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Abstract: - When consulting the text books on control engineering, state space controllers are described and 

designed with the help of matrix calculus. This implies good knowledge of linear algebra. Especially in Europe 

many Universities of Applied Sciences have extremely reduced mathematics in their curricula. Here a teaching 

concept with the help of signal flow graphs can help to explain and design the controller without solving matrix 

equations. As example, the bidirectional Buck converter is used. The model of the plant is derived and a simple 

state space controller is designed. The plant model is linearized around a working point. Therefore, the simple 

state space controller leads to correct results only at this point. Combination with an additional controller or 

using the error between the desired value and the actual value as a third state variable improves the quality of 

the control. The signal flow graphs for these concepts are given and the controllers designed. With the help of 

LTSpice the designs are checked. 
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1 Introduction 
State space controllers lead to a very efficient 

control. Perusing the textbooks, the design of these 

controllers is described with linear algebra and 

matrix calculus. Furthermore, the design is 

described for systems of any order. If an example is 

given, it uses only simple numbers. Especially in 

Europe, many Universities of Applied Sciences 

have reduced mathematics extremely in their 

curricula. Another way of teaching is therefore 

necessary. Here a way to teach using signal-flow 

graphs and Mason’s equation [1] is described. The 

use of signal flow graphs is very intuitive and helps 

the students to a better understanding and the 

possibility to design a state space controller. In this 

paper the state space controller concept is applied to 

a step-down DC/DC converter. An early study of 

applying the space controller concept to converters 

can be found in [2]. First the model of the plant is 

derived and the signal flow graph is drawn. Then the 

concept of the state space controller is included into 

the graph of the plant and a simple state space 

controller designed. The converter is a nonlinear 

system and the model changes with the working 

point. Therefore, the control has to be improved. 

Two concepts, first with an additional PI-controller 

and second with the error as additional state variable 

are explained and designed with the help of the 

signal flow graphs. A comprehensive treatment of 

Power Electronics is [5], other valuable textbooks 

are e.g. [3-6, 9]. It should be mentioned that the 

here-used methodology can be applied to other 

DC/DC converters, or also to other plants which are 

described by a state-space model. 

 

 

2 Model of the bidirectional Buck 

converter 
The Buck converter with synchronous rectification 

(an active switch is used instead of the diode) 

consists of two active switches S1 and S2, an 

inductor L1 and a capacitor C1 (Fig. 1). A pair of 

connectors is used for the input voltage and a 

second pair serves to apply the load. The two active 

switches (S1 & S2) are controlled in push-pull 

mode, always one of the switches is turned on (with 

a small dead-time between). 

In [7] the idealized model for the same Buck 

converter is used to design simple P- and PI-

controllers, a compensation controller, and a 

feedforward controller, and in [8] the two-loop 

control is treated. The idealized model is derived in 
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[7], and a model with parasitic resistances is used in 

[8]. These models are the starting point for our 

design procedures. 

Fig. 1. Buck converter with two active switches. 

In the CCM (continuous conduction mode) two 

modes take place (sometimes also called stages). In 

mode M1 the active switch S1 is turned on and 

switch S2 is off, and in mode M2 S1 is off and S2 is 

on. Including the parasitic resistors of the switches 

RS1, RS2, of the inductor RL and of the capacitor RC a 

precise model of the converter can be derived 

according to 
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This model is a nonlinear one. Linearization around 

a working point U10, D0, IL0, UC0 leads to the small 

signal model (all variables are written as a 

combination of the working point value, written as 

capital letters with the index 0, and the disturbance 

of the variable, written with small letters with a roof 

on top) 
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The output equation can be calculated according to 
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For simpler writing we use abbreviations for the 

matrix elements and the coefficients of the output 

equation 
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For getting the matrix description of the plant we 

need only the basic equations of electronics: 

Kirchhoff’s voltage law (KVL) and Kirchhoff’s 

current law (KCL), and the voltage-current 

equations for the resistor, the inductor, and the 

capacitor. The matrix is only used to make the 

description concise. So no knowledge of linear 

algebra is necessary. (2, 3) are linear equations and 

can be used for small signal calculations. The 

complete system can now be drawn as a signal flow 

graph in the Laplace domain. The graph can be 

found immediately from (4, 5). For a system of 

second order we need two integrators 1/s. On the 

left side the branches which form the derivative of 

the equation are connected. The output variable U2 

is achieved according to the output equation with 

the branches C11 and C12. 

