range from 

4.05% to 11.35%. Therefore, its performance, even 

though it is a bit worse as the number of cities 

increases, is still stable. The ESOM takes slightly 

longer in execution time than Budinich’s SOM. 

The fact that MGSOM and EGSOM have similar 

specifications, was the reason for which some of the 

TSPs that were tested, had the same outcome. 

However, the MGOM is characterized by a better 

average deviation from the optimal tour length, with 

a total average of 2.3215%, compared with EGOM 

with 2.4925%, and MSTSP with 2.4372%. 

In the case of the Enhanced SOM Solution, a set of 

additional modifications performed after choosing 

the baseline hyperparameter configuration, led to 

slightly better results with a 0.07891 F1 score. 

The CAN competed against MEMETIC SOM, 

ORC-SOM, eISOM, ESOM, and SETSP and gave 

the worst average results among all the others. The 

Modified CAN competed against the original one 

and the results have shown that the processing time 

was reduced in half and in the PDM (the percentage 

deviation to the optimum tour length of the mean 

solution value) has better results only where the 

number of cities is between 200 and 300. The 

original one (CAN) has better results for less than 

200 cities but when it is more than 300 both of them 

have similar results. 

The experimental results showed that on small-scale 

TSP, only the ESOM algorithm is more prominent, 

and the deviation rates of KNIES and ORC-SOM 

are not much different. But once the scale of the 

experimental data is relatively large, the ORC-SOM 

algorithm has the lowest deviation from the optimal 

rate. This shows that for medium and large-scale 

TSP problems, the use of ORC-SOM algorithm 

makes the identification of the globally optimal path 

easier. When the TSP data size is greater than or 

equal to 500, compared with the other two 

algorithms, ORC-SOM has the smallest optimal 

deviation rate. When the TSP data size is less than 

or equal to 1000, the running times of various 

algorithms are very close. Finally, when the TSP 

data size is greater than 1000, the ORC-SOM 

algorithm has the smallest running time, showing its 

own advantages. After the above comparison, it is 

not difficult to see that for small-scale TSP data, 

ORC-SOM has no outstanding features compared to 

other algorithms, while for larger-scale data, ORC-

SOM can not only find a good path, but also has a 

relatively small running time. 

Furthermore, KNIES is more complicated than 

ESOM. Consequently, the performance of ESOM is 

better than KNIES. A comparison of these 

algorithms reveals that KNIES-TSP executes at least 

on n × n steps, while SETSP executes at least on n 

steps so SETSP has shown superior performance 

compared to KNIES. The success of KNIES 

DECOMPOSE increases as the problem size 

increases. If att532, pcb442, kroA200, and rat195 

data sets are considered, the average relative 

deviations from the optimal tour lengths, become 

7.03, 8.94, and 8.93 for KNIES DECOMPOSE, 

KNIES_TSP, and KNIES_TSP_Global, 

respectively. Besides accuracy, KNIES 

DECOMPOSE cuts the running time necessary for 

KNIES_TSP_Global to solve att532, from 

49,888.68 seconds down to 3.02 seconds, with no 

deterioration in the solution quality. 

Bernard’s Angeniol approach was compared with 

the elastic net method presented by Durbin and 

Willshaw. The results for five sets of 50 cities show 

similar characteristics. On average, both approaches 

are equivalent. The results compared to Tank and 

Hopfield demonstrates that a low value of the 

parameter 'a' gives a better average, but a high value 

has the advantage that the optimum is sometimes 

reached. It also gives a good solution in several tries 

in less time than one try with a low value of a. It 

seems the 2opt + SOM hybrid is not a very powerful 

algorithm for the TSP. It has been outperformed by 

EA as well as Lin-Kerninghan algorithms. 

The approach of Mueller & Kiehne outperforms 

ACO and SOM on a level of 5%. In the hybrid 

algorithm, this method competed against Zhou and 

it was faster about 84% considering the same TSPs, 

and 11% faster than Peker's algorithm. In 

comparison to the approach which uses the K-means 

and the Firefly algorithm, it is observed that 

Clustered SOM with the complementary GA is 
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superior in terms of both the objective value and the 

computation time. 

