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1 Introduction 
In the seventeenth century, Isaac Newton and 

Gottfried Leibniz laid the foundations for the 

classical -or sometimes called- Newtonian 

calculus. That particular calculus has proved its 

mathematical strength. Indeed, it is the most 

applicable theory used in sciences. Fractional 

calculus, even though it is usually thought that 

it is a relatively new subject, it has dated back 

to 1695 when L’Hoptial wrote to Leibnitz 

asking about the interpretation of 
𝑑𝑛𝑓

𝑑𝑥𝑛 when 𝑛 =
1

2
, see [1]. In the previous century, many 

mathematicians have given different 

perspectives and approaches in an attempt to 

answer this question. The same question arises 

when one considers 
𝑑∗(𝑛)𝑓

𝑑𝑥𝑛  or 
𝑑𝜋(𝑛)

𝑑𝑥𝑛 . These are the 

multiplicative and bigeometric derivatives 

respectively. In the period 1967 to 1970, 

Michael Grossman and Robert Katz initiated 

many calculi considering different operations 

and viewing classical calculus as an additive 

type that depend on addition and subtraction as 

their foundation [2]. Using that view, they came 

up with what we call multiplicative and 

bigeometric calculi [1-6], that which depends 

on multiplication and division. More precisely, 

defining 𝜑-𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 to represent the main 

algebraic operations performed on ℝ. The 

function 𝜑 is a bijection from ℝ onto an interval 

𝕀 that induced the field and metric structures 

from ℝ onto 𝕀. Letting 𝜑(𝑥) = 𝑒𝑥, we see that 

on 𝕀 = (0, ∞), the exponential-operations give 

rise to two pairs of calculi on functions 𝑓 : 𝕀 →
𝕀. This will be further explained later on in the 

second section. This paper is organized in the 

following way. In Section 2, we explain briefly 

the principles of 𝜑- and bi𝜑- calculi, and give 

examples regarding multiplicative and 

bigeometric calculi. Moreover, we mention the 

Newtonian versions of Caputo and Riemann-

Liouville approaches to this subject. Then, we 

introduce some theorems for 𝜑- and bi𝜑-calculi 

and we also mention theorems from [6] as well 

which are the stepping stones used in this paper. 

In Section 3, we define 𝜑- and bi𝜑- fractional 

calculi, and based on them we also define it 

with respect to non-Newtonian calculi, which 

are the bigeometric, tanh-, and bi-tanh- 

fractional calculi. The multiplicative case is 

discussed in [6]. Moreover, we mention some 

results which are the relations between 𝜑- and 

bi𝜑- fractional calculi and the Newtonian 

fractional calculi considering the mentioned 

approaches. The notation is rather different than 

the one that was introduced in [2], which 

denotes the bijection as 𝛼 instead of 𝜑. This 

was done because the letter 𝜑 is more 

convenient when discussing fractional calculi 

since 𝛼 is commonly used for denoting the 

order. 
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2 Elements of 𝝋- and bi𝝋-

Differentiation 
Consider an increasing homeomorphism 

𝜑: ℝ → 𝕀. For 𝑥, 𝑦 ∈ 𝕀, we define the following 

operations: 

1. 𝑥 ⊕𝜑 𝑦 = 𝜑(𝜑−1(𝑥) + 𝜑−1(𝑦)), 

2. 𝑥 ⊖𝜑 𝑦 = 𝜑(𝜑−1(𝑥) − 𝜑−1(𝑦)), 

3. 𝑥 ⊗𝜑 𝑦 = 𝜑(𝜑−1(𝑥) × 𝜑−1(𝑦)), 

4. 𝑥 ⊘𝜑 𝑦 = 𝜑(𝜑−1(𝑥)/𝜑−1(𝑦)), 

5. 𝑥 ≤ 𝑦 if and only if 𝜑−1(𝑥) ≤ 𝜑−1(𝑦). 

It is easy to check that 𝕀 under the above 

operations becomes an ordered field. We call 

this field the 𝜑-non-Newtonian interval. 

Moreover, the following real-valued function 𝜑 

defines a metric on 𝕀: 

6. 𝑑𝜑(𝑥, 𝑦) = |𝜑−1(𝑥) − 𝜑−1(𝑦)|. 

Moreover, for any 𝛼 ∈ ℝ, we define the 𝜑-

𝑎𝑙𝑝ℎ𝑎 power of 𝑥 ∈ 𝕀 by  

𝑥⊗𝛼 = 𝜑([𝜑−1(𝑥)]𝛼). 

It is easy to check that the following properties 

are true: 

1. For 𝛼, 𝛽 ∈ ℝ, we have 𝑥⊗𝛼 ⊗ 𝑥⊗𝛽 =

𝑥⊗𝛽 ⊗ 𝑥⊗𝛼 = 𝑥⊗(𝛼+𝛽). 

2. For 𝛼, 𝛽 ∈ ℝ, we have 𝑥⊗𝛼 ⊘ 𝑥⊗𝛽 =

𝑥⊗(𝛼−𝛽). 

3. For 𝛼, 𝛽 ∈ ℝ, we have (𝑥⊗𝛼)
⊗𝛽

=

(𝑥⊗𝛽)
⊗𝛼

= 𝑥⊗(𝛼𝛽).  

Remark 1 This metric is compatible with the 

operations on the field 𝕀, that is, the above 

operations are continuous.  

With this metric we can define, as usual, the 

limit of a function that is defined on a φ-non-

Newtonian interval 𝕀.  

Definition 2 Let 𝕀 be 𝜑-interval, and 𝑓: 𝕀 → 𝕀. 

For 𝑥0 ∈ 𝕀, we define  

bi𝜑 − lim
𝑥→𝑥0

𝑓(𝑥) = 𝐿 ∈ 𝕀 

to be the limit from the metric (𝕀, 𝑑𝜑) to itself. 

That is, if 𝑑𝜑(𝑓(𝑥), 𝐿) → 0 as 𝑑𝜑(𝑥, 𝑥0) → 0.  

In the next proposition, we see the relation 

between the usual limit and the bi𝜑-limit.  

Proposition 3  Let 𝕀 be a 𝜑-interval, and 𝑓: 𝕀 →

𝕀. Then,  

bi𝜑 − lim
𝑥→𝑥0

𝑓(𝑥)

= 𝜑 ( lim
𝑡→𝜑−1(𝑥0)

𝜑−1 ∘ 𝑓 ∘ 𝜑(𝑡)). 

  Proof. Let bi𝜑 − lim
𝑥→𝑥0

𝑓(𝑥) = 𝐿. By the 

definition of bi𝜑-limit, we have  

|𝜑−1(𝑓(𝑥)) − 𝜑−1(𝐿)| → 0 

 as |𝜑−1(𝑥) − 𝜑−1(𝑥0)| → 0. 

In other words,  

|𝜑−1 ∘ 𝑓 ∘ 𝜑(𝜑−1(𝑥)) − 𝜑−1(𝐿)| → 0  

as |𝜑−1(𝑥) − 𝜑−1(𝑥0)| → 0. 

Hence,  

|𝜑−1 ∘ 𝑓 ∘ 𝜑(𝑡) − 𝜑−1(𝐿)| → 0  

as |𝑡 − 𝜑−1(𝑥0)| → 0. 

That is,  

lim
𝑡→𝜑−1(𝑥0)

𝜑−1 ∘ 𝑓 ∘ 𝜑(𝑡) = 𝜑−1(𝐿). 

Therefore,  
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𝜑 ( lim
𝑡→𝜑−1(𝑥0)

𝜑−1 ∘ 𝑓 ∘ 𝜑(𝑡)) = 𝐿. 