 

Fig. 3. Signal flow graph of the synchronous Buck 

converter. 

 

It should be mentioned that all second order power 

converters have the same signal flow graph as 

shown in Fig. 3 but different coefficients.  

First we calculate the two transfer functions 

between the current through the coil and the duty 

ratio and between the capacitor voltage and the duty 

ratio. We must calculate the forward paths 
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With the help of Mason’s equation (a short 

explanation can be found in the appendix)  
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one can calculate the transfer functions between the 

capacitor voltage, the current through the coil, and 
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the output voltage in dependence of the duty cycle, 

respectively according to  
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In [7] a simplified model of the Buck converter is 

used. The parasitic resistors are omitted. In this case 

the plant is a less damped one, so the derived 

controller will be slower. The large signal model is 

now described by 
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and for the linearized model one gets 
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For a rough design of the controller this plant model 

is sufficient. The signal flow graph is now also 

simpler and shown in Fig. 4.  

 
Fig. 4. Signal flow graph of the idealized 

synchronous Buck converter. 

 

The branches A11 (consists only out of parasitic 

resistances) and C11 (RC << R) are now zero and 

C12 is equal to one. The transfer functions (9-11) 

can now accordingly be simplified. For the design 

of the controller these simplified equations can used 

for a first design. 

 

 

3 Basic state space controller 
The input variable of the state spaced controlled 

Buck converter consists of two P-controllers R1 and 

R2 which feedback the state variables IL and UC 

and a so-called input filter K which scales the 

reference value (the desired output voltage). The 

signal flow graph is shown in Fig. 5. 

 

 
Fig. 5. Simple state space controller for the idealized 

plant. 

 

When using the Mason equation, one has first to 

find the forward paths (all the series of branches 

which are starting at the input (the independent 

variable in our case U2ref) and end at the output 

(the dependent variable in our case U2) and the 

loops. A first-order loop is defined as the product of 

branches encountered in a round trip, when one 

moves from one node in the direction of the arrows 

back to the node where one has started. 

Furthermore, we have to find all second order loops 

which consist of the product of any first-order loops 

which are not touching each other.  

We start from the input variable D. There is only 

one forward path 
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The loops L2 and L3 are not touching each other, 

therefore we have also a second-order loop 
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All loops touch the forward path. Applying Mason’s 

rule, the transfer function between the output 

voltage and the duty cycle can be calculated 

according to 
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Including the pre-filter K, the transfer function 

between the output voltage and the reference value 

can now be written according to  
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This transfer function has to be compared with the 

desired transfer function and by comparing the 

coefficients the values K, R1 and R2 of the state 

space controller can be found.  

One can now choose the poles. A typical choice 

would be a conjugate complex pole pair 
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or a double pole on the negative real axis. The 

denominator of the desired transfer functions is 

therefore  
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To avoid a steady state control error, the numerator 

must have the same value as the constant coefficient 

of the denominator. The desired transfer functions 

are therefore 
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For the idealized converter one gets for the real 

double pole 
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and for the conjugate pole pair 
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For the converter with included losses the 

comparison of the coefficients leads for the real pole 

pair to 
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For the conjugate complex pole pair one gets 
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The simulation is done by implementing (Fig. 6) the 

model of the converter according the nonlinear 

model (12). The integration is done with the help of 

the voltage controlled voltage sources E1, E3. The 

derivative of the state variables is realized with the 

arbitrary voltage sources B1, B2. The arbitrary 

voltage source B3 calculates the duty cycle from the 

state variables and the reference value. The input 

voltage u1 and the reference value Uref are given by 

the voltage sources V2 and V1, respectively. 

 
Fig. 6. Simulation of the simple state space 

controller. 

 
Fig. 7. Simple state space controller with ideal Buck 

with poles at 100010002,1 js  : current through 

the coil (red); reference value (black), voltage across 

the capacitor (green); input voltage (blue), capacitor 

voltage (green). 

 

Fig. 7 show the current through the coil, the voltage 

across the capacitor, the reference value, and the 
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input voltage. The controller was designed for the 

linearized system; the model of the converter in the 

simulation, however, is the nonlinear one. 