The ART/SOFM model has a 10% excess over the 

optimal tour length on TK2392 and the eISOM on 

the same TSP has a 6.44% excess. Also, in the same 

amount of cities, on PR2392 TSP Memetic SOM 

has a 7.34%, The ESOM has 8.49%, the eISOM has 

6.44%, and the ORC-SOM is 7.16%. The Eli51 is 

one of the common TSPs which is used many times. 

The SETSP has a computational result of 435, close 

to the optimum length. 

Furthermore, Fuzzy has the same computational 

result as SETSP, and on the MGSOM it has 431 so 

as EGSOM. The Hybrid has 440. The Iterative has 

470. On the excess %, the results of the Eli51 on the 

eISOM is 2.56%, on SETSP is 2.22%, on the 

MEMETIC it is 2.52%, on the EGSOM it is 1.39% 

as the MGSOM too and the ORC-SOM 3.00%. The 

results above are associated with small-scale TSP 

problems. 

Now, let us present results associated with a large 

scale of problems, meaning more cities. The TSP 

called fi10639 has 10639 total cities. TOPSOM as it 

was presented previously, has a percentage 

Deviation of the Mean solution equal to 21.94%, 

compared with eISOM which has 23.45% and the 

traditional SOM with 27.02%. The MEMETIC has 

6.93%. The TSP berlin52 has 52 cities so it is a 

small-scale problem. The optimal tour length of the 

traditional SOM is 7544. The result of the Self-

Organizing Iterative’s length on that TSP is 7959. 

The eISOM has a mean length of 8148 and the 

TOPSOM has a value of 7995. Also, in the hybrid 

model, the average value is 8208. Furthermore, in 

the Mueller & Kiehne approach, the mean value is 

7669. 

One common characteristic of most of the models, 

is the Euclidean distance, that is used to find the 

nearest neighbor. Only the approach of Mueller & 

Kiehne took the TSP from the Welch Two Sample t-

test. Other than that all of them used TSPLIB 

instances. Furthermore, TOPSOM used National 

TSP’s instances too.  

CHAOSOM compared with SOM, and the 

percentage error of the optimal distance on the 

CHAOSOM has shown better results. 

Fuzzy compared to the Evolutionary Algorithm and 

the Lin Kernighan Algorithm. This algorithm 

provides significantly better results for TSP as the 

number of cities increases. 

The average improvement rate of the solution 

accuracy (average error for optimal) in the 

SOM+SA process is estimated at about 2%, but it is 

scattered depending on the size of the problems. The 

average CPU time on SOM+SA is  for the 

number of cities equal to n. 

The PMSOM was compared with the MEMETIC 

SOM and the results show that the computational 

speed is faster, because it uses clusters, while the 

number of cities increases and the PDM% is 4.53 

compared to 5.87 of the MEMETIC SOM. 

To sum up, the objective of this work was the study 

of a set of papers, presenting an interesting SOM 

and the evaluation and comparison regarding their 

use to the TSP. The mathematical equations of the 

algorithms can be found in the papers describing 

them. ORC-SOM had the best average results from 

the optimal tour length, considering all the other 

enriched SOM models for small-scale problems. 

Regarding the large datasets, TOPSOM produces 

the fastest results with a good performance. On the 

Hybrid models, for small datasets, the eISOM 

model produces the best results, while Fuzzy seems 

to produce the fastest time but not as decent results 

as eISOM. On the large scale of problems such as a 

10000 of a TSP on average, the PMSOM has the 

best score and fast execution time. The MinMax 

Multiple-TSP produces the best results in the 

category of multiple salesmen. 

 

 

8 Conclusion 
In this survey paper, we gathered and studied 

models of the well-known Travelling Salesman 

Problem (TSP) using Self-Organizing maps (SOM). 