Definition 4 Let 𝕀 be a 𝜑-interval, and 𝑓: ℝ →

𝕀. For 𝑥0 ∈ 𝕀, we define  

𝜑 − lim
𝑥→𝑥0

𝑓(𝑥) = 𝐿 ∈ 𝕀 

to be the limit from the usual metric on ℝ to the 

metric (𝕀, 𝑑𝜑). That is, 𝑑𝜑(𝑓(𝑥), 𝐿) → 0 as 

|𝑥 − 𝑥0| → 0.  

 Proposition 5  Let 𝕀 be a 𝜑-interval, and 

𝑓: ℝ → 𝕀. Then,  

𝜑 − lim
𝑥→𝑥0

𝑓(𝑥) = 𝜑 ( lim
𝑥→𝑥0

𝜑−1 ∘ 𝑓(𝑥)). 

 

  Proof. Let 𝜑 − lim
𝑥→𝑥0

𝑓(𝑥) = 𝐿. By the 

definition of 𝜑-limit, we have  

|𝜑−1(𝑓(𝑥)) − 𝜑−1(𝐿)| → 0   as |𝑥 − 𝑥0| → 0. 

Therefore,  

lim
𝑥→𝑥0

𝜑−1 ∘ 𝑓(𝑥) = 𝜑−1(𝐿). 

Or equivalently,  

𝜑 ( lim
𝑥→𝑥0

𝜑−1 ∘ 𝑓(𝑥)) = 𝐿. 

   Based on these types of limits, we can 

develop 𝜑- and bi𝜑-calculi, that is to define a 

derivative and an integral with respect to 𝜑-

operations. 

Remark 6 From now on, for the sake of 

convenience and brevity, we will use the 

operations ⊕, ⊖, ⊗, and ⊘ instead of ⊕𝜑, 

⊖𝜑, ⊗𝜑, and ⊘𝜑.  

Definition 7  The bi𝜑-derivative of a function 

𝑓: 𝕀 → 𝕀, where 𝕀 ⊆ ℝ with 𝜑: ℝ → 𝕀 is denoted 

and given by  

𝑓bi𝜑(𝑥) = 

              bi𝜑 − lim
𝑦→𝑥

[𝑓(𝑦) ⊖ 𝑓(𝑥)] ⊘ [𝑦 ⊖ 𝑥]. (1) 

 Consider Equation 1. Using Proposition 3, one 

has 

𝑓bi𝜑(𝑥) = 

bi𝜑 − lim
𝑦→𝑥

[𝑓(𝑦) ⊖ 𝑓(𝑥)] ⊘ [𝑦 ⊖ 𝑥] 

        = 𝜑 ( lim
𝑡→𝜑−1(𝑥)

𝜑−1([𝑓(𝜑(𝑡)) ⊖ 𝑓(𝑥)] ⊘

[𝜑(𝑡) ⊖ 𝑥])) 

= 𝜑 ( lim
𝑡→𝜑−1(𝑥)

𝜑−1(𝑓(𝜑(𝑡)) − 𝜑−1(𝑓(𝑥))

𝑡 − 𝜑−1(𝑥)
) 

= 𝜑 (
𝑑

𝑑𝑡
(𝜑−1 ∘ 𝑓 ∘ 𝜑)(𝑡)|𝑡=𝜑−1(𝑥))                

= 𝜑 ∘ (𝜑−1 ∘ 𝑓 ∘ 𝜑)′ ∘ 𝜑−1(𝑥).                       

 

This yields the following results.  

Proposition 8  The bi𝜑-derivative of a function 

𝑓: 𝕀 → 𝕀 , where 𝕀 is a 𝜑-interval,is given by  

𝑓bi𝜑(𝑥) = 

𝜑 ( lim
𝑡→𝜑−1(𝑥)

𝜑−1(𝑓(𝜑(𝑡)) − 𝜑−1(𝑓(𝑥))

𝑡 − 𝜑−1(𝑥)
) 

        = 𝜑 ∘ (𝜑−1 ∘ 𝑓 ∘ 𝜑)′ ∘ 𝜑−1(𝑥), 

 or in the other notations,  

𝑑bi𝜑

𝑑𝑥
𝑓(𝑥) = 𝜑 (

𝑑

𝑑𝑡
[𝜑−1 ∘ 𝑓 ∘ 𝜑](𝑡)|𝑡=𝜑−1(𝑥)). 
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 If we denote the 𝑛𝑡ℎ bi𝜑-derivative of 𝑓(𝑥) by 

𝑑bi𝜑(𝑛)

𝑑𝑥𝑛
𝑓(𝑥) = 𝑓bi𝜑(𝑛)(𝑥), we can easily obtain 

the following result.  

Proposition 9 Let 𝕀 be a 𝜑-interval, and 𝑓: 𝕀 →

𝕀. Then,  

𝑓𝑏𝑖𝜑(𝑛)(𝑥) =  

𝜑 ∘ (𝜑−1 ∘ 𝑓 ∘ 𝜑)(𝑛) ∘ 𝜑−1(𝑥), (2) 

 or in the other notations,  

𝑑bi𝜑(𝑛)

𝑑𝑥𝑛
𝑓(𝑥) = 

𝜑 (
𝑑𝑛

𝑑𝑡𝑛
[𝜑−1 ∘ 𝑓 ∘ 𝜑](𝑡)|𝑡=𝜑−1(𝑥)). 

  

 Conversely, we can write the ordinary 

derivative in terms of bi𝜑-derivative as follows.  

Proposition 10 Let 𝑔: ℝ → ℝ, 𝕀 be a 𝜑-

interval. Then, 𝜑 ∘ 𝑔 ∘ 𝜑−1: 𝕀 → 𝕀 and  

𝑔(𝑛)(𝑡) = 𝜑 ∘
𝑑bi𝜑(𝑛)

𝑑𝑥𝑛
[𝜑 ∘ 𝑔 ∘ 𝜑−1] ∘ 𝜑(𝑡), 

 or in the other notations,  

𝑑𝑛

𝑑𝑡𝑛
𝑔(𝑡) = 

𝜑 (
𝑑bi𝜑(𝑛)

𝑑𝑥𝑛
[𝜑 ∘ 𝑔 ∘ 𝜑−1](𝑥)|𝑥=𝜑(𝑡)). 

 Example 11  Take 𝜑(𝑥) = 𝑒𝑥, with 𝕀 =

(0, ∞), then for functions 𝑓 : 𝕀 → 𝕀, we can use 

Proposition 8 to define the bigeometric 

derivative as follows   

𝑑𝜋𝑓

𝑑𝑥
(𝑥) = 

𝜑 ( lim
𝑡→𝜑−1(𝑥)

𝜑−1 ∘ 𝑓 ∘ 𝜑(𝑡) − 𝜑−1(𝑓(𝑥))

𝑡 − 𝜑−1(𝑥)
) 

= 𝜑 ( lim
𝑡→ln𝑥

ln ∘ 𝑓 ∘ exp(𝑡) − ln(𝑓(𝑥))

𝑡 − ln𝑥
)

= 𝜑 (lim
𝑦→𝑥

ln(𝑓(𝑦)) − ln(𝑓(𝑥))

ln𝑦 − ln𝑥
)            

  (here, 𝑥 ∈ 𝕀 asasubsetof ℝ) 

       = 𝑒𝑥(ln𝑓(𝑥))′, 

 as it is expected in the bigeometric calculus.  

 If we define 𝑓 from the Newtonian field ℝ into 

the 𝜑-non-Newtonian interval 𝕀, we can 

introduce a weaker version of differentiablity 

and integrability.  

Definition 12 The 𝜑-derivative of a function 

𝑓: ℝ → 𝕀 , where 𝕀 ⊆ ℝ with 𝜑: ℝ → 𝕀 is 

denoted and given by 

𝑓𝜑(𝑥) = 𝜑 − lim
𝑦→𝑥

[𝑓(𝑦) ⊖𝜑 𝑓(𝑥)] ⊘𝜑 

[𝜑(𝑦) ⊖𝜑 𝜑(𝑥)]. 