Therefore, a steady-state error occurs when the input 

voltage is changed (at 15 ms). 

To achieve a Bode plot (Fig. 9) of the controlled 

system one can use a simulation according to Fig. 8. 

The desired closed loop transfer function (23) is 

calculated with the voltage controlled voltage source 

E1.  

 

 
Fig. 8. Simulation circuit for generating the closed 

loop transfer function. 

 

 
Fig. 9. Closed loop transfer function.  

 

 
Fig. 10. Circuit simulated Buck converter with 

simple state space controller, up to down: current 

through the coil (red); duty cycle (black); input 

voltage (blue), reference value (brown), output 

voltage (green).  

With the program LTSpice one can implement the 

state space controller into the circuit simulation. The 

used simulation circuit is shown in the appendix.  

 

Using a circuit simulation of the Buck converter 

gives a very good possibility to prove the controller, 

not only around the working point, but in a “real” 

surrounding. In Fig. 10 one can see the soft-start by 

increasing the reference value and a reference value 

step and a step of the input voltage. The current 

through the coil and the duty cycle are also depicted. 

Because of the nonlinearity of the converter a 

steady-state error occurs especially after the input 

voltage and the reference value steps. 

 

 
Fig. 11. Circuit simulated Buck converter with 

simple state space controller, up to down: current 

through the coil (red); duty cycle (black), sawteeth 

for the pwm-generator (turquoise); input voltage 

(blue), reference value (brown), output voltage 

(green), pwm-signal (violet).  

 

Fig. 11 shows the steady-state signals: the current 

through the coil, the analog duty cycle, and the saw-

teeth of the pwm-modulator. In the picture at the 

bottom the input voltage, the reference value, the 

output voltage, and the output of the pwm-

modulator are depicted. The analog duty cycle 

signal changes with the current of the coil. With a 

comparator this signal is compared with a saw-teeth 

signal to generate the pulse width signal to control 

the two active switches of the converter. When the 

analog duty cycle signal is lower than the saw-teeth, 

the comparator output signal is high, otherwise it is 

low. The steady state error of the output voltage can 

be seen clearly. 
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4 Improvements of the state space 

controller 
The state space controller only works precisely, 

when the system is linear. When the controller is 

designed for a linearized plant (as in the case of the 

Buck converter which is a nonlinear plant), it works 

precisely only at the working point where the 

linearization was done. To improve the control, we 

have two possibilities. First we control the state-

spaced controlled plant by an additional controller 

with an integral part, or second another state 

variable representing the error is included and a 

state space controller with increased order is 

designed. 

 

4.1 Improved state space controller type 1 
The concept is shown with the help of the signal 

flow graph (Fig. 12). Instead of the pre-filter, a 

simple linear controller is used. To avoid a steady-

state error, we choose a PI-controller.  

 

 
Fig. 12. Simple state space controller with 

additional linear controller. 

 

With the transfer function of the PI-controller in 

Bode nominal form 
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and choosing the zero of the controller equal to the 

real part of the poles of the plant, the open loop 

system can be written according to 
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Now one can draw a Bode plot for the open loop 

system with K=1 (Fig. 13). 

 
Fig. 13. Bode plot of the simple state space 

controlled system with additional PI-controller. 

 

 
Fig. 14. State space controlled Buck converter with 

additional PI-controller, controller gain 1000, input 

voltage (red), reference value (blue), capacitor 

voltage (green). 

 

For a phase margin of 60 degrees the gain is -60 dB. 

Therefore, the controller gain can be set at 1000. 

The start-up, a reference value step, and an input 

voltage step are shown in Fig. 14. 

The additional PI-controller leads to an additional 

ringing at the reference value step, but it 

compensates the input voltage step! Reducing the 

controller gain (Fig. 15) avoids the ringing and the 

control speed is still satisfactory. 

 
Fig. 15. State space controlled Buck converter with 

additional PI-controller, controller gain 100, input 

voltage (red), reference value (blue), capacitor 

voltage (green). 

 

The simulations in Figs. 14, 15 were done with 

using integrators to calculate the nonlinear model of 

the converter. Fig. 16 shows the results of the 

simple state space controlled system with additional 

PI-controller. The plant is circuit-simulated as 

synchronous rectified Buck converter.  
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Fig. 16. State space controlled Buck converter 

(modelled as a circuit) with additional PI-controller, 

controller gain 100: input voltage (blue), reference 

value (brown), output voltage (green). 