More specifically, a set of models that implement 

the SOM on TSP instances, are presented. These 

models were classified according to the algorithms 

they use. The comparison shows that some models 

tend to perform better on large-scale problems while 

some others on small-scale. The performance is 

good, not only regarding the time spent to finish, but 

also with respect to the optimality of the tour length. 

These models maximize their efficiency to provide 

us with general knowledge of different kinds of 

algorithms, so we can choose which is better for our 

problem. In future works, we will keep track of new 

methods that solve the TSP using SOM in order to 

create a newer version of this paper with models 

that have different approaches and superior 

computational results if possible. 
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TABLE 1. ENRICHED SOM MODELS 

 

 

 

 

Type Method 

name 

Date Dataset & Iterations Performance The number of 

neurons depends on 

the cities 

Useful Comments 

Convex-

Hull 

TOPSOM 2021 52 to 16862 cities 

TSPLIB instances 

National TSP’s 

instances 

30000 iterations 

Big Data Neurons = 8 × Cities In comparison with traditional SOM, 

TOPSOM gets better routes with up to a 

7.67% decrease in terms of PDM, and a 

3.19% reduction in average in terms of 

PDB. 

Convex-

Hull 

ORC-SOM  2011 51 to 2392 cities 

TSPLIB instances 

200 iterations 

Big Data Neurons = 2 or 3 × 

Cities 

ORC-SOM is superior in average 

percentage to its counterparts in solution 

quality. 

Convex-

Hull 

CHSOM 2008 70 to 532 cities 

TSPLIB instances 

200 iterations 

Not referred Neurons = Cities Obtained better solution quality (%from 

optimum) than Leung’s algorithm on some 

TSPs, but not on all. 

Convex-

Hull 

Expanding 

Property 

SOM 

2005 2400 cities 

No library found 

100 * n iterations 

Big Data Neurons = Cities The width is decreased linearly to 1 in the 

first 65% of the iterations. 

Convex-

Hull 

ESOM 2004 50 to 2400 cities 

TSPLIB instances 

100 * n iterations 

Small Data Neurons = Cities 4.18% solution quality on average on 20 

TSPs Compared to KNIES-global, KNIES-

local, SA, and Budinich. 

Growing 

Ring 

MGSOM 2005 6 to 442 cities 

TSPLIB instances 

20 iterations 

Big Data Neurons = 2 × Cities 2.3215 average deviations from the optimal 

tour length compared to KL, KG, and 

SETSP. 

Growing 

Ring 

EGSOM 2006 51 to 106 cities 

TSPLIB instances 

No iterations found 

Big Data Neurons = 1.5 × Cities 2.4925 percent difference from the optimal 

tour and 233.8 average processing time 

(secs.) 

Growing 

Ring 

MSTSP 2006 51 to 442 cities 

TSPLIB instances 

20 iterations 

Big Data Neurons = 2 × Cities The average deviation of 2.4372% from 

the optimal tour length. 

Heuristic Enhanced 

SOM 

2021 50 to 200 cities 

No library found 

100000 iterations 

Not referred Neurons = Cities 0.07891 of F1 score achieved. 

Heuristic SDP 2005 100000 cities 

TSPLIB instances 

50 to 500 iterations 

Big Data Neurons = 5 × Cities The results show a very nice speedup 

behavior and make the solution of very 

large TSPs viable, up to hundreds of 

thousands of cities. 

Heuristic CAN 2003 51 to 85900 cities 

TSPLIB instances 

Cities / 2 iterations 

Big Data Neurons = 2.5 ×Cities CAN and ORCSOM seem to be more 

robust. 

Heuristic Modified 

CAN 

2011 6 to 574 cities 

TSPLIB instances 

Cities / 2 iterations 

Small Data Neurons = 2.5 × Cities The error in the CAN algorithm is 

negligible for small problems. 

Heuristic GSOA 2018 51 to 2392 cities 
TSPLIB instances 

150 iterations 

Big Data Neurons = 2.5 × Cities Faster computation time and better results 

than ORC-SOM. 