Proposition 13  The 𝜑-derivative of a function 

𝑓: ℝ → 𝕀 , where 𝕀 is a 𝜑-interval, is given by  

𝑓𝜑(𝑥) = 𝜑 (lim
𝑦→𝑥

𝜑−1(𝑓(𝑥)) − 𝜑−1(𝑓(𝑦))

𝑥 − 𝑦
) 

            = 𝜑 (
𝑑

𝑑𝑥
[𝜑−1 ∘ 𝑓](𝑥)). 

  

Proposition 14 Let 𝑓: ℝ → 𝕀. Then, 𝑓 is 𝜑-

differentiable at 𝑥 ∈ ℝ if and only if 𝑓 ∘ 𝜑−1 is 

bi𝜑-differentiable at 𝜑(𝑥). In this case, 

𝑓𝜑(𝑥) = (𝑓 ∘ 𝜑−1)𝑏𝑖𝜑(𝜑(𝑥)).  

  Proof. The proof follows from Propositions 8 

and 13.     
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Theorem 15 Let 𝜑: ℝ → 𝕀 be differentiable 

with 𝜑′(𝑥) > 0 on ℝ, and let 𝑓: ℝ → 𝕀. Then 𝑓 

is differentiable if and only if 𝑓 is 𝜑-

differentiable.  

Proof. Let 𝑓 be differentiable at 𝑥. By the 

inverse function theorem, the function 𝜑−1(𝑥) 

is differentiable on 𝕀. Hence, the function 𝜑−1 ∘

𝑓 is differentiable at 𝑥. That is,  

𝑑

𝑑𝑥
(𝜑−1 ∘ 𝑓)(𝑥)

= lim
𝑦→𝑥

𝜑−1(𝑓(𝑥)) − 𝜑−1(𝑓(𝑦))

𝑥 − 𝑦

= 𝐿 

exists. Therefore,  

𝜑 (lim
𝑦→𝑥

𝜑−1(𝑓(𝑥)) − 𝜑−1(𝑓(𝑦))

𝑥 − 𝑦
) = 𝜑(𝐿). 

By Proposition 13, we have 𝑓𝜑(𝑥) = 𝜑(𝐿). 

Hence, 𝑓 is 𝜑-differentiable at 𝑥. Now, suppose 

that 𝑓 is 𝜑-differentiable. Then,  

𝜑 (lim
𝑦→𝑥

𝜑−1(𝑓(𝑥)) − 𝜑−1(𝑓(𝑦))

𝑥 − 𝑦
) = 𝐿, 

and hence  

lim
𝑦→𝑥

𝜑−1(𝑓(𝑥)) − 𝜑−1(𝑓(𝑦))

𝑥 − 𝑦
= 𝜑−1(𝐿). 

It follows that the function 𝜑−1 ∘ 𝑓(𝑥) is 

differentiable at 𝑥. By the chain rule and the 

fact that 𝜑(𝑥) is differentiable everywhere, we 

conclude that 𝑓(𝑥) = 𝜑 ∘ 𝜑−1 ∘ 𝑓(𝑥) is 

differentiable at 𝑥.    

Theorem 16 Let 𝜑: ℝ → 𝕀 be differentiable 

with 𝜑′(𝑥) > 0 on ℝ, and let 𝑓: 𝕀 → 𝕀. Then 𝑓 

is differentiable if and only if 𝑓 is bi𝜑-

differentiable. Moreover,  

𝑓𝑏𝑖𝜑(𝑥) = 𝜑 (

𝑑

𝑑𝑥
(𝜑−1 ∘ 𝑓)(𝑥)

𝑑

𝑑𝑥
𝜑−1(𝑥)

). 

Proof. Let 𝑓 be differentiable at 𝑥0. By the 

inverse function theorem, the function 𝜑−1(𝑥) 

is differentiable on 𝕀. Hence, the function 𝜑−1 ∘

𝑓 is differentiable at 𝑥0. Let 𝑡0 = 𝜑−1(𝑥0), then 

𝜑(𝑡) is differentiable at 𝑡0. By the chain rule, 

𝜑−1 ∘ 𝑓 ∘ 𝜑(𝑡) is differentiable at 𝑡0, and 
𝑑

𝑑𝑥
[𝜑−1 ∘ 𝑓 ∘ 𝜑](𝑡0) = 

              
𝑑

𝑑𝑥
[𝜑−1 ∘ 𝑓](𝜑(𝑡0))

𝑑

𝑑𝑥
𝜑(𝑡0). 

Therefore,  

𝑑

𝑑𝑥
[𝜑−1 ∘ 𝑓 ∘ 𝜑](𝜑−1(𝑥0)) =

𝑑

𝑑𝑥
[𝜑−1 ∘ 𝑓](𝑥0)

𝑑

𝑑𝑥
𝜑−1(𝑥0)

. 

By Proposition 8, 𝑓𝑏𝑖𝜑(𝑥0) exists and  

𝑓𝑏𝑖𝜑(𝑥) = 𝜑 (

𝑑

𝑑𝑥
(𝜑−1 ∘ 𝑓)(𝑥)

𝑑

𝑑𝑥
𝜑−1(𝑥)

). 

Now, suppose that 𝑓 is bi𝜑-differentiable. 

Then,  

𝑓𝑏𝑖𝜑(𝑥) = 

𝜑 ( lim
𝑡→𝜑−1(𝑥)

𝜑−1(𝑓(𝜑(𝑡)) − 𝜑−1(𝑓(𝑥))

𝑡 − 𝜑−1(𝑥)
) 

 = 𝜑 (lim
𝑦→𝑥

𝜑−1(𝑓(𝑥))−𝜑−1(𝑓(𝑦))

𝜑−1(𝑥)−𝜑−1(𝑦)
) 

 Therefore,  

lim
𝑦→𝑥

𝜑−1(𝑓(𝑥)) − 𝜑−1(𝑓(𝑦))

𝜑−1(𝑥) − 𝜑−1(𝑦)
= 𝜑−1(𝑓𝑏𝑖𝜑(𝑥)). 

Since  
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lim
𝑦→𝑥

𝜑−1(𝑥) − 𝜑−1(𝑦)

𝑥 − 𝑦
=

𝑑

𝑑𝑥
𝜑−1(𝑥) ≠ 0, 

we have  

lim
𝑦→𝑥

𝜑−1(𝑓(𝑥)) − 𝜑−1(𝑓(𝑦))

𝑥 − 𝑦

= 𝜑−1(𝑓𝑏𝑖𝜑(𝑥))
𝑑

𝑑𝑥
𝜑−1(𝑥). 

It follows that the function 𝜑−1 ∘ 𝑓(𝑥) is 

differentiable at 𝑥. By the chain rule, we 

conclude that 𝑓(𝑥) = 𝜑 ∘ 𝜑−1 ∘ 𝑓(𝑥) is 

differentiable at 𝑥.     

We denote the 𝑛𝑡ℎ 𝜑-derivative by 𝑓𝜑(𝑛)(𝑥). 

With this notation, one can obtain the following 

result.  

Theorem 17  Let 𝑓: ℝ → 𝕀, then 𝑓𝜑(𝑛)(𝑥) =

𝜑 (
𝑑𝑛

𝑑𝑥𝑛
(𝜑−1 ∘ 𝑓)(𝑥)).  

Proof. The proof will be done using 

mathematical induction and Proposition 13.     

Example 18 For 𝕀 = ℝ+ and 𝜑(𝑥) = 𝑒𝑥𝑝(𝑥), 

we obtain the geometric derivative (which is 

also called ∗derivative or multiplicative 

derivative) of 𝑓(𝑥). 