 

The improvement of the state space controller by an 

additional controller leads to a very satisfying result. 

With the state space controller, the poles of the 

system to be controlled are committed to a desired 

value. This system is subsequently controlled by an 

additional normal linear controller. The design can 

easily be done with the help of a Bode diagram of 

the open loop with a controller gain of one. 

Choosing a phase margin and shifting the open loop 

diagram, so that at a phase shift of -120o the gain is 

1 (0 dB), leads to a fast and stable controller. To 

avoid ringing one has to reduce the gain. Optimizing 

can be done easily using some simulations. By 

including the controllers into a circuit simulation of 

the converter one gets the final check of the design.  

 

4.2 Improved state space controller type 2 
A second method to improve the state space 

controller is to add the integral of the error between 

the output variable and the reference value as an 

additional state variable. This concept is also called 

extended state space controller. Fig. 17 shows the 

signal flow graph of this concept. 

 

 
Fig. 17. Signal flow graph of the extended state 

space controller. 

 

We find two forward paths between the output node 

U2 and the input node U2ref 
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We find seven first order loops 
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The loops L3 and L4, the loops L1 and L3 and the 

loops L3 and L6 do not touch each other, therefore 

we have also three second-order loops 
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The loop L3 does not touch the forward path F1, but 

all loops touch the second forward path F2. The 

transfer function can now be calculated according to 
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Now one has to choose the poles of the closed loop 

system. This can be done arbitrarily, but one has to 

have in mind that a too fast control leads to high 

signal values which may destroy the circuit. It is 

ingenious to choose a triple pole on the real axis, or 

one real pole and a conjugate complex pole pair. A 

triple pole at minus x leads to a desired denominator 

of  
32233 33)(3 xsxsxsxsDen   .             (41) 

We can also use one real pole and a conjugate 

complex pole-pair. This leads to the denominator 
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The desired transfer function with zero steady state 

error is therefore 
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4.2.1 Ideal plant with triple pole at minus x 
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To achieve the controller values, the desired transfer 

function (43) and the transfer function of the system 

(40) must be compared. A11 and C11 are very small, 

so they can be omitted (A11=0, C11=0). The transfer 

function can be reduced to               (45) 
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Comparison of the coefficients leads to 
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Fig. 18. Simulation circuit: idealized plant of the 

synchronous Buck converter with extended state 

space controller with triple pole at -1000. 

 

Fig. 18 shows the simulation program. The 

converter is modelled with its state space 

description. 

 
Fig. 19. State space controlled Buck converter 

(modelled as a non-linear system) with extended 

state space controller with triple pole at -1000: input 

voltage (blue), reference value (brown), output 

voltage (green). 

 

In Fig. 19 the start-up, a reference value step, and an 

input voltage step for the Buck with extended state 

space control is shown. The system is slower and 

the reaction to the input voltage change is much 

more pronounced. 

 

4.2.2 Ideal controller with a complex pole pair 

and a real pole 

The complex pole pair is chosen at  j  and the 

real pole at –x. To get the controller parameters the 

transfer functions (44) and (45) have to be 

compared. This leads to  
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The second concept (4.2) is equivalent to (4.1) when 

a simple I-controller is taken. The I-controller leads 

to a slower system. Therefore, it is better to use 

concept (4.1). 

 

 

5 Conclusion 
The design of state controllers for a second order 

system without using linear algebra and matrix 

operation was shown for a step-down DC/DC 

converter. Now only some knowledge about the 

signal flow graph and the equation of Mason is 

necessary. The system has to be described in state-

space form which is very common and does not 

need knowledge about matrix calculus. The design 

equations for the controller follow immediately 

from the signal flow graph. The Buck converter 

used as an example is a nonlinear system, therefore 

the simple state space controller works only 

correctly for the chosen working point. Two 

methods to overcome this limitation are shown. The 

better way is to use an additional linear controller 

e.g. a PI-controller. The second concept to include 

the error as a third state variable is also possible and 

is similar, when in the first concept an I-controller is 

used instead of a PI-controller. The I-controller 

leads however to slower control and is therefore not 

so useful. The free simulation tool LTSpice helps in 

the design and makes possible to check the system 

with a circuit simulation of the plant. 