Heuristic KNIES 1999 51 to 532 cities 

TSPLIB instances 

No iterations found 

Small Data Neurons = Cities 2.73% relative deviation from the optimal 

tour length. Better than PKN, GN, AVL, 

KG. 

Heuristic KNIES 

DECOMPO

SE 

2003 51 to 2392 cities 
TSPLIB instances 

No iterations found 

Big Data Neurons = Clusters It is not the number of clusters, but the 

quality of the clustering which is crucial; 

this results in both a higher speed and 

accuracy at the same time. 

Heuristic Modares et 

al. 

1997 51 to 1400 cities 

TSPLIB instances 

No iterations found 

Big Data Neurons = 2 × Cities The deviation from the best-known 

solutions are 2.17% in the worst case and 

1.22% on average. 

Heuristic Bernard 

Angeniol 

1988 1000 cities 

No library found 

No iterations found 

Big Data Neurons = Cities Compared with the elastic net method 

presented by Durbin and Willshaw. 
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TABLE 2. HYBRID MODELS 
Type Method name Date Dataset & Iterations Performance The number of 

neurons used depends 

on the cities 

Useful Comments 

Greedy Self-

Organizing 

Iterative 

2018 51 to 200 cities 

TSPLIB instances 

No iterations referred 

Small Data Neurons = Cities 5-10% solution quality (%from 

optimum). 

Greedy Mueller & 

Kiehne 

2015 52 to 561 cities 

Welch Two Sample t-

test 

iterations > 2000  

Not referred Neurons = Cities The hybrid approach outperforms 

ACO and SOM at a level of 5%. 

Evolutionary CVOA + 

SOM 

2021 ● 14 to 99 cities 

TSPLIB instances 

● 2500 or 3000 iterations 

Big Data Neurons = Cities Competed against classic SOM. 

Evolutionary Hybrid 2018 51 to 442 cities 

TSPLIB95 instances 

500000 iterations 

Big Data Neurons = 2 × Cities Less processing time but not a better 

quality solution on most of them. 

Evolutionary 2opt + SOM 2007 51 to 10000 cities 

TSPLIB instances 

25000 iterations 

Big Data Neurons = Cities Its speed might be impressive, but it 

still is slow. 

Evolutionary SETSP 2003 70 to 442 cities 

TSPLIB instances 

iterations > 30 

Big Data Neurons > Cities 3.69 Average deviation from the 

optimal tour length compared to KL, 

KG. 

Genetic Clustered 

SOM 

2021 100 to 10000 cities 

TSPLIB instances 

iterations > 50 

Big Data Neurons = Cities Compared with SOM-Firefly [77], 

K-means-GA, and K-means-Firefly. 

Genetic EvolvedISOM 

(eISOM) 

2003 30 to 2393 cities 

TSPLIB instances 

160 * n iterations 

Big Data Neurons = Cities 3.24% solution quality on the 

optimum length. 

Genetic ART/SOFM 2001 1000 to 14000 cities 

TSPLIB instances 

No iterations referred 

Big Data Neurons = Cities Percentage excess over the Lin 

Kernighan tour. 

Memetic MEMETIC  2008 29 to 85900 cities 

TSPLIB instances 

No iterations referred 

Small Data Neurons = 2 × Cities Better %PDM and %PDB on most of 

its competitors especially on small 

scale. 

Memetic PMSOM 2015 29 to 10639 cities 

TSPLIB instances 

60 to 480 iterations 

Big Data Neurons = 5 × Cities This methodology is more than 4 

times faster than those of non-

parallel systems on average. 

Chaotic CHAOSOM 2006 48 cities 

TSPLIB instances 

100 iterations 

Not referred Neurons = 2 × Cities 2.02% error from the optimal 

distance. 

Chaotic Chaotic maps 2015 50 to 10000 cities 

OpenOpal framework 

1000 to 1000000 

iterations 

Depending on 

the model 

Neurons = Cities Burgers, Delayed Logistics, or 

Tinkerbell Map are for big problems 

and Henon Map is for small sets. 