𝑑∗𝑓

𝑑𝑥
(𝑥) = lim

ℎ→0
(

𝑓(𝑥+ℎ)

𝑓(𝑥)
)

1

ℎ = 𝑒
𝑓(′𝑥)

𝑓(𝑥) = 𝑒(ln∘𝑓)′(𝑥) (3) 

 By Theorem 17, we have  

𝑑∗(𝑛)𝑓

𝑑𝑥
(𝑥) = 𝑒(ln∘𝑓)(𝑛)(𝑥) (4) 

 Moreover, one immediately realizes the 

relation 

𝑓𝜋(𝑥) = (𝑓∗(𝑥))𝑥. (5) 

 The multiplicative derivative and the additive 

derivative can be used to express each other. 

Indeed, we have the following equation 

𝑓(𝑛)(𝑥) = 

          ∑
𝑛−1

𝑘=0
(

𝑛 − 1
𝑘

) 𝑓(𝑘)(𝑥)(ln ∘ 𝑓∗(𝑛−𝑘))(𝑥) (6) 

  Using Faà di Bruno formula on equation (4), 

one also arrives at the following 

𝑓∗(𝑛) = exp ( ∑

𝑘1+2𝑘2+⋯+𝑛𝑘𝑛=𝑛
𝑘≔𝑘1+⋯+𝑘𝑛

−(𝑘 − 1)! 𝑛!

𝑘1! ⋅ … ⋅ 𝑘𝑛!
 

              (−𝑓(𝑥))−𝑘 ∏
𝑖=1,...,𝑛

(
𝑓(𝑖)(𝑥)

𝑖!
)𝑘𝑖)  (7) 

 For a simpler variant of Faà di Bruno formula, 

refer to [7]. This gives a brief overview of 

multiplicative and bigeometric calculi.  

 

 

Example 19  The tanh-derivative for 𝑥 ∈ 𝕀 =

(−1,1), is denoted and given by   

𝑓⋆(𝑥) =
𝑑⋆𝑓(𝑥)

𝑑𝑥
=

𝑒

2𝑓(′𝑥)

1−𝑓(𝑥)2
−1

𝑒

2𝑓(′𝑥)

1−𝑓(𝑥)2
+1

=
𝑒

2
𝑑tanh−1𝑓(𝑥)

𝑑𝑥 −1

𝑒
2

𝑑tanh−1𝑓(𝑥)
𝑑𝑥 +1

. (8) 

 Moreover, the 𝑛𝑡ℎ order tanh-derivative is 

given by 

𝑓⋆(𝑛)(𝑥) =
𝑒

(ln
1+𝑓(𝑥)
1−𝑓(𝑥)

)(𝑛)

−1

𝑒  
(ln

1+𝑓(𝑥)
1−𝑓(𝑥)

)(𝑛)

+1

, 𝑛 = 0,1,2, . ..        (9) 

 

Theorem 20 Let 𝑓(𝑥) be 𝑛-times 

 𝑏𝑖𝜑differentiable, then 

𝑑𝜑(𝑛)𝑓(𝑥)

𝑑𝑥𝑛 =
𝑑bi𝜑(𝑛)𝑓(𝜑−1(𝑡))

𝑑𝑡𝑛 , 𝑥 = 𝜑−1(𝑡),      (10) 

 Thus, the bi𝜑- derivative is a Gauss vector of 

the 𝜑-derivative. Equivalently, 
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𝑑𝜑(𝑛)𝑓(𝑥)

𝑑𝑥𝑛
=

𝑑bi𝜑(𝑛)𝑓(𝑥)

𝑑𝜑(𝑥)𝑛
                                  (11) 

𝑑𝜑(𝑛)𝑓(𝑥)

𝑑𝜑−1(𝑥)𝑛 =
𝑑bi𝜑(𝑛)𝑓(𝑥)

𝑑𝑥𝑛                                    (12) 

Proof. This proof will be done using 

mathematical induction. Let 𝑥 = 𝜑−1(𝑡), then 

we have 𝑑𝑥 = 𝜑−1(𝑡)′𝑑𝑡. This implies, 

𝑑𝜑𝑓(𝑥)

𝑑𝑥
= 𝜑(

𝑑𝜑−1(𝑓(𝑥))

𝑑𝑥
) 

 = 𝜑(
1

𝜑−1(𝑡)′

𝑑𝜑−1(𝑓(𝜑−1(𝑡)))

𝑑𝑡
) 

 =
𝑑bi𝜑𝑓(𝜑−1(𝑡))

𝑑𝑡
. 

 Hence, the theorem is true at 𝑛 = 1. Assume 

that it is true for 𝑛 = 𝑘 − 1, by the induction 

hypothesis we have, 

𝑑𝜑(𝑘)𝑓(𝑥)

𝑑𝑥𝑛
= 𝜑 (

𝑑𝑘𝜑−1(𝑓(𝑥))

𝑑𝑥𝑘
)            

 = 𝜑 (
𝑑

𝑑𝑥

𝑑𝑘−1𝜑−1(𝑓(𝑥))

𝑑𝑥𝑘−1 ) 

 = 𝜑 (
𝑑

𝑑𝑥
𝜑−1 (𝑓𝜑(𝑘−1)(𝑥))) 

= 𝜑 (
1

𝜑−1(𝑡)′

𝑑

𝑑𝑡
𝜑−1 (

𝑑bi𝜑(𝑘−1)𝑓(𝜑−1(𝑡))

𝑑𝑡𝑘−1
)) 

=
𝑑bi𝜑(𝑘)𝑓(𝜑−1(𝑡))

𝑑𝑡𝑘
 . 

 This concludes the proof. The other forms are 

obtained by manipulating the substitution 𝑥 =

𝜑−1(𝑡).     

Remark 21  The first form which includes the 

variables 𝑥 and 𝑡 were introduced to obtain a 

simple proof.  

Example 22  Let 𝑓  be 𝑛-times  𝜋differentiable, 

then   

𝑑∗(𝑛)𝑓(𝑥)

𝑑𝑥𝑛
=

𝑑𝜋(𝑛)𝑓(ln𝑡)

𝑑𝑡𝑛
, 𝑥 = ln𝑡. (13) 

 Which has equivalent forms, 

𝑑∗(𝑛)𝑓(𝑥)

𝑑𝑥𝑛
=

𝑑𝜋(𝑛)𝑓(𝑥)

𝑑exp𝑥𝑛  (14) 

 

𝑑∗(𝑛)𝑓(𝑥)

𝑑ln𝑥𝑛 =
𝑑𝜋(𝑛)𝑓(𝑥)

𝑑𝑥𝑛  (15) 

Example 23  Let 𝑓(𝑥) be 𝑛-times 

 𝑏𝑖⋆𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒. Then, 

𝑑⋆(𝑛)𝑓(𝑥)

𝑑𝑥𝑛
=

𝑑bi⋆(𝑛)𝑓(tanh−1𝑥)

𝑑𝑡𝑛 , 𝑥 = tanh−1𝑡.     (16) 

 Which are equivalent to the forms, 

𝑑⋆(𝑛)𝑓(𝑥)

𝑑𝑥𝑛 =
𝑑bi⋆(𝑛)𝑓(𝑥)

𝑑tanh𝑥𝑛                                   (17) 

𝑑⋆(𝑛)𝑓(𝑥)

𝑑tanh−1𝑥𝑛 =
𝑑bi⋆(𝑛)𝑓(𝑥)

𝑑𝑥𝑛 .                               (18) 

Remark 24  By Theorem (20), we can 

comprehend the relation between 𝜑- and bi𝜑-

calculi. Indeed, 𝜑-calculus is not only a 

weakened version of bi𝜑-calculus, rather bi𝜑-

calculus is the change in 𝜑-calculus with 

respect to 𝜑−1(𝑥), which is equivalent to 

stating that 𝜑-calculus is the change in bi𝜑-

calculus with respect to 𝜑(𝑥). 

