
consequences. To study chaos, general
mathematical principles and computer
modeling are used.
This article showed that changing one
parameter of the system (1) changes the
solution of the system (a quasi-periodic
solution, a chaotic solution, a periodic
solution).
Lyapunov exponents are calculated using
Wolfram Mathematica. Lyapunov expo-
nents are one of the most useful diagnostic
tools available for analyzing dynamical
systems.
Visualizations of solutions of the sys-
tem (1) are shown, projections onto
two-dimensional and three-dimensional
subspaces are provided.
Kaplan-Yorke dimension is calculated for
the system (1) with different parameters.
References
[1] S. Lynch. Dynamical Systems with
Applications Using Mathematica.
Springer, 2017.
[2] Alejandro Silva-Juarez, Gustavo
Rodriguez-Gomez, Luis Gerardo de
la Fraga, Omar Guillen-Fernandez,
Esteban Tlelo-Cuautle. Optimizing the
KaplanYorke Dimension of Chaotic
Oscillators Applying DE and PSO.
MDPI Technologies 2019, 7(2), 38.
10.3390/technologies7020038
[3] J. Hong, W. Chan. Entropy Map Might
Be Chaotic. In Proceedings of the 6th
International Conference on Complex-
ity, Future Information Systems and
Risk - Volume 1: COMPLEXIS, ISBN
978-989-758-505-0, pages 86-90, 2021.
10.5220/0010469700860090
[4] Alan Wolf, Jack Swift, Harry L. Swin-
ney, John Vastano. Determining Lya-
punov exponents from a time series.
Physica D: Nonlinear Phenomena, El-
sevier, 1985, 16 (3), pp.285 - 317.
10.1016/0167- 2789(85)90011-9.
[5] I.Samuilik. Genetic engineering-
construction of a network of four
dimensions with a chaotic attractor,
Vibroengineering Procedia, 44, pp.
66-70, 2022.
[6] I. Samuilik, F. Sadyrbaev. On a Dy-
namical Model of Genetic Networks.
WSEAS Transactions on Business and
Economics, ISSN / E-ISSN: 1109-
9526 / 2224-2899, Volume 20, 2023.
10.37394/23207.2023.20.11
[7] K. Nosrati, Ch. Volos. Bifurcation
Analysis and Chaotic Behaviors of
Fractional-Order Singular Biological
Systems. Nonlinear Dynamical Sys-
tems with Self-Excited and Hidden At-
tractors, Springer, 2018. Pages 3-44.
[8] Q. V. Lawande, N. Maiti. Role of non-
linear dynamics and chaos in applied
sciences, Government of India, Atomic
Energy Commission,Feb 2000, 111 p.
RN:31049284
[9] W. S. Sayed, A. G. Radwan, H. A. H.
Fahmy. Chaos and Bifurcation in Con-
trollable Jerk-Based Self-Excited At-
tractors. Nonlinear Dynamical Systems
with Self-Excited and Hidden Attrac-
tors, Springer, 2018. Pages 45-70
[10] S. Nikolov, N. Nedkova. Gyrostat
Model Regular And Chaotic Behavior.
Journal of Theoretical and Applied Me-
chanics, 2015. 10.1515/jtam-2015-0021
[11] I.Samuilik, F. Sadyrbaev, S. Atslega.
Mathematical modelling of nonlinear
dynamic systems. Engineering for Ru-
ral Development, 21, pp. 172178, 2022.
[12] Khaled Benkouider, Toufik Bouden,
Aceng Sambas, Badis Lekouaghet, Mo-
hamad Afendee Mohamed, Sulaiman
Ibrahim Mohammed, Mustafa Mamat,
WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2022.21.29