Fuzzy Fuzzy  2008 51 to 1200 cities 

TSPLIB instances 

25000 iterations 

Big Data Neurons = Cities It has better average percentage 

results than Lin Kernighan. 

Simulated 

annealing 

SOM + SA 2010 10 to 2000 cities 

TSPLIB instances 

Iterations = cities * 5 

Big Data Neurons = Cities Its computational complexity is 

approximately . 

Elastic Net EN + SOM 2007 1000 to 2000 cities 

No library found 

Not referred Neurons = 2.5 × Cities The integration of SOM and EN has 

proven to be a very efficient way to 
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10 million iterations optimal route planning. 

TABLE 3. ENRICHED SOM COMPETITION 
 

Method name Kohonen CAN eISOM ESOM Elastic 

net 

AVL GN KL ORC-SOM Somhom’s Matsuyam

a 

TOPSOM X X X         

ORC-SOM  X   X        

CHSOM    X  X      

Expanding Property 

SOM 
   X        

ESOM     X       

MGSOM X     X X X    

MSTSP      X X X    

EGSOM         X   

CAN    X     X   

KNIES     X       

Bernard Angeniol  X       X   

GSOA  X        X  

Modified CAN        X    

KNIES 

DECOMPOSE 
    X X X    X 

Modares et al. X X X         

 

 

TABLE 4. HYBRID COMPETITION (Hybrid models against the algorithms/models/authors of a model 

taken from their papers) 

 

Method name Greedy ACO Kohonen Peker Yongquan Zhou AVL GN KL MEMETIC 

Self-Organizing Iterative X         

Mueller & Kiehne  X X       

CVOA + SOM   X       

Hybrid    X X     

SETSP   X   X X X  

SOM + SA   X       

PMSOM         X 

 

The continuation of the TABLE 5. 

 

Method name ESOM SA Budinich’s 

SOM 

CEN Lin 

Kernighan 

CAN eISOM Kohonen Evolutionary K-means-Firefly 

(combination) 

Clustered SOM          X 

EvolvedISOM 

(eISOM) 
X X X X       

ART/SOFM     X      

MEMETIC  X     X X    

CHAOSOM     X   X   

Fuzzy      X    X X 

2opt + SOM     X    X  
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TABLE 5. MULTIPLE TSP MODELS 
 

Method name Date Dataset & 

Iterations 

Performanc

e 

The number of 

neurons depends on 

the cities 

Useful Comments 

MinMax Multiple-

TSP 

2019 51 to 99 cities 

TSPLIB 

instances 

5000 iterations 

Not specific Neurons = 3 × Cities The optimum solution is obtained on some 

problem instances. 

MTSP 2003 29 to 561 cities 

TSPLIB 

instances 

100 iterations  

Not referred Neurons = Cities Better length of the average solution and 

running time than conventional SOM. 

 

TABLE 6. MULTIPLE TSP COMPETITORS 

Method name ACO SOM SOM-ACO EA SOM-EA SOM-EA-2opt Modares et al. 

MinMax Multiple-TSP X X X X X X  

MTSP       X 
 
 
 

TABLE 7. MODELS CATEGORIZED 

Heuristic Enhanced 

SOM 

SDP CAN Modified 

CAN 

KNIES KNIES 

DECOMPOSE 

Modares 

et al. 

GSOA Bernard 

Angeniol 

Convex-Hull ORCSOM ESOM TOPSOM CHSOM Expanding 

Property 

SOM 

    

Evolutionary CVOA + 

SOM 

SETSP Hybrid 2opt + 

SOM 

     

Genetic Clustered 

SOM 

eISOM ART/SOFM       

Multiple 

Salesman 

MTSP MinMax 

Multiple-

TSP 

       

Greedy Iterative Mueller & 

Kiehne 

       

Chaotic Chaotic 

Maps 

CHAOSO

M 

       

Memetic MEMETIC PMSOM        

Fuzzy Fuzzy         

Simulated 

Annealing 

SOM + SA         

Elastic Net EN + SOM         
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