3 Elements of 𝝋- and bi𝝋-Riemann 

integration 

    Using the structure of the metric 𝕀, one can 

define the boundedness of 𝑓: 𝐴 → 𝕀. Precisely, 

𝑓 is 𝜑-bounded if 𝑑𝜑(𝑓(𝑥), 𝜑(0)) ≤ 𝑀, for all 

𝑥 ∈ 𝐴. That is, if |𝜑−1(𝑓(𝑥))| ≤ 𝑀, for all 𝑥 ∈

𝐴.  

Definition 25  Let 𝑓: 𝕀 → 𝕀 be 𝜑-bounded. Let 

𝑎 < 𝑏 in 𝕀, and 𝑃 = {𝑥0, 𝑥1, … , 𝑥𝑛} be a 

partition on [𝑎, 𝑏]. The function 𝑓 is called bi𝜑-

Riemann integrable if there is 𝐿 ∈ 𝕀 such that 
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for any 𝜖 > 0 and any choice of 𝑥𝑖−1 ≤ 𝑐𝑖 ≤ 𝑥𝑖, 

there is a 𝛿 > 0 satisfies:  

 𝑑𝜑(⊕𝑖=1
𝑛 𝑓(𝑐𝑖) ⊗ (𝑥𝑖 ⊖ 𝑥𝑖−1), 𝐿) < 𝜖  

whenever 𝑠𝑢𝑝𝑖𝑑𝜑(𝑥𝑖, 𝑥𝑖−1) < 𝛿. In this case we 

write,  

∫
𝑏

𝑎

𝑓(𝑥)𝑑bi𝜑𝑥 = lim
𝑛→∞

⊕
𝑛

𝑖=1
(𝑓(𝑐𝑖) ⊗ (𝑥𝑖

⊖ 𝑥𝑖−1)) = 𝐿. 

Remark 26 The definition above is independent 

of the choice of 𝑐𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖]. That is, if the 

above limit exists, then for any choice of {𝑐𝑖}, 

the limit is the same.  

     It is worth mentioning that if 𝑓(𝑥) is 

Riemann integrable, and 𝜑−1(𝑥) is piecewise 

continuously differentiable on [𝑎, 𝑏], then  

∫
𝑏

𝑎

𝑓(𝑥)𝑑bi𝜑𝑥 = 

𝜑 (∫
𝑏

𝑎
𝜑−1(𝑓(𝑥))

𝑑

𝑑𝑥
𝜑−1(𝑥)𝑑𝑥). (19) 

 Example 27 The bigeometric integral, denoted 

∫
𝑏

𝑎
𝑓 (𝑥)𝒅𝑥 is given by 

∫
𝑏

𝑎

𝑓(𝑥)𝐝𝑥 = lim
𝑛→∞

⊕
𝑛

𝑖=1
(𝑓(𝑐𝑖) ⊗ (𝑥𝑖 ⊖ 𝑥𝑖−1)) 

= lim
𝑛→∞

∏

𝑛

𝑖=1

𝑓(𝑐𝑖)
ln(𝑥𝑖/𝑥𝑖−1) 

= exp (∫
𝑏

𝑎

ln𝑓(𝑥)

𝑥
𝑑𝑥). 

Definition 28 Let 𝑓: ℝ → 𝕀 be 𝜑-bounded. Let 

𝑎 < 𝑏 in 𝕀, and 𝑃 = {𝑥0, 𝑥1, … , 𝑥𝑛} be partition 

on [𝑎, 𝑏]. The function 𝑓 is called 𝜑-Riemann 

integrable if there is 𝐿 ∈ 𝕀 such that for any 𝜖 >

0 and any choice of 𝑥𝑖−1 ≤ 𝑐𝑖 ≤ 𝑥𝑖, there is a 

𝛿 > 0 satisfies: 𝑑𝜑(⊕𝑖=1
𝑛 𝑓(𝑐𝑖) ⊗ (𝜑(𝑥𝑖) ⊖

𝜑(𝑥𝑖−1)), 𝐿) < 𝜖 whenever 𝑠𝑢𝑝𝑖|𝑥𝑖 − 𝑥𝑖−1| <

𝛿. In this case we write  

 ∫
𝑏

𝑎
𝑓(𝑥)𝑑𝜑𝑥 =

lim
𝑛→∞

⊕𝜑

𝑛

𝑖=1

(𝑓(𝑐𝑖) ⊗𝜑 (𝜑(𝑥𝑖) ⊖𝜑 𝜑(𝑥𝑖−1))) 

= lim
𝑛→∞

𝜑 (∑

𝑛

𝑖=1

𝜑−1 ∘ 𝑓(𝑐𝑖)(𝑥𝑖 − 𝑥𝑖−1)) = 𝐿. 

    It is clear that from the definition above if 𝑓 

is Riemann integrable, and hence 𝜑−1 ∘ 𝑓 is 

Riemann integrable, then 𝑓 is 𝜑-Riemann 

integrable and  

∫
𝑏

𝑎

𝑓(𝑥)𝑑𝜑𝑥 = 𝜑(∫
𝑏

𝑎

𝜑−1(𝑓(𝑥))𝑑𝑥). 

Example 29 The geometric integral, denoted 

∫
𝑏

𝑎
𝑓 (𝑥)𝑑𝑥 is given by  

∫
𝑏

𝑎

𝑓(𝑥)𝑑𝑥 = 

lim
𝑛→∞

exp [∑

𝑛

𝑖=1

ln(𝑓(𝑐𝑖))(𝑥𝑖 − 𝑥𝑖−1)] 

= exp (∫
𝑏

𝑎

ln𝑓(𝑥)𝑑𝑥).                      

Theorem 30 Let ∫
𝑏

𝑎
𝑓(𝑥)𝑑𝜑𝑥 be the 𝜑-integral 

of 𝑓(𝑥). Then,  

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝜑(𝑛)𝑥 =

𝜑 (∫
𝑏

𝑎
𝜑−1(𝑓(𝑥))𝑑(𝑛)𝑥) , 𝑛 ∈ 𝑁 ∪ {0}.        (20) 

Proof. The proof will be done using 

mathematical induction. For 𝑛 = 0,1, it is clear. 

Assume that it holds true for 𝑛 = 𝑘 − 1, then 

we get 

∫
𝑏

𝑎

𝑓(𝑥)𝑑𝜑(𝑘)𝑥 = ∫
𝑏

𝑎

(∫
𝑏

𝑎

𝑓(𝑥)𝑑𝜑(𝑘−1)𝑥) 𝑑𝜑𝑥 
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           = 𝜑 (∫
𝑏

𝑎

𝜑−1 (∫
𝑏

𝑎

𝑓(𝑥)𝑑𝜑(𝑘−1)𝑥) 𝑑𝑥) 

= 𝜑 (∫
𝑏

𝑎

𝜑−1 (𝜑 (∫
𝑏

𝑎

𝜑−1(𝑓(𝑥))𝑑(𝑘−1)𝑥)) 𝑑𝑥) 

= 𝜑 (∫
𝑏

𝑎

[∫
𝑏

𝑎

𝜑−1(𝑓(𝑥))𝑑(𝑘−1)𝑥] 𝑑𝑥) 

        = 𝜑 (∫
𝑏

𝑎

𝜑−1(𝑓(𝑥))𝑑(𝑘)𝑥). 