 

References: 
[1] G. Gonzalez, Microwave Transistor Amplifiers, Prentice-

Hall, 1984. 

[2] F. A. Himmelstoss, and F. C. Zach, State Space Control 

for Switched Mode Power Supplies, Proceedings of the 

International Power Electronics Conference IPEC90-93, 

Tokyo, April 2-6, 1990, pp.1157-1164. 

[3] F. Zach, in German: Leistungselektronik, Springer, 6th 

ed., 2022. 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2022.21.46 Felix A. Himmelstoss

E-ISSN: 2224-2678 428 Volume 21, 2022



[4] N. Mohan, T. Undeland and W. Robbins, Power 

Electronics, Converters, Applications and Design, 3nd ed. 

New York: W. P. John Wiley & Sons, 2003 

[5] R.W. Erickson & D. Maksimovic, Fundamentals on 

Power Electronics, Springer 2020. 

[6] Y. Rozanov, S. Ryvkin, E. Chaplygin, P. Voronin, Power 

Electronics Basics, CRC Press, 2016. 

[7] F. A. Himmelstoss, Controller design of a Buck converter 

with the help of LTSpice, International Asian Congress on 

Contemporary Sciences-VI, 2022, pp.195-202, ISBN-978-

625-8323-27-6. 

[8] F. A. Himmelstoss, Cascaded control of a Buck converter 

designed and simulated with the help of LTSpice, 6th 

International European Congress on Interdisciplinary 

Scientific Research, Bucharest, pp. 1086-1096, ISBN: 

978-625-8213-38-6. 

[9] R. H. Bishop (editor), The Mechatronics Handbook, CRC 

Press, 2008.  

 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 

This article is published under the terms of the 

Creative Commons Attribution License 4.0 

https://creativecommons.org/licenses/by/4.0/deed.en

_US 

 

Appendix 
A1. Signal flow graphs - a short summery 

The signals are nodes and over the branches which 

connect the nodes the transfer coefficient or 

function are written. We distinguish between 

forward paths and loops. To get the value of a 

forward path (between an input node and an output 

node), one has to multiply the values of the 

connecting branches. A loop starts at a node and 

ends at the same node. The value of the loop is the 

multiplication of the values of all branches which 

form the loop. Second-order loops are formed by the 

product of two loops which are not touching each 

other. Mason’s equation enables us to find transfer 

functions. The denominator is 1 minus the sum of 

all first-order loops plus the sum of all second-order 

loops minus etc. The numerator is the sum of all 

forward paths multiplied by the denominator, where 

all loops which are touching the forward path are 

deleted.  

 

A2. Circuit simulation  

Fig. A shows the used simulation circuit for the 

simple state space controller. The synchronous 

rectified Buck converter is modelled with the active 

switches (MOSFETs) S1 and S2, the inductor L1, 

and the capacitor C1. The input voltage is built with 

the voltage source V1 and the load by the resistor 

R1. The electronic switches are controlled by the 

voltage controlled voltage sources E1 and E2. E1 is 

necessary, because S1 is a high-side switch, S2 is a 

low-side switch, therefore no floating driver is 

necessary, but E2 is used to realize the same 

propagation delay. The dead-time of the switches is 

realized with the capacitors C2, C3, the resistors R2 

and R3, the diodes D2 and D3, and the AND-gates 

A1 and A2 (which can also be used for connecting 

an enable signal). S1 is controlled by the pwm 

output of the comparator U1, and the second switch 

S2 by the inverted output pwm_q. The pwm-

modulation is achieved by the saw-teeth generator 

V2 and the output of the arbitrary voltage source 

B1, which calculates the simple state space 

controller. With the voltage source V5 the desired 

value Uref is produced. The comparator U1 is 

double side supplied with the voltage sources V3 

and V4. Only 5 V is allowed for this device. The 

voltage source V6 with the value zero in series to 

the inductor L1, shows the current measurement 

device. This current controls the current-controlled 

voltage source H1 which is used in the state space 

controller B1. 

 
Fig. A. Circuit orientated simulation of the synchronous Buck converter with simple state space controller. 
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