[2] M. T. Vilhena, L. B. Barichello, J. R. Zabadal, C. F.
Segatto, A. V. Cardona, R. P. Pazos, Solutions to
the multidimensional linear transport equation by
the spectral method, Progress in Nuclear Energy,
35, 275-291, 1999
[3] B. Orel, A. Perne, Chebyshev-Fourier spectral
methods for nonperiodic boundary value problems.
Journal of Applied Mathematics,2014, Article ID
572694, 10 pages, doi: 10.1155/2014/572694, 2014
[4] F. Fakhar-Izadi, M. Dehghan, Spectral methods
for parabolic Volterra integro-differential equations,
Journal of Computation and Applied Mathematics,
235, 4032-4046, 2011
[5] R. Moulla, L. Lefevre,B. Maschke, Pseudo-spectral
methods for the spatial sympletic reduction of open
systems of conservation laws, Journal of Computa-
tional Physics,231, 1272-1292, 2012
[6] G. Makanda, O. D. Makinde, P. Sibanda, Natural
convection of viscoelastic fluid from a cone embed-
ded in a porous medium with viscous dissipation,
Mathematical Problems in Engineering,2013, Arti-
cle ID 934712, 11 pages, doi: 10.1155/2013/934712,
2013
[7] S. Motsa, S. Shateyi, A successive linearization
method approach to solve Lane-Emdem type of
equations, Mathematical Problems in Engineer-
ing,2012, Article ID 280702, 14 pages, doi:
10.1155/2012/280702, 2012
[8] S. Motsa, P. Sibanda, A note on the solutions of
the Van der Pol and Duffing equations using a lin-
earization method, Mathematical Problems in En-
gineering,2012, Article ID 693453, 10 pages, doi:
10.1155/2012/693453, 2012
[9] S. S. Motsa, V. M. Magagula, P. Sibanda, A bivarate
Chebyshev spectral collocation quasilinearization
method for nonlinear evolution parabolic equations,
The Scientific World Journal,2014, Article ID
581987, 13 pages, doi: 10.1155/2014/581987, 2014
[10] A. Rashid, M. Abbas, A.I. Ismail, A. A. Md
Majid, Numerical solution of the coupled vis-
cous Burgers equations by Chebyshev-Legendre-
Legendre pseudo-spectral method, Applied Mathe-
matics and Computation,245, 372-381, 2014
[11] M. A. Christou, N. C. Papanicolaou, Kawahara
solutions in Boussinesq equations using a robust
Christov-Galerkin spectral method, Applied Math-
ematics and Computation,243, 245-257, 2014
[12] D. Gottlieb, J. S. Hesthaven, Spectral methods for
hyperbolic problems. Journal of Computation and
Applied Mathematics,128, 83-131, 2001
[13] D. Gottlieb, S. A. Orszag, Numerical analysis of
spectral methods: Theory and applications, Capital
City Press, Montpelier, Vermont, USA, 1977
[14] R. Jovanovic, S. Kais, F. H. Alharbi, Spectral
method for solving the nonlinear Thomas-Fermi
equation based on exponential functions, Journal
of Applied Mathematics,2014, Article ID 168568, 8
pages, doi: 10.1155/2014/168568, 2014
[15] J. Zhou, The constants in a posteriori error in-
dicator for state-constrained optimal control prob-
lems with spectral methods, Abstracts and Applied
Analysis,2014, Article ID 946026, 8 pages, doi:
10.1155/2014/946026, 2014
[16] A. Kadem, Analytical solutions for the neutron
transport using the spectral methods, International
Journal of Mathematical Science,2006, Article ID
16214, 11 pages, doi:10.1155/IJMMS/2006/16214,
2006
[17] W. Wang, C. Xu, Spectral methods based on new
formulations of coupled Stokes and Darcy equations,
Journal of Computational Physics,257, 126-142,
2014
[18] I. Kozar ,N. T. Malic, Spectral method in realistic
modelling of bridges under moving vehicles, Engi-
neering Structures,50, 149-157, 2013
[19] C. Pozrikidis, A spectral collocation method with
triangular boundary elements, Engineering Analysis
with Boundary Elements,30, 315-324, 2006
[20] P. G. Dlamini, M. Khumalo, S. S. Motsa, A Note on
the multi-stage spectral relaxation method for chaos
control and synchronization, International Journal
of Nonlinear Sciences and Numerical Simulation,
15, 289-298, 2014
[21] S. Shateyi, G. T. Marewo, ”Numerical analysis of
MHD stagnation point flow of Casson fluid, heat
and mass transfer over a stretching sheet” In Bal-
icki, J. (Ed) Advances in Applied and Pure Math-
ematics, WSEAS,Proceedings of the 7th interna-
tional conference on finite differences, finite ele-
ments, finite volumes, boundary elements (F-and-
B’14), Gdansk, Poland, 128-132, 2014 ISBN: 978-
960-474-380-3
[22] S. S. Motsa, Z. G. Makukula, On spectral relax-
ation method approach for steady Von Karman flow
of a Riner-Rivlin fluid with Joule heating, viscous
dissipation and suction/injection, Central European
Journal of Physics,11, 363-374, 2013
[23] S. S. Motsa, Z. G. Makukula, S. Shateyi, Spectral
local linearization approach for natural convection
boundary layer flow, Mathematical Problems in En-
gineering,2013, Article ID 765013, 7 pages, doi:
10.1155/2013/765013, 2013
[24] C. M. Ece, Free convection flow about a vertical
spinning cone under a magnetic field, Applied Math-
ematics and Computation,179, 231-242, 2006
[25] F. G. Awad, P. Sibanda, S. S. Motsa, O. D.
Makinde, Convection from an inverted cone in a
porous medium with cross-diffusion effects. Comput-
ers and Mathematics with Applications,61, 1431-
1441, 2011
[26] P. M. Patil, D. N. Latha, S. Roy,E. Momoniat, Dou-
ble diffusive convection flow from a vertical expo-
nentially stretching surface in the presence of vis-
cous dissipation, International Journal of Heat and
Mass Transfer,112, 758-766, 2017
[27] T. Watanabe, I. Pop, Effects of viscous dissipation
and stress work on the steady two dimensional lam-
inar magnetohydrodynamic forced convection flow
WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2022.21.22