Example 31 It is clear from the definition of the 

multiplicative integral that 

[𝐼∗(𝑛)𝑓](𝑥) = 𝑒[𝐼(𝑛)(ln∘𝑓)](𝑥)                            (21) 

 Additionally, we have the tanh-integral 

[𝐼⋆(𝑛)𝑓](𝑥) =
𝑒

2 ∫
𝑏
𝑎 ln

1+𝑓(𝑥)
1−𝑓(𝑥)

𝑑(𝑛)𝑥
−1

𝑒
2 ∫

𝑏
𝑎 ln

1+𝑓(𝑥)
1−𝑓(𝑥)

𝑑(𝑛)𝑥
+1

, 𝑛 ∈ ℕ.     (22) 

 

4 Definitions of fractional 𝝋- and bi𝝋-

calculi 

     For ℜ(𝛼) > 0, the Riemann-Liouville 

integral is given by, 

[𝐼(𝛼)𝑓](𝑥) =
1

Γ(𝛼)
∫

𝑥

𝑎

(𝑥 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡.  

Moreover, for 𝑛 − 1 ≤ ℜ(𝛼) < 𝑛, 𝑛: = ⌈𝛼⌉, by 

analytic continuation of the RL-integral to 

ℜ(𝛼) ≤ 0, the Riemann-Liouville fractional 

derivative is given by 

[𝐷(𝛼)𝑓](𝑥) =
1

Γ(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑥𝑛
∫

𝑥

𝑎

(𝑥

− 𝑡)𝑛−𝛼−1𝑓(𝑡)𝑑𝑡. 

Whereas the Caputo derivative is given by,  

 [𝐶𝐷(𝛼)𝑓](𝑥) =
1

Γ(𝑛 − 𝛼)
∫

𝑥

𝑎

(𝑥

− 𝑡)𝑛−𝛼−1𝑓(𝑛)(𝑡)𝑑𝑡. 

 

Definition 32 For ℜ(𝛼) > 0, define the 𝜑-

Gamma function by  

Γ𝜑(𝛼) = ∫
𝑙𝑖𝑚𝑡→∞𝜑(𝑡)

0

𝜑(𝑥𝛼−1𝑒−𝑥)𝑑𝜑𝑥

= 𝜑 (∫
∞

0

𝑥𝛼−1𝑒−𝑥𝑑𝑥). 

   The definitions that will be discussed in this 

section are dealt with in a similar fashion to that 

logic used in the definitions of Riemann-

Liouville and Caputo. Indeed, we have the 

following definitions: 

Definition 33  Let 𝑓: ℝ → 𝕀, where 𝕀 is a 𝜑-

interval. The 𝜑- fractional Riemann-Liouville 

integral of order ℜ(𝛼) > 0 is denoted and 

given by 

[𝐼𝜑(𝛼)𝑓](𝑥) = ∫
𝑥

𝑎

[𝜑(𝑥) ⊖ 𝜑(𝑡)]⊗(𝛼−1)

⊗ 𝑓(𝑡) ⊘ Γ𝜑(𝛼)𝑑𝜑𝑡. 

  It is easy to see that  

[𝐼𝜑(𝛼)𝑓](𝑥) = 𝜑 [
1

Γ(𝛼)
∫

𝑥

𝑎

(𝑥 − 𝑡)𝛼−1𝜑−1

∘ 𝑓(𝑡)𝑑𝑡] 

 = 𝜑[𝐼(𝛼)(𝜑−1 ∘ 𝑓)(𝑥)]. (23) 

 As an example, the fractional multiplicative 

Riemann-Liouville integral of order ℜ(𝛼) > 0 

is defined as follows: 
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[𝐼∗(𝛼)𝑓](𝑥) = exp [
1

Γ(𝛼)
∫

𝑥

𝑎

(𝑥 − 𝑡)𝛼−1(ln

∘ 𝑓)(𝑡)𝑑𝑡]. 

 (Check) Moreover, the tanh- fractional integral 

is denoted and given by 

[𝐼⋆(𝛼)𝑓](𝑥) =
𝑒

2 ∫
𝑥

𝑎 ln
1+𝑓(𝑥)

1−𝑓(𝑥)
𝑑(𝛼)𝑥

− 1

𝑒
2 ∫

𝑥
𝑎 ln

1+𝑓(𝑥)

1−𝑓(𝑥)
𝑑(𝛼)𝑥

+ 1

. 

  

Proposition 34  The 𝜑- fractional Riemann-

Liouville integral operator satisfies the property 

𝐼𝜑(𝛼) ⊗ 𝐼𝜑(𝛽)𝑓 = 𝐼𝜑(𝛼+𝛽)𝑓 = 𝐼𝜑(𝛽) ⊗ 𝐼𝜑(𝛼)𝑓. 

 Proof. For ℜ(𝛼), ℜ(𝛽) > 0  

𝐼𝜑(𝛼) ⊗ 𝐼𝜑(𝛽)𝑓(𝑥) 

= 𝜑[𝐼(𝛼)(𝜑−1 ∘ 𝑓)(𝑥)] ⊗ 𝜑[𝐼(𝛽)(𝜑−1 ∘ 𝑓)(𝑥)] 

= 𝜑[𝐼(𝛼)(𝜑−1 ∘ 𝑓)(𝑥)𝐼(𝛽)(𝜑−1 ∘ 𝑓)(𝑥)] 

= 𝜑[𝐼(𝛼)𝐼(𝛽)(𝜑−1 ∘ 𝑓)(𝑥)] 

= 𝜑[𝐼(𝛼+𝛽)(𝜑−1 ∘ 𝑓)(𝑥)] 

= 𝐼𝜑(𝛼+𝛽)𝑓(𝑥). 

 Similarly,  

𝐼𝜑(𝛼) ⊗ 𝐼𝜑(𝛽)𝑓(𝑥) = 𝐼𝜑(𝛽+𝛼)𝑓(𝑥)     

= 𝐼𝜑(𝛼+𝛽)𝑓(𝑥). 

 This proves the assertion.     

Definition 35  Let 𝑓: 𝕀 → 𝕀, where 𝕀 is a 𝜑-

interval. The bi𝜑- fractional Riemann-Liouville 

integral of order ℜ(𝛼) > 0 is denoted and 

given by 

[𝐼𝑎
𝑏𝑖𝜑(𝛼)

𝑓](𝑥) = ∫
𝑥

𝑎

[𝑥 ⊖ 𝑡]⊗(𝛼−1) ⊗ 𝑓(𝑡)

⊘ Γ𝜑(𝛼)𝑑𝑏𝑖𝜑𝑡. 

   It is easy to see that  

[𝐼𝑎
𝑏𝑖𝜑(𝛼)

𝑓](𝑥) = 𝜑 [
1

Γ(𝛼)
∫

𝜑−1(𝑥)

𝜑−1(𝑎)

(𝜑−1(𝑥)

− 𝑠)𝛼−1(𝜑−1 ∘ 𝑓 ∘ 𝜑)(𝑠)𝑑𝑠] 

= 𝜑 [
1

Γ(𝛼)
∫

𝑥

𝑎
(𝜑−1(𝑥) −

𝜑−1(𝑡))𝛼−1(𝜑−1 ∘ 𝑓)(𝑡)
𝑑

𝑑𝑡
𝜑−1(𝑡)𝑑𝑡]  (24) 

= 𝜑 [𝐼
𝜑−1(𝑎)

(𝛼)
(𝜑−1 ∘ 𝑓 ∘ 𝜑)(𝜑−1(𝑥))]. 

  

Proposition 36  The bi𝜑- fractional Riemann-

Liouville integral operator satisfies the property 

𝐼𝑎
𝑏𝑖𝜑(𝛼)

⊗ 𝐼𝑎
𝑏𝑖𝜑(𝛽)

𝑓 = 𝐼𝑎
𝑏𝑖𝜑(𝛼+𝛽)

𝑓    

                                   = 𝐼𝑎
𝑏𝑖𝜑(𝛽)

⊗ 𝐼𝑎
𝜑(𝛼)

𝑓. 

  

Proof. For ℜ(𝛼), ℜ(𝛽) > 0, one has  

𝐼𝑎
𝑏𝑖𝜑(𝛼)

⊗ 𝐼𝑎
𝑏𝑖𝜑(𝛽)

𝑓(𝑥) 

= 𝜑 [𝐼
𝜑−1(𝑎)

(𝛼)
(𝜑−1 ∘ 𝑓 ∘ 𝜑)(𝜑−1(𝑥))]

⊗ 𝜑 [𝐼
𝜑−1(𝑎)

(𝛽)
(𝜑−1 ∘ 𝑓

∘ 𝜑)(𝜑−1(𝑥))] 

= 𝜑 [𝐼
𝜑−1(𝑎)

(𝛼)
(𝜑−1 ∘ 𝑓 ∘ 𝜑)(𝜑−1(𝑥))𝐼

𝜑−1(𝑎)

(𝛽)
(𝜑−1

∘ 𝑓 ∘ 𝜑)(𝜑−1(𝑥))] 

= 𝜑 [𝐼
𝜑−1(𝑎)

(𝛼+𝛽)
(𝜑−1 ∘ 𝑓 ∘ 𝜑)(𝜑−1(𝑥))] 
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= 𝐼𝑎
𝑏𝑖𝜑(𝛼+𝛽)

𝑓(𝑥). 

 The other part is similar.    

Definition 37  Let 𝑛 − 1 < 𝛼 < 𝑛 and 𝑓: ℝ →

𝕀, where 𝕀 is a 𝜑-interval. The 𝜑- fractional 

Riemann-Liouville derivative of order 𝛼 is 

denoted and given by  

[𝐷𝜑(𝛼)𝑓](𝑥) =
𝑑𝜑(𝑛)

𝑑𝑥𝑛
∫

𝑥

𝑎

[𝜑(𝑥)

⊖ 𝜑(𝑡)]⊗(𝑛−1−𝛼) ⊗
𝑓(𝑡)

Γ𝜑(𝛼)𝑑𝜑𝑡
. 

  

 It is easy to see that  

[𝐷𝜑(𝛼)𝑓](𝑥) =
𝑑𝜑(𝑛)

𝑑𝑥𝑛
𝜑 (

1

Γ(𝑛 − 𝛼)
∫

𝑥

𝑎

(𝑥

− 𝑡)𝑛−𝛼−1𝜑−1 ∘ 𝑓(𝑡)𝑑𝑡) 

= 𝜑 (
𝑑𝑛

𝑑𝑥𝑛

1

Γ(𝑛 − 𝛼)
∫

𝑥

𝑎

(𝑥 − 𝑡)𝑛−𝛼−1𝜑−1

∘ 𝑓(𝑡)𝑑𝑡) 

= 𝜑[𝐷(𝛼)(𝜑−1 ∘ 𝑓)(𝑥)]. (25) 

 As examples we have the multiplicative and 

tanh- versions, respectively, which are denoted 

and given by 

[𝐷∗(𝛼)𝑓](𝑥) =

𝑑∗(𝑛)

𝑑𝑥𝑛 ∫
𝑥

𝑎
(𝑓(𝑡)

(𝑥−𝑡)𝑛−𝛼−1

Γ(𝑛−𝛼) )𝑑𝑡, ℜ(𝑛 − 𝛼) > 0, (26) 

  

[𝐷⋆(𝛼)𝑓](𝑥) =

𝑑⋆(𝑛)

𝑑𝑥𝑛

𝑒
2 ∫

𝑏
𝑎 ln

1+𝑓(𝑥)
1−𝑓(𝑥)

𝑑(𝑛−𝛼)𝑥
−1

𝑒
2 ∫

𝑏
𝑎 ln

1+𝑓(𝑥)
1−𝑓(𝑥)

𝑑(𝑛−𝛼)𝑥
+1

, ℜ(𝑛 − 𝛼) > 0. (27) 

  

Definition 38  Let 𝑛 − 1 < 𝛼 < 𝑛 and 𝑓: 𝕀 → 𝕀, 

where 𝕀 is a 𝜑-interval. The bi𝜑- fractional 

Riemann-Liouville derivative of order 𝛼 is 

denoted and given by  

[𝐷𝑎
𝑏𝑖𝜑(𝛼)

𝑓](𝑥) =
𝑑𝑏𝑖𝜑(𝑛)

𝑑𝑥𝑛 ∫
𝑥

𝑎
[𝑥 ⊖

𝑡]⊗(𝑛−1−𝛼) ⊗ 𝑓(𝑡) ⊘ Γ𝜑(𝛼)𝑑𝑏𝑖𝜑𝑡. 

  

 It is easy to see that  

[𝐷𝑎
𝑏𝑖𝜑(𝛼)

𝑓](𝑥) 

            =
𝑑𝑏𝑖𝜑(𝑛)

𝑑𝑥𝑛
𝜑 (

1

Γ(𝑛 − 𝛼)
∫

𝜑−1(𝑥)

𝜑−1(𝑎)

(𝜑−1(𝑥)

− 𝜑−1(𝑡))𝑛−𝛼−1𝜑−1 ∘ 𝑓(𝑡)𝑑𝑡) 

= 𝜑 (
𝑑𝑛

𝑑𝑥𝑛

1

Γ(𝑛 − 𝛼)
∫

𝑥

𝑎

(𝜑−1(𝑥)

− 𝜑−1(𝑡))𝑛−𝛼−1𝜑−1 ∘ 𝑓(𝑡)𝑑𝑡) 

= 𝜑 [𝐷
𝜑−1(𝑎)

(𝛼)
(𝜑−1 ∘ 𝑓)(𝜑−1(𝑥))].   (28) 

 

 

Definition 39 The 𝜑- fractional Caputo 

derivative of order 𝛼 is denoted and given by 

[ 𝐶𝐷𝜑(𝛼)𝑓](𝑥) = 

𝜑(
1

Γ(𝑛 − 𝛼)
∫

𝑥

𝑎

(𝑥 − 𝑡)𝛼−1𝜑−1(𝑓𝜑(𝑛)(𝑡))𝑑𝑡), 

ℜ(𝑛 − 𝛼) > 0. 

= 𝜑([𝐶𝐷(𝛼)𝜑−1 ∘ 𝑓](𝑥))                 (29) 

  As examples, 
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[ 𝐶𝐷∗(𝛼)𝑓](𝑥) =

∫
𝑥

𝑎
(𝑓∗(𝑛)(𝑡)

(𝑥−𝑡)𝑛−𝛼−1

Γ(𝑛−𝛼) )𝑑𝑡, ℜ(𝑛 − 𝛼) > 0.    (30) 

  

 [𝐶𝐷⋆(𝛼)𝑓](𝑥) =
𝑒

2 ∫
𝑥

𝑎 ln
1+(𝑓⋆(𝑛)(𝑥))

1−(𝑓⋆(𝑛)(𝑥))
𝑑(𝑛−𝛼)𝑥

− 1

𝑒
2 ∫

𝑥
𝑎 ln

1+(𝑓⋆(𝑛)(𝑥))

1−(𝑓⋆(𝑛)(𝑥))
𝑑(𝑛−𝛼)𝑥

+ 1

, 

 

ℜ(𝑛 − 𝛼) > 0.                               (31) 

 Theorem (20) paves the way for the bi𝜑- 

fractional calculi without the use of heavy 

machinery. It is an immediate out-growth of it 

in some sense. In the following definitions, the 

subscript 𝜑−1(𝑡) is to clarify that the operations 

are carried out with respect to 𝜑−1(𝑡). 

 

Definition 40 The bi𝜑- fractional integral of 

order 𝛼 is denoted and given by 

[𝐼bi𝜑(𝛼)𝑓](𝑥) 

= 𝜑(
1

Γ(𝛼)
∫

𝑥

𝑎

(𝜑−1(𝑥)           

− 𝜑−1(𝑡))𝛼−1𝜑−1(𝑓(𝜑−1(𝑡)))𝑑𝜑−1(𝑡)), 

𝑅𝑒(𝛼) > 0. 

= 𝜑([𝐼
𝜑−1(𝑡)

(𝛼)
𝑓](𝑥)) (32) 

  

 As examples,  

[𝐼𝜋(𝛼)𝑓](𝑥) =

∫
𝑥

𝑎
(𝑓(ln𝑡)

(ln
𝑥
𝑡

)𝛼−1

Γ(𝛼) )𝑑ln𝑡, ℜ(𝛼) > 0. (33) 

 

[𝐼bi⋆(𝛼)𝑓](𝑥) =

∫
𝑥

𝑎
𝑓(tanh−1𝑡)𝑑⋆(𝛼)tanh−1𝑡, ℜ(𝛼) > 0. (34) 

 This notation in (34) is just an abbreviation, 

since equation (32) is rather tedious. It means 

that all the arguments would change from 

𝑡, 𝑥 → tanh−1(𝑡), tanh−1(𝑥) everywhere except 

at the boundaries of integration. 

 

Definition 41 The bi𝜑- fractional Riemann-

Liouville derivative of order 𝛼 is denoted and 

given by  

[𝐷bi𝜑(𝛼)𝑓](𝑥)

=
𝑑bi𝜑(𝑛)

𝑑𝜑−1(𝑥)𝑛
𝜑(

1

Γ(𝑛 − 𝛼)
∫

𝑥

𝑎

(𝜑−1(𝑥)

− 𝜑−1(𝑡))𝑛−𝛼−1𝜑−1(𝑓(𝜑−1(𝑡)))𝑑𝜑−1(𝑡)). 

    = 𝜑([𝐷
𝜑−1(𝑡)

(𝛼)
𝑓](𝑥)), ℜ(𝑛 − 𝛼) > 0. (35) 

   As examples, 

[𝐷𝜋(𝛼)𝑓](𝑥) =
𝑑𝜋(𝑛)

𝑑ln𝑥𝑛
∫

𝑥

𝑎

(𝑓(ln𝑡)
(ln

𝑥
𝑡

)𝑛−𝛼−1

Γ(𝑛−𝛼) )𝑑ln𝑡, 

ℜ(𝑛 − 𝛼) > 0                                                     (36) 

[𝐷bi⋆(𝛼)𝑓](𝑥) =
𝑑bi⋆(𝑛)

𝑑tanh−1𝑥𝑛 ∫
𝑥

𝑎
𝑓(tanh−1𝑡)𝑑⋆(𝛼)tanh−1𝑡 .         (37) 

 

Definition 42 The bi𝜑- fractional Caputo 

derivative of order 𝛼 is denoted and given by 

 [𝐶𝐷bi𝜑(𝛼)𝑓](𝑥) = 𝜑(
1

Γ(𝑛−𝛼)
∫

𝑥

𝑎
(𝜑−1(𝑥) −

𝜑−1(𝑡))𝛼−1𝜑−1(𝑓bi𝜑(𝑛)(𝜑−1(𝑡)))𝑑𝜑−1(𝑡)) (38) 

= 𝜑([𝐶𝐷
𝜑−1(𝑡)

(𝛼)
𝑓](𝑥)), ℜ(𝑛 − 𝛼) > 0 (39) 

Remark 43 One can see that the Hadamard 

fractional derivative is the logarithm of the 
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bigeometric RL derivative of 𝑒𝑓. That is, it is a 

RL derivative on the manifold 𝕀 under the 

diffeomorphism 𝜑. This hints that many of the 

fractional derivatives that are defined may 

indeed be a RL derivative on a given manifold, 

from a differential geometric point of view.  

[ 𝐶𝐷𝜋(𝛼)𝑓](𝑥) = 

              ∫
𝑥

𝑎
(𝑓𝜋(𝑛)(ln𝑡)

(ln
𝑥
𝑡

)𝑛−𝛼−1

Γ(𝑛−𝛼) )𝑑ln𝑡,         (40) 

[ 𝐶𝐷bi⋆(𝛼)𝑓](𝑥) = 

∫
𝑥

𝑎
𝑓⋆(𝑛)(tanh−1𝑡)𝑑⋆(𝛼)tanh−1𝑡     (41) 

 These definitions also allows one to calculate 

various 𝜑- and bi𝜑-fractional derivatives, and 

integrals. Hence, all the results that holds true 

for Caputo and Riemann-Liouville 

differintegrals are also true under the influence 

of the homeomorphism 𝜑. For a more general 

case, consider a function 𝑓: 𝕀1 → 𝕀2, where 

𝕀1, 𝕀2 ⊆ ℝ are ordered fields equipped with the 

usual metric and their field structure are based 

on the algebraic operations similar to those in 

the beginning of the second section under the 

influence of the homeomorphisms 𝜑: ℝ → 𝕀1,

𝜂: ℝ → 𝕀2. Then, we can define the bi(𝜑, 𝜂)-

derivative in a similar fashion, where 

𝑓bi(𝜑,𝜂)(𝑥) = lim
𝑦→𝑥

𝜂 (
𝜂−1 ∘ 𝑓(𝑥) − 𝜂−1 ∘ 𝑓(𝑦)

𝜑−1(𝑥) − 𝜑−1(𝑦)
) 

= 𝜂 (
(𝜂−1∘𝑓)

′
(𝑥)

𝜑−1(𝑥)′ ) (42) 

 And the bi(𝜑, 𝜂)-integral, 

∫
𝑏

𝑎
𝑓(𝑥)𝑑bi(𝜑,𝜂)𝑥 = 𝜂 (∫

𝑏

𝑎
𝜑−1(𝑥)′𝜂−1 ∘

𝑓(𝑥)𝑑𝑥) (43) 

 Remark 44 The domains of the 

homeomorphisms may be a subset of the real 

numbers.  

Example 45 Consider 𝜑: ℝ → (−
𝜋

2
,

𝜋

2
), 𝜂: ℝ →

(0, ∞) defined by 𝜑(𝑥) = 𝑎𝑟𝑐𝑡𝑎𝑛𝑥, 𝜂(𝑥) = 𝑒𝑥. 

Then we have,  

𝑓bi(𝜑,𝜂)(𝑥) = exp (
𝑓(′𝑥)

𝑓(𝑥)𝑠𝑒𝑐2(𝑥)
) 

and,  

∫
𝑏

𝑎

𝑓(𝑥)𝑑bi(𝜑,𝜂)𝑥

= exp (∫
𝑏

𝑎

𝑠𝑒𝑐2(𝑥)ln𝑓(𝑥)𝑑𝑥) 

Where the tangent function is on domain 

(−
𝜋

2
,

𝜋

2
).  

Remark 46 Many other fractional calculi may 

be defined under the influence of a 

diffeomorphism defined as a composition of 

finitely many diffeomorphisms.  

  

5   Conclusion 
In this paper, the very basic definitions of 

fractional calculus are established in the 

relatively new 𝜑-calculi and bi𝜑-calculi, which 

are promising to be of great use. Indeed, they 

give an interpretation of the so-called 

𝜓 −fractional calculus under the scope of the 

discussed subject, as Remark 43 mentions. This 

paper also reveals a new form of the discussed 

calculi as seen in the first section which is 

useful in proofs. We have also arrived at an 

important link which in future papers will make 

establish relations between 𝜑-calculi and bi𝜑-

calculi in a smooth and practical way as well as 

a relation to the Newtonian versions, where 

various analogs such as the 𝜑 −gamma 

function.  
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